1
|
Liao K, Li W, Huang Z, Lin S, Fu L, Liu W, Fang H, Deng H. Comprehensive evaluation of the distribution, transport and ecological risk of heavy metals in intra-urban river sediments using high-resolution techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124808. [PMID: 39182813 DOI: 10.1016/j.envpol.2024.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Determining the distribution trends, transport mechanisms, and ecological risks of heavy metals (HMs) in urban river sediments is essential for the government to conduct appropriate remediation work. In this study, we collected sediment cores from the Yayao Waterway in Foshan City, China. The vertical distribution profiles of dissolved and labile Fe, Mn, Cd, Zn, Cu, Cr, Ni, Pb, As, and Co in the sediments were obtained using the thin-film diffusive gradient (DGT) and high-resolution peeper (HR-Peeper) techniques. In addition, the transport rates, contamination levels, and ecological concerns of the HMs were evaluated using the European Community Bureau of Reference (BCR) sequential extraction technique, the DGT-induced sediment fluxes (DIFS) model, and multiple contamination evaluation metrics. The results showed that most of the DGT-labile HMs were associated with Fe/Mn (hydrogen) oxides, and in particular, Zn, Ni, and Cr showed a significant negative correlation with Fe/Mn (p < 0.001). Additionally, Cd had the highest bioavailability (89.17%), and its net diffusive flux at the sediment-water interface (SWI) was positive, which indicated a high release risk from the sediment. However, the R-value of Cd based on the DGT-induced sediment fluxes (DIFS) operation was extremely low, suggesting that although Cd had the biggest supply pool of releases, its release rate was slow. The majority of sampling sites had significantly higher total HM contents in the surface sediments than the background values. The HM contamination in the sediments originated from human activities, primarily from industrial enterprises and with a large contribution from both agricultural and domestic sources. The most polluted HM with the highest ecological danger was Cd, followed by Cu, Zn, Ni, and As when the results of the four pollution evaluation indicators were combined. Consequently, the risk of contamination by HMs in inner-city river sediments should receive more attention.
Collapse
Affiliation(s)
- Kang Liao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Weijie Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China.
| | - Zhiwei Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Shu Lin
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Lingfang Fu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Wei Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510535, China
| | - Hong Deng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Yu Y, Chen H, Chen G, Su W, Hua M, Wang L, Yan X, Wang S, Wang Y. Deciphering the crop-soil-enzyme C:N:P stoichiometry nexus: A 5-year study on manure-induced changes in soil phosphorus transformation and release risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173226. [PMID: 38768729 DOI: 10.1016/j.scitotenv.2024.173226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Carbon:nitrogen:phosphorus (C:N:P) stoichiometry plays a vital role in regulating P transformation in agriculture ecosystems. However, the impact of balanced C:N:P stoichiometry in paddy soil, particularly regarding relative soil P transformation, remains unknown. This study explores the response of C:N:P stoichiometry to manure substitution and its regulatory role in soil P transformation, along with the associated release risk to the environment. Based on a 5-year field study, our findings reveal that replacing 30 % of chemical P fertilizer with pig manure (equal total NPK amounts with chemical P fertilizer treatment, named CFM) increased soil total C without altering soil total P, resulting in an elevated soil C:P ratio, despite the homeostasis of crop stoichiometry. This increase promoted microbial diversity and the accumulation of organic P in the soil. The Proteobacteria and Actinobacteria produced lower C:PEEA metabolism together, and enhanced in vivo turnover of P. Additionally, by integrating high-resolution dialysis (HR-Peeper), diffusive gradients in thin films (DGT), DGT-induced fluxes in the soil (DIFS), and sediment P release risk index (SPRRI) models, we observed that, in addition to organic P, CFM simultaneously increased soil Al-P, thereby weakening the diffusion and resupply capacity of P from soil solids to the solution. Consequently, this decrease in P release risk to the environment was demonstrated. Overall, this study establishes a connection between crop-soil-enzyme C:N:P stoichiometry, soil microorganisms, and soil P biogeochemical processes. The study further evaluates the P release risk to the environment, providing a novel perspective on both the direct and indirect effects of manure substitution on soil P cycling.
