1
|
Zheng H, Zhang G, Zhang C, Zhang S. Unravelling structural features of small molecules for photochemical transformation of environmental contaminants. WATER RESEARCH 2024; 261:122015. [PMID: 38996734 DOI: 10.1016/j.watres.2024.122015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Small molecules, including natural metabolites, organic matter decomposition products, and engineered oxidation byproducts, are widespread in aquatic environment. However, the limited understanding of the photochemical interactions of these small molecules with water pollutants hampers the development of effective environmental protection strategies. This study explores the structural features governing the photochemical transformation of toxic oxyanions by α- and β-dicarbonyl compounds. By integrating experimental observations with quantum chemical calculations, a robust correlation network was constructed. The correlation network reveals that the reactivity of small organic molecules with oxyanions could be quantitively predicted by their intrinsic properties, such as electronic transition energy, bond dissociation energy, molecular softness, molecular orbital gap, atomic charge, and molecular surface local ionization energy. This network maps the relationship between the molecular architecture of chemicals and their photochemical behaviors. This perspective offers fresh insights into the photochemical behaviors of small molecules in diverse environmental and chemical contexts and are helpful for developing advanced water treatment strategies toward a sustainable future.
Collapse
Affiliation(s)
- Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Ao X, Zhang X, Sun W, Linden KG, Payne EM, Mao T, Li Z. What is the role of nitrate/nitrite in trace organic contaminants degradation and transformation during UV-based advanced oxidation processes? WATER RESEARCH 2024; 253:121259. [PMID: 38377923 DOI: 10.1016/j.watres.2024.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The effectiveness of UV-based advanced oxidation processes (UV-AOPs) in degrading trace organic contaminants (TrOCs) can be significantly influenced by the ubiquitous presence of nitrate (NO3-) and nitrite (NO2-) in water and wastewater. Indeed, NO3-/NO2- can play multiple roles of NO3-/NO2- in UV-AOPs, leading to complexities and conflicting results observed in existing research. They can inhibit the degradation of TrOCs by scavenging reactive species and/or competitively absorbing UV light. Conversely, they can also enhance the elimination of TrOCs by generating additional •OH and reactive nitrogen species (RNS). Furthermore, the presence of NO3-/NO2- during UV-AOP treatment can affect the transformation pathways of TrOCs, potentially resulting in the nitration/nitrosation of TrOCs. The resulting nitro(so)-products are generally more toxic than the parent TrOCs and may become precursors of nitrogenous disinfection byproducts (N-DBPs) upon chlorination. Particularly, since the impact of NO3-/NO2- in UV-AOPs is largely due to the generation of RNS from NO3-/NO2- including NO•, NO2•, and peroxynitrite (ONOO-/ONOOH), this review covers the generation, properties, and detection methods of these RNS. From kinetic, mechanistic, and toxicologic perspectives, future research needs are proposed to advance the understanding of how NO3-/NO2- can be exploited to improve the performance of UV-AOPs treating TrOCs. This critical review provides a comprehensive framework outlining the multifaceted impact of NO3-/NO2- in UV-AOPs, contributing insights for basic research and practical applications of UV-AOPs containing NO3-/NO2-.
Collapse
Affiliation(s)
- Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States.
