1
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
2
|
Yan Z, Han X, Wang H, Jin Y, Song X. Influence of aeration modes and DO on simultaneous nitrification and denitrification in treatment of hypersaline high-strength nitrogen wastewater using sequencing batch biofilm reactor (SBBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121075. [PMID: 38723502 DOI: 10.1016/j.jenvman.2024.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.
Collapse
Affiliation(s)
- Zixuan Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haodi Wang
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xingfu Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
3
|
Hong P, Sun X, Yuan S, Wang Y, Gong S, Zhang Y, Sang P, Xiao B, Shu Y. Nitrogen removal intensification of biofilm through bioaugmentation with Methylobacterium gregans DC-1 during wastewater treatment. CHEMOSPHERE 2024; 352:141467. [PMID: 38387667 DOI: 10.1016/j.chemosphere.2024.141467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The increasing concern for environmental remediation has led to a search for effective methods to remove eutrophic nutrients. In this study, Methylobacterium gregans DC-1 was utilized to improve nitrogen removal in a sequencing batch biofilm reactor (SBBR) via aerobic denitrification. This bacterium has the extraordinary characteristics of strong auto-aggregation and a high ability to remove nitrogen efficiently, making it an ideal candidate for enhanced treatment of nitrogen-rich wastewater. This strain was used for the bioassessment of a test reactor (SBBRbio), which showed a shorter biofilm formation time compared to a control reactor (SBBRcon) without this strain inoculation. Moreover, the enhanced biofilm was enriched in TB-EPS and had a wider variety of protein secondary structures than SBBRcon. During the stabilization phase of SBBRbio, the EPS molecules showed the highest proportion of intermolecular hydrogen bonding. It is possible that bioaugmentation with this strain positively affects the structural stability of biofilm. At influent ammonia loadings of 100 and 150 mg. L-1, the average reduction of ammonia and nitrate-nitrogen was higher in the experimental system compared to the control system. Additionally, nitrite-N accumulation was lower and N2O production decreased compared to the control. Analysis of the microbial community structure demonstrated successful colonization in the bioreactor by a highly nitrogen-tolerant strain that efficiently removed inorganic nitrogen. These results illustrate the great potential of this type of denitrifying bacteria in the application of bioaugmentation systems.
Collapse
Affiliation(s)
- Pei Hong
- School of Ecology and Environment, College of Life Sciences, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Xiaohui Sun
- School of Ecology and Environment, College of Life Sciences, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Saibo Yuan
- Ecological Environment Monitoring and Scientific Research Center, Ecology and Environment Supervision and Administration Bureau of Yangtze Valley, Ministry of Ecology and Environment of the People's Republic of China, Wuhan 430014, China.
| | - Yu Wang
- School of Ecology and Environment, College of Life Sciences, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Shihao Gong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 100872, Hong Kong
| | - Yancheng Zhang
- School of Ecology and Environment, College of Life Sciences, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Pengcheng Sang
- School of Ecology and Environment, College of Life Sciences, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yilin Shu
- School of Ecology and Environment, College of Life Sciences, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
4
|
Guo G, Li T, Liu Z, Luo X, Zhang T, Tang S, Wang X, Chen D. Bell pepper derived nitrogen-doped carbon dots as a pH-modulated fluorescence switching sensor with high sensitivity for visual sensing of 4-nitrophenol. Food Chem 2024; 432:137232. [PMID: 37633140 DOI: 10.1016/j.foodchem.2023.137232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Recently, converting bio-waste into bio-asset and implementing a portable sensing instrument for pollutant monitoring has been highly desirable and challenging. Herein, biomass-derived nitrogen-doped carbon dots (CDs) are prepared hydrothermally and emit blue fluorescence (470 nm) with a high quantum yield of 23.2%. Significantly, CDs can serve as a pH-modulated fluorescence switching nano-sensor to detect 4-NP from 0.054 to 68 μM with low detection limit (LOD, 54 nM) and limit of quantification (LOQ, 181 nM) based on inner filter effect. Moreover, the satisfactory recovery of 101.8-107.5% is gained in practical sample monitoring. Furthermore, a smartphone-integrated optosensing device with CDs-based film is developed for detecting 4-NP with LOD and LOQ of 0.110 μM and 0.350 μM. Concomitantly, the practicability of this device is further validated in several crop samples with satisfactory recovery rates of 101.6-108.6%. Therefore, this work provides a reliable way and a prospective application for on-site 4-NP monitoring in food.
Collapse
Affiliation(s)
- Guoqiang Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Ziyi Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Xinyu Luo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Ting Zhang
- Department of Chemical Engineering, Ningbo Polytechnic, Ningbo, Zhejiang 315800, PR China
| | - Siyuan Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China; Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xu Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
5
|
Liu G, Chen K, Wu Z, Ji Y, Lu L, Liu S, Li ZL, Ji R, Liu SJ, Jiang J, Qiao W. Genome-Centric Metatranscriptomic Characterization of a Humin-Facilitated Anaerobic Tetrabromobisphenol A-Dehalogenating Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1299-1311. [PMID: 38113523 DOI: 10.1021/acs.est.3c06118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per μmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.