Collapse
Affiliation(s)
- Yunfei Yu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Hao Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Guanglei Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Weihua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Mingxiu Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Shenqiang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
3
|
Liu H, Chi L, Shen J, Arandiyan H, Wang Y, Wang X. Principles, applications, and limitations of diffusive gradients in thin films induced fluxed in soils and sediments. CHEMOSPHERE 2024; 350:141061. [PMID: 38159729 DOI: 10.1016/j.chemosphere.2023.141061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The diffusive gradients in thin films (DGT) technique serves as a passive sampling method, inducing analyte transport and concentration. Its application is widespread in assessing labile components of metals, organic matter, and nutrients across various environmental media such as water, sediments, and saturated soils. The DGT devices effectively reduce the porewater concentration through irreversible binding of solutes, consequently promoting the release of labile species from the soil/sediment solid phase. However, the precise quantification of simultaneous adsorption and desorption of labile species using DGT devices alone remains a challenge. To address this challenge, the DGT-Induced Fluxes in Soils and Sediments (DIFS) model was developed. This model simulates analyte kinetics in solid phases, solutions, and binding resins by incorporating factors such as soil properties, resupply parameters, and kinetic principles. While the DIFS model has been iteratively improved to increase its accuracy in portraying kinetic behavior in soil/sediment, researchers' incomplete comprehension of it still results in unrealistic fitting outcomes and an oversight of the profound implications posed by kinetic parameters during implementation. This review provides a comprehensive overview of the optimization and utilization of DIFS models, encompassing fundamental concepts behind DGT devices and DIFS models, the kinetic interpretation of DIFS parameters, and instances where the model has been applied to study soils and sediments. It also highlights preexisting limitations of the DIFS model and offers suggestions for more precise modeling in real-world environments.
Collapse
Affiliation(s)
- Huaji Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Lina Chi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, 67100, China.
| |
Collapse
|
4
|
Eltohamy KM, Milham PJ, Gouda M, Menezes-Blackburn D, Khan S, Liu B, Jin J, Ye Y, Liang X. Size and composition of colloidal phosphorus across agricultural soils amended with biochar, manure and biogas slurry. CARBON RESEARCH 2023; 2:16. [DOI: 10.1007/s44246-023-00048-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 03/19/2023] [Indexed: 05/29/2024]
Abstract
AbstractThe long-term application of organic amendments like manure, biochar and biogas slurry can increase phosphorus (P) levels in agricultural soils; however, at present, it's not clear how this affects the P association with different mobile water-dispersible colloidal particles (Pcoll). Thus, this study aimed to assess the effects of the long-term application of different organic amendments on the abundance, size and compositional characteristics of Pcoll. For this purpose, a total of 12 soils amended with the above three organic amendments were sampled from the Zhejiang Province, China, and Pcoll were fractionated into nano-sized (NC; 1–20 nm), fine-sized (FC; 20–220 nm), and medium-sized (MC; 220–450 nm) by a combination of differential centrifugation and ultrafiltration steps. These three Pcoll forms together accounted for 74 ± 14% of the total soil solution dissolved P content, indicating that Pcoll release was a key process in the overland P transport from these soils. Soils treated with biochar showed lower Pcoll contents than those treated with manure or slurry alone; this effect should be further explored in a controlled inductive research approach. Compositional analysis showed that inorganic P was the predominant Pcoll form in the NC (54 ± 20%) and FC (63 ± 28%) fractions, but not in the MC (42 ± 26%) fraction. Among the three fractions, the organic carbon (OC)–calcium (Ca) complex was the major carrier of NC-bound Pcoll, MC-bound Pcoll was better correlated with OC–manganese/iron/aluminium colloids than with OC–Ca colloids, and both of these phenomena co-occurred in the FC fraction. The current study provides novel insights into the impact of various carbon amendments on the propensity for P loss associated with different soil mobile colloidal fractions, and will therefore, inform future agronomic and environmental-related policies and studies.
Collapse
|
5
|
Eltohamy KM, Li J, Gouda M, Menezes-Blackburn D, Milham PJ, Khan S, Li F, Liu C, Xu J, Liang X. Nano and fine colloids suspended in the soil solution regulate phosphorus desorption and lability in organic fertiliser-amended soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160195. [PMID: 36379330 DOI: 10.1016/j.scitotenv.2022.160195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Mobile colloids impact phosphorus (P) binding and transport in agroecosystems. However, their relationship to P-lability and their relative importance to P-bioavailability is unclear. In soils amended with organic fertilisers, we investigated the effects of nano (NC; 1-20 nm), fine (FC; 20-220 nm), and medium (MC; 220-450 nm) colloids suspended in soil solution on soil P-desorption and lability. The underlying hypothesis is that mobile colloids of different sizes, i.e., NC, FC, and MC, may contribute differently to P-lability in soils enriched with organic fertiliser. NC- and FC-bound Pcoll were positively correlated with P-lability parameters from diffusive gradient in thin films (DGTA-labile P concentration, r ≥ 0.88; and DGTA-effective P concentration, r ≥ 0.87). The corresponding relations with MC-bound Pcoll are weaker (r values of 0.50 and 0.51). NC- and FC-bound Pcoll were also strongly correlated with soil P-resupply (r ≥ 0.64) and desorption (r ≥ 0.79) parameters during DGTA deployment, and the mobility of these colloids was corroborated by electron microscopy of DGTA gels. MC-bound Pcoll was negatively correlated with the solid-to-solution distribution coefficient (r = -0.42), indicating this fraction is unlikely to be the source of P-release from the solid phase after P-depletion from the soil solution. We conclude that NC and FC mainly contribute to regulating soil desorbable-P supply to the soil solution in the DGTA depletion zone (in vitro proxy for plant rhizosphere), and consequently may act as critical conditioners of P-bioavailability, whereas MC tends to form complexes that lead to P-occlusion rather than lability.