| | - Emma M Payne
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., Ontario L8N1E, Canada
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Alfonso-Muniozguren P, Gomes AI, Saroj D, Vilar VJP, Lee J. The role of ozone combined with UVC/H 2O 2 process for the tertiary treatment of a real slaughterhouse wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112480. [PMID: 33819652 DOI: 10.1016/j.jenvman.2021.112480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/20/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The main goal of this work is to evaluate the usage of ozone (O3) as a pre-treatment or simultaneously combined with UVC/H2O2 process for the polishing stage treatment of real bio-treated slaughterhouse wastewater. Two different treatment strategies were tested: i) pre-ozonation of the wastewater followed by an UVC/H2O2 process (two-step treatment); ii) simultaneous application of O3/UVC/H2O2 combined process (one-step treatment). For the two-step strategy, the pre-treatment with 30 mg O3/min for 10 min reduces significantly total suspended solids (TSS), turbidity and colour, reducing light filtering effects and increasing the efficiency of the following UVC/H2O2 process. In turn, the one-step treatment strategy (O3/UVC/H2O2) allows a more efficient use of injected O3 by reducing the amount of O3 required (from 273 to 189 mg O3/Leffluent) to achieve similar mineralization levels. The real bio-treated slaughterhouse wastewater treated by O3/UVC/H2O2 process achieved final colour values of 20 Pt/Co, TSS of 35 mg/L and COD of 61 mg O2/L, allowing its direct discharge into water compartments according to European Council Directive 91/271/EEC.
Collapse
Affiliation(s)
- Pello Alfonso-Muniozguren
- Chemical and Process Engineering, University of Surrey, Guildford, GU27XH, United Kingdom; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Ana I Gomes
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Civil and Environmental Engineering, University of Surrey, Guildford, GU27XH, United Kingdom
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Judy Lee
- Chemical and Process Engineering, University of Surrey, Guildford, GU27XH, United Kingdom.
| |
Collapse
|
4
|
Zhang G, Xie M, Zhao J, Wei S, Zheng H, Zhang S. Key structural features that determine the selectivity of UV/acetylacetone for the degradation of aromatic pollutants when compared to UV/H 2O 2. WATER RESEARCH 2021; 196:117046. [PMID: 33774353 DOI: 10.1016/j.watres.2021.117046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Acetylacetone (AA) has proven to be a potent photo-activator for the decolorization of dyes. However, there is very limited information on the quantitative structure-activity relationship (QSAR) and the mechanisms of dye degradation by UV/AA. Herein, the photolysis of 65 aromatic compounds (dyes and dye precursors) was investigated at three pH values (4.0, 6.0, 9.0) by UV/AA and UV/H2O2. The obtained pseudo-first-order photodegradation rate constants (k1) were processed using statistical analysis. The correlation between the k1 values and the number of photons absorbed by AA, together with the observed pH effect, suggested that the protonated enol structure of AA plays a crucial role in the photodecolorization of dyes. According to quantum chemical computation, photo-induced direct electron transfer between the excited state of AA and the dye was the main mechanism in the UV/AA process. QSAR models demonstrated that the molecular size and stability were the key factors that determined the efficiency of UV/H2O2 for dye degradation. Statistically, the UV/AA process was target-selective and suffered less from the inner filter effect, which made it more effective than the UV/H2O2 process for dye degradation. The selectivity of the UV/AA process was mainly embodied in the substituent effects: dyes with hydroxyl groups in conjugated systems decomposed faster than those with nitro-substitution or ortho-substituted sulfonate groups. The results can be used for the selection of appropriate photochemical approaches for the treatment of dye-contaminated water.
Collapse
Affiliation(s)
- Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Yang F, Sheng B, Wang Z, Xue Y, Liu J, Ma T, Bush R, Kušić H, Zhou Y. Performance of UV/acetylacetone process for saline dye wastewater treatment: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124774. [PMID: 33310333 DOI: 10.1016/j.jhazmat.2020.124774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Futility of traditional advanced oxidation processes (AOPs) in saline wastewater treatment has stimulated the quest for novel "halotolerant" chemical oxidation technology. Acetylacetone (AA) has proven to be a potent photo-activator in the degradation of dyes, but the applicability of UV/AA for saline wastewater treatment needs to be verified. In this study, degradation of crystal violet (CV) was investigated in the UV/AA system in the presence of various concentrations of exogenic Cl- or Br-. The results reveal that degradation, mineralization and even accumulation of adsorbable organic halides (AOX) were not significantly affected by the addition of Cl- or Br-. Rates of CV degradation were enhanced by elevating either AA dosage or solution acidity. An apparent kinetic rate equation was developed as r = -d[CV]/dt = k[CV]a[AA]b = (7.34 × 10-4 mM1-(a+b) min-1) × [CV]a=0.16 [AA]b=0.97. In terms of results of radical quenching experiments, direct electron/energy transfer is considered as the major reaction mechanism, while either singlet oxygen or triplet state (3(AA)*) might be involved. Based on identification of degradation byproducts, a possible degradation pathway of CV in the UV/AA system is proposed.