Collapse
Affiliation(s)
- Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Songmeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
6
|
Abdelmoneim MS, Hafez EE, Dawood MFA, Hammad SF, Ghazy MA. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. Biomol Concepts 2024; 15:bmc-2022-0049. [PMID: 38924751 DOI: 10.1515/bmc-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Bisphenol A (BPA) and p-nitrophenol (PNP) are emerging contaminants of soils due to their wide presence in agricultural and industrial products. Thus, the present study aimed to integrate morpho-physiological, ionic homeostasis, and defense- and antioxidant-related genes in the response of tomato plants to BPA or PNP stress, an area of research that has been scarcely studied. In this work, increasing the levels of BPA and PNP in the soil intensified their drastic effects on the biomass and photosynthetic pigments of tomato plants. Moreover, BPA and PNP induced osmotic stress on tomato plants by reducing soluble sugars and soluble proteins relative to control. The soil contamination with BPA and PNP treatments caused a decline in the levels of macro- and micro-elements in the foliar tissues of tomatoes while simultaneously increasing the contents of non-essential micronutrients. The Fourier transform infrared analysis of the active components in tomato leaves revealed that BPA influenced the presence of certain functional groups, resulting in the absence of some functional groups, while on PNP treatment, there was a shift observed in certain functional groups compared to the control. At the molecular level, BPA and PNP induced an increase in the gene expression of polyphenol oxidase and peroxidase, with the exception of POD gene expression under BPA stress. The expression of the thaumatin-like protein gene increased at the highest level of PNP and a moderate level of BPA without any significant effect of both pollutants on the expression of the tubulin (TUB) gene. The comprehensive analysis of biochemical responses in tomato plants subjected to BPA and PNP stress illustrates valuable insights into the mechanisms underlying tolerance to these pollutants.
Collapse
Affiliation(s)
- Mahmoud S Abdelmoneim
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, New Borg El-Arab city, Alexandrina, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Sherif F Hammad
- Pharm D program, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Ain Helwan, Cairo, Egypt
| | - Mohamed A Ghazy
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
7
|
Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023; 11:2558. [PMID: 37894216 PMCID: PMC10609637 DOI: 10.3390/microorganisms11102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
S-triazines are a group of herbicides that are extensively applied to control broadleaf weeds and grasses in agricultural production. They are mainly taken up through plant roots and are transformed by xylem tissues throughout the plant system. They are highly persistent and have a long half-life in the environment. Due to imprudent use, their toxic residues have enormously increased in the last few years and are frequently detected in food commodities, which causes chronic diseases in humans and mammals. However, for the safety of the environment and the diversity of living organisms, the removal of s-triazine herbicides has received widespread attention. In this review, the degradation of s-triazine herbicides and their intermediates by indigenous microbial species, genes, enzymes, plants, and nanoparticles are systematically investigated. The hydrolytic degradation of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is further metabolized into ammonia and carbon dioxide. Microbial-free cells efficiently degrade s-triazine herbicides in laboratory as well as field trials. Additionally, the combinatorial approach of nanomaterials with indigenous microbes has vast potential and considered sustainable for removing toxic residues in the agroecosystem. Due to their smaller size and unique properties, they are equally distributed in sediments, soil, water bodies, and even small crevices. Finally, this paper highlights the implementation of bioinformatics and molecular tools, which provide a myriad of new methods to monitor the biodegradation of s-triazine herbicides and help to identify the diverse number of microbial communities that actively participate in the biodegradation process.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Environmental Sustainability & Health Institute (ESHI), City Campus, School of Food Science & Environmental Health, Technological University Dublin, Grangegorman Lower, D07 EWV4 Dublin, Ireland
- Key Laboratory of Integrated Pest Management of Crop in South China, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture and Rural Affairs, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Seoul 05006, Republic of Korea;
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
8
|
Liu F, Liang F, Li Z, Kang G, Wang T, Chen C, Lu Y. Fluorescence detection of 4-nitrophenol and α-glucosidase activity based on 4-nitrophenol-regulated fluorescence of silicon nanoparticles. Analyst 2023; 148:4030-4036. [PMID: 37497732 DOI: 10.1039/d3an00966a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A fluorescence assay for the detection of 4-nitrophenol (4-NP), α-glucosidase (α-Glu) activity and α-Glu inhibitors (AGIs) is developed based on the inner filter effect (IFE), a flexible and simple signal transfer strategy. In this assay, silicon nanoparticles (Si NPs) synthesized under mild and easily accessible conditions are employed as fluorescent indicators. 4-NP efficaciously quenches the fluorescence of Si NPs through the IFE at a very rapid rate, thus achieving 4-NP detection in a mix-to-read manner, which is suitable for on-site detection. The quenching mechanism has been comprehensively studied and confirmed. More significantly, based on the fact that 4-NP can be generated through α-Glu-catalyzed hydrolysis of 4-nitrophenyl-α-D-glucopyranoside (NPG), the fluorescence detection of α-Glu activity is legitimately achieved by employing NPG as the substrate. The linear ranges for 4-NP and α-Glu activity detection are 0.5-60 μM and 0.5-60 mU mL-1 with low detection limits of 0.074 μM and 0.094 mU mL-1, respectively. This method not only can preciously assay targets in real samples, but is also capable of screening AGIs as drugs as well as assessing their inhibition efficiency.
Collapse
Affiliation(s)
- Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Fan Liang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Zhe Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Ge Kang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Tingting Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
Yan J, Wang P, Wang L, Jin Q, Ali AS, He Y, Wang Y, Sun Y, Li A, Adwy W, Ahmed RH, Han X. Bio-decolorization of synthetic dyes by a novel endophytic fungus Penicillium janthinellum LM5 from blueberry pulp. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Ma Z, Li Y, Lu Z, Pan J, Li M. A novel biosensor-based method for the detection of p-nitrophenol in agricultural soil. CHEMOSPHERE 2023; 313:137306. [PMID: 36410515 DOI: 10.1016/j.chemosphere.2022.137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Directly measurement of the bioavailable concentration of soil contaminants is essential for their accurate risk assessment. In this study, we successfully modified and identified the key genetic elements (pobR1-3) for the bio-detection of p-nitrophenol and synthesized five novel whole-cell biosensors (Escherichia coli BL21/pPNP-mrfp, E. coli BL21/pPNP-CFP, E. coli BL21/pPNP-YFP, E. coli BL21/pPNP-GFP, and E. coli BL21/pPNP-amilCP) to directly detect the concentration of p-nitrophenol in soils. These biosensor methods contained a simple biosensor activation and sample extraction step, a cost-effective detection means, and a fast detection process (5 h) by using a 96-microwell plate with a low background value and high-reliability equation for p-nitrophenol detection. These biosensors had a detection limit of 6.21-25.2 μg/kg and a linear range of 10-10000 μg/kg for p-nitrophenol in four soils. All biosensors showed better detection performance in the detection of p-nitrophenol in soil samples. The biosensors method can help to quickly and directly assess the actual bioavailable fractions of p-nitrophenol in soils, thus facilitating to understand the environmental cycling of p-nitrophenol.