Collapse
Affiliation(s)
- Kamel Mohamed Eltohamy
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Jianye Li
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Mostafa Gouda
- Department of Nutrition & Food Science, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, PO Box 34, Al-Khoud 123, Oman
| | - Paul J Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, LB 1797, Penrith, New South Wales 2751, Australia
| | - Sangar Khan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China
| | - Chunlong Liu
- Key laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jianming Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
6
|
Yuan H, Jia B, Wu J, Wang H, Yu J, Cai Y, Liu E, Li Q, Zeng Q. How do inundation provoke the release of phosphorus in soil-originated sediment due to nitrogen reduction after reclaiming lake from polder. J Environ Sci (China) 2022; 118:147-157. [PMID: 35305764 DOI: 10.1016/j.jes.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Different N and P fractions in microcosm incubation experiment was measured using high-resolution in-situ Peeper and DGT techniques combining with sequential extraction procedure. The results showed the synchronous desorption and release of PO43-, S2- and Fe2+ from the solid soil-originated sediment. This trend indicated that the significant reduction of Fe-P and SO42- occurred in the pore water during the inundation. The concentrations of PO43- in the overlying water and pore water increased to more than 0.1 and 0.2 mg/L at the beginning of the incubation experiment. Decreased NO3-concentrations from more than 1.5 mg/L to less than 0.5 mg/L combining with increasing NH4+ concentrations from less than 1 mg/L to more than 5 mg/L suggested the remarkable NO3- reduction via dissimilatory nitrate reduction to ammonia (DNRA) pathway over time. High NH4+ concentrations in the pore water aggravated the release of Fe2+ through reduction of Fe(III)-P as electric acceptors under anaerobic conditions. This process further stimulated the remarkable releasing of labile PO43- from the solid phase to the solution and potential diffusion into overlying water. Additionally, high S2- concentration at deeper layer indicated the reduction and releasing of S2- from oxidation states, which can stimulated the NO3- reduction and the accumulation of NH4+ in the pore water. This process can also provoke the reduction of Fe-P as electric acceptors following the release of labile PO43- into pore water. Generally, inundation potentially facilitate the desorption of labile P and attention should be paid during the reclaiming lake from polder.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Bingchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Juan Wu
- Gaochun District Water Authority Bureau, Nanjing 211300, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, Madison 53706, USA
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
7
|
Liu Y, Bai G, Zou Y, Ding Z, Tang Y, Wang R, Liu Z, Zhou Q, Wu Z, Zhang Y. Combined remediation mechanism of bentonite and submerged plants on lake sediments by DGT technique. CHEMOSPHERE 2022; 298:134236. [PMID: 35288180 DOI: 10.1016/j.chemosphere.2022.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The diffusive gradients in thin films (DGT) technique was applied to determine the mechanism by which bentonite improves the eutrophic lake sediment microenvironment and enhances submerged plant growth. The migration dynamics of N, P, S, and other nutrient elements were established for each sediment layer and the remediation effects of bentonite and submerged plants on sediments were evaluated. Submerged plant growth in the bentonite group was superior to that of the Control. At harvest time, the growth of Vallisneria spiralis and Hydrilla verticillata was optimal on a substrate consisting of five parts eutrophic lake sediment to one part modified bentonite (MB5/1). Bentonite addition to the sediment was conducive to rhizosphere microorganism proliferation. Microbial abundance was highest under the MB5/1 treatment whilst microbial diversity was highest under the RB1/1 (equal parts raw bentonite and eutrophic lake sediment) treatment. Bentonite addition to the sediment may facilitate the transformation of nutrients to bioavailable states. The TP content of the bentonite treatment was 22.47%-46.70% lower than that of the Control. Nevertheless, the bentonite treatment had higher bioavailable phosphorus (BIP) content than the control. The results of this study provide theoretical and empirical references for the use of a combination of modified bentonite and submerged plants to remediate eutrophic lake sediment microenvironments.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zimao Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