Collapse
Affiliation(s)
- Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bo Sheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Ying Xue
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tianyi Ma
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Richard Bush
- Sustainable Development Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Yanbo Zhou
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Wu B, Yu S, Zhang G, Zhang S, Shen P, Tratnyek PG. Role of complexation in the photochemical reduction of chromate by acetylacetone. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123306. [PMID: 32947710 DOI: 10.1016/j.jhazmat.2020.123306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Organic ligands can alter the redox behavior of metal species through the generation of metal-ligand complexes. Photo-induced complexation between ligands and metals is an important, but under-appreciated, aspect of process. Acetylacetone (AA) is a good chelating agent due to keto-enol tautomerization. In the presence of AA, photoreduction of Cr(VI) is accelerated; however, it is unclear exactly how complexation is involved in UV/AA mediated Cr(VI) reduction. On the basis of spectral and kinetic analyses, this study shows that the formation of {Cr(VI)-AA}* complexes is the main mechanism of Cr(VI) reduction by UV/AA. Evidence for this includes (1) the formation rate constant of Cr(III)-AA complexes in the UV system was 2-3 orders of magnitude greater than that in the thermal system; (2) there was a linear relationship between the photons absorbed by AA and the reduction rate constants of Cr(VI); and (3) the reaction appeared initially zero-order in Cr(VI) and turned to first-order as the pool of available Cr(VI) ran out. The results presented here are not only important for the better understanding of the complexation effects in the reduction of Cr(VI), but also crucial for the possible application of the UV/AA process in many other scenarios.
Collapse
Affiliation(s)
- Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Pengfei Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
7
|
Wang W, Wang H, Li G, Wong PK, An T. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms. WATER RESEARCH 2020; 176:115746. [PMID: 32224329 DOI: 10.1016/j.watres.2020.115746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 05/15/2023]
Abstract
The development of "green" water disinfection technology utilizing solar energy is highly desired but remains challenging. In this study, sulfate radical (•SO4-)-mediated bacterial inactivation was first attempted by using Fe3O4-based magnetic hydrochar (MHC) as a recyclable catalyst for persulfate (PS) activation under visible light (VL) irradiation. Complete treatment of 8.0 log E. coli cells was reached within 40 min in VL/PS/MHC system, compared with that of only 2.0 log-reduction was obtained in the PS/MHC system under the same conditions. The system was applicable in wide range of pH (3.0-9.0), and increasing dissolved O2 could further promote the efficiency. A three-route mechanism was proposed, in which the PS activation by ≡Fe(II) of Fe3O4 and photo-generated electron captured by PS were the major processes. The bacterial cell lesion process was found to be triggered directly via •SO4-, which caused the damage of outer membrane, followed by up-regulation of intracellular ROSs and destroy of chromosomal DNA, finally leading to irreversible cell death. Moreover, the VL/PS/MHC system is also effective to inactivate versatile pathogenic bacteria including P. aeruginosa and S. aureus. As a proof-of-concept, our study provides meaningful information to advance the areas of "green" water disinfection technology which can be realized by recyclable photocatalytic systems using solar energy.