Collapse
Affiliation(s)
- Zhao Ma
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, PR China; Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
11
|
Wang K, Geng T, Zhu F. The architectonics of bitetrazole‐based porous organic polymers for capturing iodine and fluorescence sensing to iodine and 4‐nitrophenol. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kang Wang
- School of Chemistry and Chemical Engineering, AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials Anqing Normal University Anqing China
| | - Tongmou Geng
- School of Chemistry and Chemical Engineering, AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials Anqing Normal University Anqing China
| | - Feng Zhu
- School of Chemistry and Chemical Engineering, AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials Anqing Normal University Anqing China
| |
Collapse
|
12
|
Facile fluorescent detection of o-nitrophenol by a cucurbit[8]uril-based supramolecular assembly in aqueous media. Anal Chim Acta 2022; 1226:340262. [DOI: 10.1016/j.aca.2022.340262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
|
13
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
14
|
Peng X, Zheng Q, Liu L, He Y, Li T, Jia X. Efficient biodegradation of tetrabromobisphenol A by the novel strain Enterobacter sp. T2 with good environmental adaptation: Kinetics, pathways and genomic characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128335. [PMID: 35121290 DOI: 10.1016/j.jhazmat.2022.128335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
T2, a gram-positive bacterium capable of rapidly degrading tetrabromobisphenol A (TBBPA), and affiliated with the genus Enterobacter, was isolated for the first time from sludge that had been contaminated for several years. The TBBPA degradation data fitted the first-order model well. Under optimal conditions (pH of 7, temperature of 31 °C, TBBPA concentration of 5 mg L-1, and inoculum size of 5%), 99.4% of the initially added TBBPA was degraded after 48 h. TBBPA degradation fitted the first-order model with the half-life of 3.3 h. These results illustrated that the TBBPA degradation capability of strain T2 was significantly better than that of previously reported bacteria. A total of 17 intermediates were detected, among which five were reported for the first time. Whole-genome sequencing revealed that strain T2 had a chromosome with the total length of 4 854 376 bp and a plasmid with the total length of 21 444 bp. It harbored essential genes responsible for debromination, such as cyp450, gstB, gstA, and HADH, and genes responsible for subsequent complete mineralization, such as bioC, yrrM, Tam, and Ubil. A key protein of haloacid dehalogenases responsible for the biodegradation of TBBPA may also be involved in the regulation of TBBPA degradation in natural environment. In soil bioremediation experiments, strain T2 showed excellent environmental adaptation. It was able to biodegrade TBBPA and its typical intermediate bisphenol A efficiently. Therefore, it could potentially be applied to treat TBBPA-contaminated sites.
Collapse
Affiliation(s)
- Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - Qihang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
15
|
Ma H, Zhao Y, Yang K, Wang Y, Zhang C, Ji M. Application oriented bioaugmentation processes: Mechanism, performance improvement and scale-up. BIORESOURCE TECHNOLOGY 2022; 344:126192. [PMID: 34710609 DOI: 10.1016/j.biortech.2021.126192] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an optimization method with great potential to improve the treatment effect by introducing specific strains into the biological treatment system. In this study, a comprehensive review of the mechanism of bioaugmentation from the aspect of microbial community structure, the optimization methods facilitating application as well as feasible approaches of scale-up application has been provided. The different contribution of indigenous and exogenous strains was critically analyzed, the relationship between microbial community variation and system performance was clarified. Operation regulation and immobilization technologies are effective methods to deal with the possible failure of bioaugmentation. The gradual expansion from lab-scale, pilot scale to full-scale, the transformation and upgrading of wastewater treatment plants through the combination of direct dosing and biofilm, and the application of side-stream reactors are feasible ways to realize the full-scale application. The future challenges and prospects in this field were also proposed.