He H, Liu L, Li Q, Yan W. Feasibility of using Mg/Al-based layered double hydroxides as an inactivating agent to interrupt phosphorus release from contaminated agricultural drainage ditch sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112599. [PMID: 34385059 DOI: 10.1016/j.ecoenv.2021.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the feasibility of using Mg/Al-based layered double hydroxides (Mg/Al-LDHs) treatment to prevent phosphorus release from sediments of agricultural drainage ditches. A high-resolution diffusive gradient film technique and a high-resolution peeper technique were used to measure the phosphorus and iron concentrations in the overlying water and sediment profiles at sub-millimeter vertical resolution. Results demonstrated that Mg/Al-LDHs effectively reduced the concentrations of soluble reactive P (SRP) (about 69%) in the overlying water and the concentrations of SRP (about 37.42%) and labile P (about 36.72%) in the pore water. The highly positive correlation (p < 0.01) between SRP and soluble Fe, labile P and labile Fe in the sediment profiles provided high-resolution evidence for the simultaneous release of iron and phosphorus in sediments. Furthermore, Mg/Al-LDHs inactivated mobile P (NH4Cl-P and BD-P) in the uppermost sediment (0-50 mm) and then transformed the mobile P to more stable P (NaOH-rP, HCl-P, and Res-P) (about 81% of total extractable P). An inactivation layer with low phosphorus concentrations was observed in the upper sediment. In brief, the addition of Mg/Al-LDHs to the sediment surface of agricultural drainage ditches was effective in reducing SRP concentrations in the overlying water while effectively hindering the release of sediment internal phosphorus from the pore water to the overlying water.
Collapse
Affiliation(s)
- Huaijie He
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China.
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Wenming Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
9
|
Li Y, Han C, Luo J, Jones KC, Zhang H. Use of the Dynamic Technique DGT to Determine the Labile Pool Size and Kinetic Resupply of Pesticides in Soils and Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9591-9600. [PMID: 34029066 DOI: 10.1021/acs.est.1c01354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The diffusive gradients in thin films (DGT) technique has been successfully and widely applied to investigate the labile fractions of inorganic contaminants in soils and sediments, but there have been almost no applications to organic contaminants. Here we developed and tested the approach for the pesticide Atrazine (ATR) in a controlled soil experiment and in situ in an intact lake sediment core. The soil study explored the relationships between soil solution, DGT measured labile ATR and solvent extractable ATR in dosed soils of different organic matter, pH status and incubation times. The results are further interpreted using the DIFS (DGT-induced fluxes in soils and sediments) model. Resupply of ATR to the soil solution was partially sustained by the solid phase in all the soils. This was due to small labile pool size and slow kinetics, with soil pH being an important controlling factor. The in situ sediment study successfully used a DGT probe to examine labile ATR distribution through the core on the subcm scale. It demonstrated-for the first time-an easy to use in situ technique to investigate the effects of redox on resupply kinetics and biogeochemical processes of trace organic contaminants in sediments.
Collapse
Affiliation(s)
- Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Chao Han
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, P. R. China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| |
Collapse
|
10
|
Yuan H, Yin H, Yang Z, Yu J, Liu E, Li Q, Tai Z, Cai Y. Diffusion kinetic process of heavy metals in lacustrine sediment assessed under different redox conditions by DGT and DIFS model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140418. [PMID: 32886994 DOI: 10.1016/j.scitotenv.2020.140418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Different fractions and variations of Mn, Co, Ni, Cu, Cd, Pb, Zn, and Fe in sediment via oxic and anaerobic treatments were investigated using BCR sequential extraction methods, DGT technique, and DIFS model. The results indicated that reducible fraction was the considerable pool apart from residual fraction, suggesting the high desorption potential of heavy metals. The high-resolution DGT measurement indicated that CDGT significantly rose after anaerobic condition and characterized by the relative high R value. Significantly increasing positive fluxes varying from 0.64 to 339.4 μg cm-2 s-1 except Ni suggested that apparent diffusion upward occurred over time from the sediment to the overlying water on anaerobic episode. High proportion of reducible Fe fraction and concurrent reduction of Fe(III) to Fe(II) during anaerobic condition were responsible for the increase of labile metals. The diffusion kinetic parameters including the equilibrium distribution coefficient (Kd), response time (Tc), and rate constant (k1 and k-1) were obtained using DIFS model. These parameters confirmed the partially sustained resupply capacity of heavy metals from solid sediment particle to pore water because of the considerable reducible fractions. Additionally, planar optode (PO) imaging approach demonstrated that low pH accompanied with decreasing dissolved oxygen (DO) concentration on anaerobic condition enhanced the release of labile metal fraction. Generally, anoxia facilitated the reduction of reducible fraction of heavy metals and further strengthened the desorption, resupply and diffusion in the aquatic ecosystems.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianghu Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