Collapse
Affiliation(s)
- Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Hanna Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Po Keung Wong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
8
|
Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100318] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Jin J, Zhang S, Wu B, Chen Z, Zhang G, Tratnyek PG. Enhanced Photooxidation of Hydroquinone by Acetylacetone, a Novel Photosensitizer and Electron Shuttle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11232-11239. [PMID: 31469553 DOI: 10.1021/acs.est.9b02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quinones are important electron shuttles as well as micropollutants in the nature. Acetylacetone (AA) is a newly recognized electron shuttle in aqueous media exposed to UV irradiation. Herein, we studied the interactions between AA and hydroquinone (QH2) under steady-state and transient photochemical conditions to clarify the possible reactions and consequences if QH2 and AA coexist in a solution. Steady-state experimental results demonstrate that the interactions between AA and QH2 were strongly affected by dissolved oxygen. In O2-rich solutions, the phototransformation of QH2 was AA-independent. Both QH2 and AA utilize O2 as the electron acceptor, but in O2-insufficient solutions, AA became an important electron acceptor for the oxidation of QH2. In all cases, the coexistence of AA increased the phototransformation of QH2, whereas the decomposition of AA in O2-saturated and oversaturated solutions was inhibited by the presence of QH2. The underlying mechanisms were investigated by a combination of laser flash photolysis (LFP) and reduction potential analysis. The LFP results show that the excited AA serves as a better electron shuttle than QH2. As a consequence, AA might regulate the redox cycling of quinones, leading to significant effects on many processes, ranging from photosynthesis and respiration to photodegradation.
Collapse
Affiliation(s)
- Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health , Oregon Health & Science University , 3181 SW Sam Jackson Park Road , Portland 97239 , Oregon , United States
| |
Collapse
|
10
|
Synthesis of highly fluorescent RhDCP as an ideal inner filter effect pair for the NaYF4:Yb,Er upconversion fluorescent nanoparticles to detect trace amount of Hg(II) in water and food samples. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wang X, Liu H, Shan C, Zhang W, Pan B. A novel combined process for efficient removal of Se(VI) from sulfate-rich water: Sulfite/UV/Fe(III) coagulation. CHEMOSPHERE 2018; 211:867-874. [PMID: 30103142 DOI: 10.1016/j.chemosphere.2018.07.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The efficient removal of Se(VI) from sulfate-rich water is challenging as most reported processes last for hours to days. In this study, a combined sulfite/UV/Fe(III) coagulation process was proposed for efficient Se(VI) removal from sulfate-rich water within a short time (∼1 h). In the presence of sulfate (1000 mg L-1), over 99% of Se(VI) (initially at 10 mg L-1) could be reduced by sulfite (5.0 mM) with a UV dose of 16 J cm-2 (within 20 min) into Se(IV) as the sole observed product. An alkaline pH (>9) was required for the reduction process, which was naturally obtained with the addition of sulfite. Scavenging experiments with N2O and NO3- both indicated that hydrated electrons (eaq-) were responsible for Se(VI) reduction by sulfite/UV. The presence of chloride, sulfate, phosphate, and carbonate (up to 10 mM) showed negligible influence on Se(VI) reduction, whereas nitrate and humic acid inhibited Se(VI) reduction to different extents depending on their concentrations. By Fe(III) coagulation, Se(IV) in the co-presence of sulfite and sulfate was efficiently removed at an OH-/Fe molar ratio of 1.8-2.8. The removal of Se(IV) by Fe(III) coagulation responded insignificantly to chloride, nitrate, or sulfate (up to 10 mM), whereas it was adversely affected at high levels of carbonate (10 mM) and phosphate (1 mM). The combined sulfite/UV/Fe(III) coagulation process was validated for the efficient removal of Se(VI) from synthetic sulfate-rich solution, simulated wastewater, and authentic smelting wastewater (in 1.1 h). The introduced sulfite underwent minor consumption during UV irradiation and was almost (∼90%) removed after coagulation.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Yin R, Ling L, Shang C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. WATER RESEARCH 2018; 142:452-458. [PMID: 29913386 DOI: 10.1016/j.watres.2018.06.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 05/28/2023]
Abstract