Collapse
Affiliation(s)
- Huilin Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
16
|
Ahmad S, Cui D, Zhong G, Liu J. Microbial Technologies Employed for Biodegradation of Neonicotinoids in the Agroecosystem. Front Microbiol 2021; 12:759439. [PMID: 34925268 PMCID: PMC8675359 DOI: 10.3389/fmicb.2021.759439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Neonicotinoids are synthetic pesticides widely used for the control of various pests in agriculture throughout the world. They mainly attack the nicotinic acetylcholine receptors, generate nervous stimulation, receptor clot, paralysis and finally cause death. They are low volatile, highly soluble and have a long half-life in soil and water. Due to their extensive use, the environmental residues have immensely increased in the last two decades and caused many hazardous effects on non-target organisms, including humans. Hence, for the protection of the environment and diversity of living organism's the degradation of neonicotinoids has received widespread attention. Compared to the other methods, biological methods are considered cost-effective, eco-friendly and most efficient. In particular, the use of microbial species makes the degradation of xenobiotics more accessible fast and active due to their smaller size. Since this degradation also converts xenobiotics into less toxic substances, the various metabolic pathways for the microbial degradation of neonicotinoids have been systematically discussed. Additionally, different enzymes, genes, plasmids and proteins are also investigated here. At last, this review highlights the implementation of innovative tools, databases, multi-omics strategies and immobilization techniques of microbial cells to detect and degrade neonicotinoids in the environment.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Dongming Cui
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Han L, Kong X, Xu M, Nie J. Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117660. [PMID: 34426382 DOI: 10.1016/j.envpol.2021.117660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Tebuconazole is a broad-spectrum triazole fungicide that has been extensively applied in agriculture, but its toxicity on soil ecology remains unknown after repeated introduction to soil. This study investigated the degradation of tebuconazole and the changes in soil microbial community composition and functional diversity as well as network complexity in soil repeatedly treated with tebuconazole. Tebuconazole degraded slowly as the degradation half-life initially increased and then decreased during the four repeated treatments. High concentration of tebuconazole treatment significantly delayed the degradation of tebuconazole. The soil microbial functional diversity in tebuconazole-treated soils showed an inhibition-recovery-stimulation trend with increasing treatment frequency, which was related to the increased degradation rates of tebuconazole. Tebuconazole significantly decreased soil microbial biomass and bacterial community diversity, and this decreasing trend became more pronounced with increasing treatment frequency and concentration. Moreover, tebuconazole significantly decreased soil bacterial community network complexity, particularly at high concentration of tebuconazole treatment. Notably, four bacterial genera, Methylobacterium, Burkholderia, Hyphomicrobium, and Dermacoccus, were identified as the potential tebuconazole-degrading bacteria, with the relative abundances in the tebuconazole treatment significantly increasing by 42.1-34687.1% compared to the control. High concentration of tebuconazole treatment delayed increases in the relative abundances of Methylobacterium but promoted those of Burkholderia, Hyphomicrobium and Dermacoccus. Additionally, repeated tebuconazole treatments improved only four metabolic pathways, cell motility, membrane transport, environmental information processing, and xenobiotics biodegradation and metabolism, which were associated with the degradation of tebuconazole. The above results indicated that repeated tebuconazole treatments resulted in the significant accumulation of residues and long-term negative effects on soil ecology, and also emphasized the potential roles of dominant indigenous microbial bacteria in the degradation of tebuconazole.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China
| | - Xiabing Kong
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China
| | - Min Xu
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China; Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
18
|
Liao S, Ding Z, Wang S, Tan F, Ge Y, Cui Y, Tan N, Wang H. Fluorescent nitrogen-doped carbon dots for high selective detecting p-nitrophenol through FRET mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119897. [PMID: 33989974 DOI: 10.1016/j.saa.2021.119897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
A facile, friendly and one-step hydrothermal protocol was used to synthesize nitrogen-doped carbon dots (N-CDs) by utilizing hexamethylenetetramine and ethanediamine as the carbon and nitrogen sources. It demonstrated good water solubility and fluorescence properties were stable, whether in acidic or alkaline. Quantum yield (QY) of N-CDs was 8.3% at an excitation wavelength of 325 nm with maximum emission at 425 nm. The fluorescence of N-CDs achieved very high fluorescence quenching of 60% in the detection of p-nitrophenol (p-NP) in aqueous medium via fluorescence resonance energy transfer (FRET) mechanisms. Under optimum conditions, fluorescence probs of N-CDs had strong selectivity to p-NP, and the fluorescence intensity was linearly proportional to p-NP concentration from 0.5 to 70.0 μM with a detection limit of 0.201 μM. The corresponding cell experiments were also performed, indicating that the prepared N-CDs possessed low cytotoxicity and good biocompatibility. Meanwhile, the N-CDs can be used for the determination of p-NP in river water and industrial wastewater.
Collapse
Affiliation(s)
- Sen Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China.
| | - Zui Ding
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Fangyu Tan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yi Ge
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yaqing Cui
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Ni Tan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China.
| |
Collapse
|
19
|
Yanbo J, Jianyi J, Xiandong W, Wei L, Lincheng J. Bioaugmentation Technology for Treatment of Toxic and Refractory Organic Waste Water Based on Artificial Intelligence. Front Bioeng Biotechnol 2021; 9:696166. [PMID: 34277590 PMCID: PMC8283819 DOI: 10.3389/fbioe.2021.696166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
With the development of modern chemical synthesis technology, toxic and harmful compounds increase sharply. In order to improve the removal efficiency of refractory organic matter in waste water, the method of adding powdered activated carbon (PAC) to the system for adsorption was adopted. Through the analysis of organic matter removal rule before and after waste water treatment, it can be found that PAC is easy to adsorb hydrophobic organic matter, while activated sludge is easy to remove hydrophilic and weakly hydrophobic neutral organic matter. Powdered activated carbon-activated sludge SBR system (PAC-AS) system is obviously superior to AS and PAC system in removing organic matter of hydrophilic and hydrophobic components, that is, biodegradation and PAC adsorption are additive. Compared with the control system, the Chemical Oxygen Demand (COD) removal rate of refractory substances increased by 8.36%, and PAC had a good adsorption effect on small molecular weight organic compounds, but with the increase of molecular weight of organic compounds, the adsorption effect of PAC gradually weakened, and it had no adsorption effect on macromolecular organic compounds. Based on the research of fuzzy control theory, an Agent control system for ozone oxidation process of industrial waste water based on Mobile Agent Server (MAS) theory was established, which was realized by fuzzy control method. The simulation results showed strong stability and verified the feasibility and adaptability of the distributed intelligent waste water treatment system based on MAS theory in the actual control process.
Collapse
Affiliation(s)
- Jiang Yanbo
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China.,Institute of Ecological Engineering, Guangxi University, Nanning, China
| | - Jiang Jianyi
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | - Wei Xiandong
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | - Ling Wei
- Research Center of Wastewater Engineering Treatment and Resource Recovery, Guangxi Beitou Environmental Protection and Water Group, Nanning, China
| | | |
Collapse
|
20
|
Ke Z, Lan M, Yang T, Jia W, Gou Z, Chen K, Jiang J. A two-component monooxygenase for continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22-1. ENVIRONMENTAL RESEARCH 2021; 198:111216. [PMID: 33971135 DOI: 10.1016/j.envres.2021.111216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The environmental fates of chlorinated 4-nitrophenols, 2,6-dichloro-4-nitrophenol (2,6-DCNP) and 2-chloro-4-nitrophenol (2C4NP), mediated via microbial catabolism have attracted great attention due to their high toxicity and persistence in the environment. In this study, a strain of Ensifer sp. 22-1 that was capable of degrading both 2,6-DCNP and 2C4NP was isolated from a halogenated aromatic-contaminated soil sample. A gene cluster cnpBADCERM was predicted to be involved in the catabolism of 2,6-DCNP and 2C4NP based on genome sequence analysis. A two-component monooxygenase CnpAB, composed of an oxygenase component (CnpA) and a reductase component (CnpB), was confirmed to catalyze the continuous denitration and dechlorination of 2,6-DCNP and 2C4NP to 6-chlorohydroxyquinol (6-CHQ) and hydroxyquinol (HQ), respectively. Knockout of cnpA resulted in the complete loss of the capacity for strain 22-1 to degrade 2,6-DCNP and 2C4NP. Homologous modeling and docking showed that Val155~Ala159, Phe206~Pro209 and Phe446~Arg461 of CnpA participated in the formation of the FAD-binding pocket, and Arg101, Val155 and Asn447 formed hydrogen bonds with 2,6-DCNP/2C4NP in the substrate-binding pocket. This work characterized a new two-component monooxygenase for 2,6-DCNP and 2C4NP, and enriched our understanding of the degradation mechanism of chlorinated nitrophenols (CNPs) by microorganisms.
Collapse
Affiliation(s)
- Zhuang Ke
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Minjian Lan
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Tunan Yang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Weibin Jia
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhenjiu Gou
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kai Chen
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China; Jiangsu Key Lab for Solid Organic Waste Utilization, 210095, Nanjing, China.
| |
Collapse
|
21
|
Afonso AC, Gomes IB, Saavedra MJ, Giaouris E, Simões LC, Simões M. Bacterial coaggregation in aquatic systems. WATER RESEARCH 2021; 196:117037. [PMID: 33751976 DOI: 10.1016/j.watres.2021.117037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The establishment of a sessile community is believed to occur in a sequence of steps where genetically distinct bacteria can become attached to partner cells via specific molecules, in a process known as coaggregation. The presence of bacteria with the ability to autoaggregate and coaggregate has been described for diverse aquatic systems, particularly freshwater, drinking water, wastewater, and marine water. In these aquatic systems, coaggregation already demonstrated a role in the development of complex multispecies sessile communities, including biofilms. While specific molecular aspects on coaggregation in aquatic systems remain to be understood, clear evidence exist on the impact of this mechanism in multispecies biofilm resilience and homeostasis. The identification of bridging bacteria among coaggregating consortia has potential to improve the performance of wastewater treatment plants and/or to contribute for the development of strategies to control undesirable biofilms. This study provides a comprehensive analysis on the occurrence and role of bacterial coaggregation in diverse aquatic systems. The potential of this mechanism in water-related biotechnology is further described, with particular emphasis on the role of bridging bacteria.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Inês B Gomes
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria José Saavedra
- CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, Myrina 81400, Lemnos, Greece
| | - Lúcia C Simões
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuel Simões
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
22
|
Li T, Shi W, Shuang E, Mao Q, Chen X. Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications. J Colloid Interface Sci 2021; 591:334-342. [PMID: 33618291 DOI: 10.1016/j.jcis.2021.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022]
Abstract
It is a considerable challenge to develop environmental friendly, low-cost methodology for green preparation of carbon dots (CDs). Herein, CDs with different surface states are prepared using o-phenylenediamine (o-PD) and hydroquinone (HQ) as precursors via oxidation/polymerization and Schiff base reaction at room temperature without additional oxidizing agents. Two CDs products (YCDs and GCDs) are obtained after separation with silica gel column chromatography based on their polarity differences. The different surface states endow these two CDs with different properties. The rich NO2 and OH groups on the surface of YCDs contribute to a narrow band gap, resulting in the red-shifted photoluminescence (PL) emission of this CDs product, making it a sensitive probe for the detection of toxic pollutant p-nitrophenol (p-NP) attributed to the inner filter effect, along with a detection limit of 0.08 μmol/L. GCDs are characterized with abundant surficial NH2 groups, and can be used as a potential probe to detect H2O content in D2O, giving a detection limit of 0.17 vol%.
Collapse
Affiliation(s)
- Tianze Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wei Shi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuang E
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Quanxing Mao
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
23
|
Xiong F, Zhao X, Wen D, Li Q. Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139449. [PMID: 32473427 DOI: 10.1016/j.scitotenv.2020.139449] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Bioaugmentation is an effective technology for treating wastewater containing recalcitrant organic pollutants. However, it is restricted by several technical problems, including the difficult colonization and survival of the inoculated bacteria, and the time-consuming start-up process. Considering the important roles of quorum sensing (QS) in regulating microbial behaviors, this study investigated the effects of N-acyl-homoserine lactones (AHLs)-based manipulation on the start-up of biofilm reactors bioaugmented with a pyridine-degrading strain Paracoccus sp. BW001. The results showed that, in the presence of two specific exogenous AHLs (C6-HSL and 3OC6-HSL), the biofilm formation process on carriers was significantly accelerated, producing thick and structured biofilms. The protein and polysaccharide contents of the extracellular polymeric substances (EPS) and soluble microbial products (SMP) in sludge were also elevated, possibly due to the increased abundance of several EPS-producing bacterial genera. Specifically, the stability and complexity of protein structures were improved. Besides the reactor running time, the AHL-manipulation was proved to be the main factor that drove the shift of bacterial community structures in the reactors. The addition of exogenous AHLs significantly increased the succession rate of bacterial communities and decreased the bacterial alpha diversity. Most importantly, the final proportions of the inoculated strain BW001 were elevated by nearly 100% in both sludge and biofilm communities via the AHL-manipulation. These findings strongly elucidated that AHL-based QS was deeply involved in biofilm formation, sludge characteristics, and microbial community construction in bioaugmented reactors, providing a promising start-up strategy for bioaugmentation technology.