UV-LEDs are considered as the most promising UV light sources, because it has the potential to replace conventional UV lamps in some water treatment applications in the foreseeable future. In this study, UV-LEDs at four wavelengths in the UV-C or near UV-C range (i.e., 257.7, 268, 282.3, and 301.2 nm) were used to investigate the wavelength-dependency on chlorine photolysis and its subsequent radical formation. The fluence-based photodecay rates of hypochlorous acid (HOCl) and hypochlorite (OCl-) were monotonically correlated to their molar absorption coefficients and quantum yields, and the chlorine photodecay rates were much more significantly affected by molar absorption coefficients (β = 0.949) than quantum yields (β = 0.055). An empirical model that incorporated the chlorine photodecay rate constants, quantum yields, and molar absorption coefficients of HOCl and OCl- was established, validated and then used to predict the chlorine photodecay rate at any wavelength (257.7-301.2 nm) and pH (5-10). The modelling results suggested that the maximum fluence-based rate constant (1.46 × 10-4 m2 J-1) was obtained at 289.7 nm and pH 9.95. The wavelength dependency was larger at alkaline pH than at acidic pH, and the pH dependency was the largest at the longest wavelength. The formation of hydroxyl radicals (HO·) and reactive chlorine species (RCS) decreased with increasing wavelength at pH 6, and increased with increasing wavelength at pH 7. More HO· was formed at pH 6 than pH 7, but RCS showed the opposite pH-dependency. The findings in this study provide the fundamental information in selecting UV-LEDs with specific wavelength for enhancing/optimizing chlorine photodecay and/or its radical generation at different pHs in real-world applications.
Collapse
Affiliation(s)
- Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Li Ling
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Yang M, Wu B, Li Q, Xiong X, Zhang H, Tian Y, Xie J, Huang P, Tan S, Wang G, Zhang L, Zhang S. Feasibility of the UV/AA process as a pretreatment approach for bioremediation of dye-laden wastewater. CHEMOSPHERE 2018; 194:488-494. [PMID: 29232642 DOI: 10.1016/j.chemosphere.2017.11.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Biodegradability and toxicity are two important indexes in considering the feasibility of a chemical process for environmental remediation. The acetylacetone (AA) mediated photochemical process has been proven as an efficient approach for dye decolorization. Both AA and its photochemical degradation products had a high bioavailability. However, the biocompatibility and ecotoxicology of the UV/AA treated solutions are unclear yet. In the present work, we evaluated the biocompatibility and toxicity of the UV/AA treated solutions at both biochemical and organismal levels. The biodegradability of the treated solution was evaluated with the ratio of 5-d biological oxygen demand (BOD5) to chemical oxygen demand (COD) and a 28-d activated sludge assay (Zahn-Wellens tests). The UV/AA process significantly improved the biodegradability of the tested dye solutions. Toxicity was assessed with responses of microorganisms (microbes in activated sludge and Daphnia magna) and plants (bok choy, rice seed, and Arabidopsis thaliana) to the treated solutions, which showed that the toxicity of the UV/AA treated solutions was lower or comparable to that of the UV/H2O2 counterparts. The results are helpful for us to determine whether the UV/AA process is applicable to certain wastewaters and how the UV/AA process could be effectively combined into a sequential chemical-biological water treatment.
Collapse
Affiliation(s)
- Minghui Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiuhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaofeng Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Haoran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiawen Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ping Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Suo Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guodong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Xu JX, Vithanage BCN, Athukorale SA, Zhang D. Scattering and absorption differ drastically in their inner filter effects on fluorescence, resonance synchronous, and polarized resonance synchronous spectroscopic measurements. Analyst 2018; 143:3382-3389. [DOI: 10.1039/c8an00790j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reported herein is the finding that photon scattering and absorption differ drastically in inducing the sample IFE in SSF, RS2, and the PRS2 spectra measurements.
Collapse
Affiliation(s)
- Joanna Xiuzhu Xu
- Department of Chemistry
- Mississippi State University
- Mississippi State
- USA
| | | | | | - Dongmao Zhang
- Department of Chemistry
- Mississippi State University
- Mississippi State
- USA
| |
Collapse
|