Collapse
Affiliation(s)
- Fuzhong Xiong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxi Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
24
|
Li M, Wei D, Yan L, Yang Q, Liu L, Xu W, Du B, Wang Q, Hou H. Aerobic biodegradation of p-nitrophenol in a nitrifying sludge bioreactor: System performance, sludge property and microbial community shift. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110542. [PMID: 32275249 DOI: 10.1016/j.jenvman.2020.110542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/22/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The system performance, sludge property and microbial community shift were evaluated in a nitrifying sludge (NS) bioreactor for simultaneous treating p-Nitrophenol (PNP) and high ammonia wastewater. After long-term acclimation for 80 days, the removal efficiencies of PNP and NH4+-N reached to 99.9% and 99.5%, respectively. Meanwhile, the effluent PNP gradually decreased from 7.9 to 0.1 mg/L by acclimation of sludge. The particle size of NS increased from 115.2 μm to 226.3 μm accompanied by the decreased zeta potential as a self-protection strategy. The presence of PNP exposure altered the effluent soluble microbial products (SMP) fluorescent components and molecular composition. The increase in the relative abundance of Thauera, Nitrospiraceae and Nitrosomonas indicated the nitrification and denitrification capacities of NS increased, which maybe the PNP cometabolic biodegradation effect. Moreover, Ignavibacteria and Aeromonas were responsible as the dominant bacteria for degrading PNP in the nitrifying system.
Collapse
Affiliation(s)
- Mingrun Li
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China; Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China.
| | - Liangguo Yan
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qingwei Yang
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Lulu Liu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Hongxun Hou
- Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China
| |
Collapse
|
25
|
Li H, Qiu Y, Yao T, Ma Y, Zhang H, Yang X, Li C. Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1): Degradation ability, microbial community, and Medicago sativa phytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121834. [PMID: 31843407 DOI: 10.1016/j.jhazmat.2019.121834] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Environmental problems caused by the large-scale use of chemical pesticides are becoming more and more serious, and the removal of chemical pesticides from the ecological environment by microbial degradation has attracted wide attention. In this study, using enrichment screening with seven chemical pesticides as the sole carbon source, a mixed microbial culture (PCS-1) was obtained from the continuous cropping of strawberry fields. The microbial community composition, degradation ability, and detoxification effect of PCS-1 was determined for the seven pesticides. Inoculation with PCS-1 showed significant degradation of and tolerance to the seven pesticides. Microbial community composition analysis indicated that Pseudomonas, Enterobacter, Aspergillus, and Rhodotorula were the dominant genera for the degradation of the seven pesticides by PCS-1. The concentration of the seven pesticides was 10 mg L-1 in hydroponic and soil culture experiments. The fresh weight, plant height, and root length of PCS-1-inoculated alfalfa (Medicago sativa) significantly increased compared with those of non-PCS-1-inoculated M. sativa. PCS-1 not only effectively degraded the residual content of the seven pesticides in water and soil but also reduced the pesticide residues in the roots, stems, and leaves of M. sativa. This study shows that PCS-1 may be important in environmental remediation involving the seven pesticides.
Collapse
Affiliation(s)
- Haiyun Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Yizhi Qiu
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China.
| | - Yachun Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Huirong Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Xiaolei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| |
Collapse
|
26
|
Ning K, Xiang G, Wang C, Wang J, Qiao X, Zhang R, Jiang X, He L, Zhao W. UV-emitting polyelectrolyte-modified MoS2 quantum dots for selective determination of nitrophenol in water samples based on inner filter effect. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this work, poly(sodium 4-styrenesulfonate) (PSS) modified molybdenum disulfide quantum dots (MoS2-PSS QDs) were synthesized via a simple hydrothermal method using l-cysteine and anhydrous sodium molybdate as precursors and PSS as a modification reagent, and a selective and sensitive fluorescent sensing method for the determination of p-nitrophenol (p-NP) based on their UV emission was developed. The obtained MoS2-PSS QDs have an obvious UV emission peak (390 nm) with quantum yield of 5.13%. The strong absorption peak of p-NP at 400 nm has large spectral overlap with the UV emission peak (390 nm) of MoS2-PSS QDs. Because of this p-NP absorption, the fluorescence of MoS2-PSS QDs at 390 nm is quenched with the introduction of p-NP via the inner filter effect (IFE) and the decreased fluorescence intensity was linearly proportional to the p-NP concentration in the range of 1–20 μmol/L, leading to a detection limit of 0.13 μmol/L for p-NP. The MoS2 QDs-based fluorescent probe for p-NP is sensitive and selective and was successfully applied in the determination of p-NP in the pond water samples with satisfactory results.
Collapse
Affiliation(s)
- Keke Ning
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Guoqiang Xiang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Cuicui Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Jingxing Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Xiaohong Qiao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Ruofei Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Xiuming Jiang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| |
Collapse
|
27
|
Min J, Xu L, Fang S, Chen W, Hu X. Microbial degradation kinetics and molecular mechanism of 2,6-dichloro-4-nitrophenol by a Cupriavidus strain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113703. [PMID: 31818627 DOI: 10.1016/j.envpol.2019.113703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/03/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
2,6-Dichloro-4-nitrophenol (2,6-DCNP) is an emerging chlorinated nitroaromatic pollutant, and its fate in the environment is an important question. However, microorganisms with the ability to utilize 2,6-DCNP have not been reported. In this study, Cupriavidus sp. CNP-8 having been previously reported to degrade various halogenated nitrophenols, was verified to be also capable of degrading 2,6-DCNP. Biodegradation kinetics assay showed that it degraded 2,6-DCNP with the specific growth rate of 0.124 h-1, half saturation constant of 0.038 mM and inhibition constant of 0.42 mM. Real-time quantitative PCR analyses indicated that the hnp gene cluster was involved in the catabolism of 2,6-DCNP. The hnpA and hnpB gene products were purified to homogeneity by Ni-NTA chromatography. Enzymatic assays showed that HnpAB, a FAD-dependent two-component monooxygenase, converted 2,6-DCNP to 6-chlorohydroxyquinol with a Km of 3.9 ± 1.4 μM and a kcat/Km of 0.12 ± 0.04 μΜ-1 min-1. As the oxygenase component encoding gene, hnpA is necessary for CNP-8 to grow on 2,6-DCNP by gene knockout and complementation. The phylogenetic analysis showed that the hnp cluster originated from the cluster involved in the catabolism of chlorophenols rather than nitrophenols. To our knowledge, CNP-8 is the first bacterium with the ability to utilize 2,6-DCNP, and this study fills a gap in the microbial degradation mechanism of this pollutant at the molecular, biochemical and genetic levels. Moreover, strain CNP-8 could degrade three chlorinated nitrophenols rapidly from the synthetic wastewater, indicating its potential in the bioremediation of chlorinated nitrophenols polluted environments.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lingxue Xu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; College of Life Science of Yantai University, Yantai, China
| | - Suyun Fang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
28
|
Hong P, Shu Y, Wu X, Wang C, Tian C, Wu H, Donde OO, Xiao B. Efficacy of zero nitrous oxide emitting aerobic denitrifying bacterium, Methylobacterium gregans DC-1 in nitrate removal with strong auto-aggregation property. BIORESOURCE TECHNOLOGY 2019; 293:122083. [PMID: 31487615 DOI: 10.1016/j.biortech.2019.122083] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
A novel aerobic denitrifying strain Methylobacterium gregans DC-1 was isolated and identified. Strain DC-1 removed 98.4% of nitrate-nitrogen (NO3--N) and 80.7% of total organic carbon with initial concentrations of 50 and 2400 mg/l, respectively. The N balance showed that most NO3--N was converted to N2 (62.18%) without nitrous oxide (N2O) emission. Response surface analysis showed that the optimal conditions for total N removal were carbon (C):N ratio of 18.7, temperature of 26.8 °C, pH of 6.5 and shaking speed of 180 rpm. In combination with the N balance and successful amplification of napA, nirK and nosZ genes, the metabolic pathway was as follows: NO3-NO2- → NO → N2O → N2. Strain DC-1 had strong auto-aggregation rate (maximum 38.7%), produced large amounts of extracellular polymeric substances (EPS; maximum of 781.4 mg/g cell dry weight) and had corresponding strong hydrophobicity (maximum 83.2%). Pearson correlation analysis showed that EPS content and hydrophobicity were significantly positively correlated with auto-aggregation.
Collapse
Affiliation(s)
- Pei Hong
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Oscar Omondi Donde
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
30
|
A Novel Application of Fluorine Doped Carbon Dots Combining Vortex-Assisted Liquid-Liquid Microextraction for Determination of 4-Nitrophenol with Spectrofluorimetric Method. J Fluoresc 2019; 29:1133-1141. [DOI: 10.1007/s10895-019-02427-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022]
|
31
|
Sahiner N, Demirci S. The use of M@p(4‐VP) and M@p (VI) (M:Co, Ni, Cu) cryogel catalysts as reactor in a glass column in the reduction of p‐nitrophenol to p‐aminophenol under gravity. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nurettin Sahiner
- Faculty of Science & Arts, Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC)Canakkale Onsekiz Mart University Canakkale Turkey
| | - Sahin Demirci
- Faculty of Science & Arts, Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
| |
Collapse
|
32
|
Mei X, Liu J, Guo Z, Li P, Bi S, Wang Y, Yang Y, Shen W, Wang Y, Xiao Y, Yang X, Zhou B, Liu H, Wu S. Simultaneous p-nitrophenol and nitrogen removal in PNP wastewater treatment: Comparison of two integrated membrane-aerated bioreactor systems. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:99-108. [PMID: 30308370 DOI: 10.1016/j.jhazmat.2018.09.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The chemical p-nitrophenol (PNP) is a priority pollutant, and PNP wastewater is highly toxic and resistant to biodegradation. The traditional physical and chemical methods (adsorption, extraction, and oxidation) for treating PNP wastewater have the disadvantages of complicated processes, high costs and secondary pollution generation. In this study, two integrated membrane-aerated bioreactor systems (RA and RB) with anoxic and aerated zones were constructed to enhance PNP biodegradation. The results showed that a helical silicone rubber membrane module displayed a high oxygen supply rate under a low membrane aeration pressure, and the hydraulic flow state of the reactor approached ideal mixing. At an influent PNP concentration of 500 mg/L, the average removal rates of PNP, chemical oxygen demand (COD) and total nitrogen (TN) reached 95.86%, 89.77%, and 94.81%, respectively, for RA and 89.48%, 74.26% and 64.78%, respectively, for RB, indicating efficient simultaneous PNP and nitrogen removal. Compared with that of RB, the pre-anoxic zone in RA not only performed detoxification pretreatment but also enhanced PNP degradation and denitrification effects, which relieved the biological treatment burden of the subsequent aerated zone. Based on these comprehensive analyses of reactor performance, the hydroquinone pathway might be the main route in the aerobic degradation of PNP.
Collapse
Affiliation(s)
- Xiang Mei
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Juan Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongwei Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Pengpeng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shuqi Bi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wentian Shen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yihan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Xiao
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Xu Yang
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Baochang Zhou
- Nanjing RGE Membrane Tech Co., Ltd., Nanjing 210012, China
| | - Hao Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Wu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Han L, Liu SG, Liang JY, Ju YJ, Li NB, Luo HQ. pH-mediated reversible fluorescence nanoswitch based on inner filter effect induced fluorescence quenching for selective and visual detection of 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:45-52. [PMID: 30236941 DOI: 10.1016/j.jhazmat.2018.09.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/02/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
Being a common hazardous waste, 4-nitrophenol (4-NP) has caused a serious threat to humans and environment. Therefore, rapid and selective detection of 4-NP, especially using a simple and portable instrument, is highly desired for human health and environmental monitoring. Herein, we develop a novel pH-mediated reversible fluorescence nanoswitch for selectively detecting 4-NP by using water-soluble fluorescent polymer carbon dots (PCDs) as a probe. The fluorescence of PCDs can be quenched by 4-NP via inner filter effect (IFE) because its excitation spectrum well overlaps with the absorption spectrum of 4-NP under alkaline condition. However, an obvious blue shift of the absorption peak of 4-NP occurs under acidic condition, causing the fluorescence recovery of PCDs due to the disappearance of IFE. On the basis of this principle, a pH-mediated reversible fluorescence nanoswitch was constructed and a broad linear range was obtained from 0.5 to 60 μM with a detection limit of 0.26 μM for 4-NP. Furthermore, this approach was successfully applied to detect 4-NP in real water samples and a portable polyamide film-based sensor was developed for visual detection of 4-NP, which offers a promising platform for the detection of 4-NP in on-site and resource-poor settings.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shi Gang Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jia Yu Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yan Jun Ju
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
34
|
Min J, Chen W, Hu X. Biodegradation of 2,6-dibromo-4-nitrophenol by Cupriavidus sp. strain CNP-8: Kinetics, pathway, genetic and biochemical characterization. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:10-18. [PMID: 30176407 DOI: 10.1016/j.jhazmat.2018.08.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Compound 2,6-dibromo-4-nitrophenol (2,6-DBNP) with high cytotoxicity and genotoxicity has been recently identified as an emerging brominated disinfection by-product during chloramination and chlorination of water, and its environmental fate is of great concern. To date, the biodegradation process of 2,6-DBNP is unknown. Herein, Cupriavidus sp. strain CNP-8 was reported to be able to utilize 2,6-DBNP as a sole source of carbon, nitrogen and energy. It degraded 2,6-DBNP in concentrations up to 0.7 mM, and the degradation of 2,6-DBNP conformed to Haldane inhibition model with μmax of 0.096 h-1, Ks of 0.05 mM and Ki of 0.31 mM. Comparative transcriptome and real-time quantitative PCR analyses suggested that the hnp gene cluster was likely responsible for 2,6-DBNP catabolism. Three Hnp proteins were purified and functionally verified. HnpA, a FADH2-dependent monooxygenase, was found to catalyze the sequential denitration and debromination of 2,6-DBNP to 6-bromohydroxyquinol (6-BHQ) in the presence of the flavin reductase HnpB. Gene knockout and complementation revealed that hnpA is essential for strain CNP-8 to utiluze 2,6-DBNP. HnpC, a 6-BHQ 1,2-dioxygenase was proposed to catalyze the ring-cleavage of 6-BHQ during 2,6-DBNP catabolism. These results fill a gap in the understanding of the microbial degradation process and mechanism of 2,6-DBNP.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
35
|
Zhang X, Yang YS, Lu Y, Wen YJ, Li PP, Zhang G. Bioaugmented soil aquifer treatment for P-nitrophenol removal in wastewater unique for cold regions. WATER RESEARCH 2018; 144:616-627. [PMID: 30096688 DOI: 10.1016/j.watres.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
P-nitrophenol (PNP) is a toxic and recalcitrant organic pollutant and a usual intermediate in the production of fine chemicals, which has posed a significant threat to subsurface environment safety. Soil aquifer treatment (SAT) is a promising method to remove and remediate contamination in vadose zone with low cost and high efficiency. However, there are still research gaps for the treatment of recalcitrant contaminants by SAT in cold regions, such as un-robust indigenous microbes and low temperature constraint in vadose zone. The bioaugmentation technology was first introduced into SAT in order to enhance the removal ability of PNP by SAT operated in cold regions in this study. A high-efficiency PNP-degrading bacterium was successfully isolated, which can efficiently degrade PNP below 200 mg L-1 with a degradation rate above 99% at 15 °C close to the real subsurface temperature in cold regions, and added into SAT for bioaugmentation. The feasibility of bioaugmented SAT and associated PNP removal process were investigated by laboratory sand columns, along with effects of the SAT operative parameters (namely PNP loading concentration, flow rate and soil saturation level of SAT). Within the range of PNP loading stresses tested (1-200 mg L-1), PNP removal efficiency was optimal at constant flow rate of 219 mL d-1 in unsaturated operating condition of SAT under 15 °C among all the investigated experimental conditions. Longer hydraulic residence time increased the PNP removal rate, although the accumulated mass removed reduced and the removal efficiencies remained constant in unsaturated operating condition of SAT. It is found from the comparison between the PNP removals via both unsaturated and saturated columns that slight difference only in the removal rate of PNP was observed and the highly efficient bioaugmented SAT can completely degrade PNP of 10 mg L-1 within 5 wetting/drying cycles under both scenarios.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| | - Y S Yang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China; Key Laboratory of Eco-restoration of Region Polluted Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - Ying Lu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China.
| | - Y J Wen
- Key Laboratory of Eco-restoration of Region Polluted Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - P P Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| | - Ge Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| |
Collapse
|