11
|
Gao L, Sun K, Xu D, Gao B. Kinetic process of Cr(III) in contaminated soils characterized by diffusive gradients in thin films technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137425. [PMID: 32145614 DOI: 10.1016/j.scitotenv.2020.137425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Trivalent chromium has historically been considered as an environmentally benign micronutrient due to its low mobility; however, its kinetic process in soil remains poorly understood. Here, the labile fraction and kinetics of Cr(III) in contaminated soils were explored using diffusive gradients in thin films (DGT) and the DGT-induced fluxes model. In contrast to the low mobility of Cr(III) in soils reported by the classic equilibrium partitioning method, we observed steady resupply from the solid phase through a dynamic process, wherein Cr(III) in the soils were maintained by an intermediate resupply rate with the R values at their maximum (Rmax). The resupply of Cr(III) was influenced by the kinetic parameters and soil properties: (i) the resupply ability (R-Rdiff) was influenced by pH and response time (Tc); (ii) Rmax, was controlled by pH, Tc, and the desorption rate (k-1); (iii) k-1 was influenced by pH and soil texture. This study presents the new information regarding the kinetics of Cr(III) in soils and demonstrates that Cr(III) is steadily resupplied by soil, which is not captured by equilibrium-based methods, furthering our insight of the geochemical behavior of Cr(III). This information was essential for understanding the toxicity of Cr and improving remediation.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| |
Collapse
|
12
|
Yin K, Chan WP, Dou X, Lisak G, Chang VWC. Kinetics and modeling of trace metal leaching from bottom ashes dominated by diffusion or advection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137203. [PMID: 32114221 DOI: 10.1016/j.scitotenv.2020.137203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 05/14/2023]
Abstract
Leaching kinetics of trace metals from incineration bottom ashes (IBA) under diffusion and advection were investigated through leaching tests of compacted granulars of IBAs and their packed columns with seawater eluent for 64 days and 26 days, respectively. Metal fluxes were distinct among species while linearily decreased at log-log scales as a function of time. Short-term environmental risks for Cu, Ni and Pb were identified under advection. The metal leaching behavior generally followed the pseudo-second order under diffusion, while the pseudo-first order kinetics under advection. Investigated metals may be further identified as diffusion- (As, Cd, Cr, Sb) and advection-dominant species (Ba, Cu, Ni, Pb, Zn) according to their fluxes, which interestingly corresponded to the low- (5.19-147.90 mg·kg-1) and high-value (116.46-2398.44 mg·kg-1) of their metal distribution from IBAs, respectively. Considering the general higher metal release, decay models were employed to simulate the column leaching results. Particularly, Type-II model based on two-site assumptions fit much better to the experimental data, unveiling significant yet retarded release (in 1-2 pore volumes) of certain metals from the slow-reaction sites. Further investigation on the release of bulk parameters unveiled that, there existed rebounded leaching rates primarily ascribed to the IBA heterogeneity.
Collapse
Affiliation(s)
- Ke Yin
- Department of Environmental Engineering, School of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 230017, Jiangsu Province, China.
| | - Wei-Ping Chan
- Residue and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Xiaomin Dou
- Residue and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Grzegorz Lisak
- Residue and Resource Reclamation Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore.
| | - Victor Wei-Chung Chang
- Department of Civil Engineering, 23 College Walk, Monash University, Victoria 3800, Australia.
| |
Collapse
|
13
|
Zhang Z, Cao R, Mamat Z, Mamat A, Chen Y. A study of synchronous measurement of liable phosphorous and iron based on ZrO-Chelex (DGT) in the sediment of the Chaiwopu Lake, Xinjiang, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15057-15067. [PMID: 32065365 DOI: 10.1007/s11356-020-07701-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
The water-sediment interface of lakes is an important and unique area of the water environment; the geochemical behavior of nutrients in this area has a significant impact on the quality of the water environment and ecosystems, especially in shallow lakes. However, most studies do not provide direct in situ evidence for this in shallow lakes in arid regions; in order to explore the coupling relationship between phosphorus (P) and iron (Fe) in a sediment profile, we conducted a high-resolution analysis of liable Fe and P in sediments taken from the Chaiwopu Lake using ZrO-Chelex thin film diffusion gradient technology (ZrO-Chelex DGT). The results show that (1) the vertical spatial distribution trend of the liable P and Fe in the sediments from each sampling site is essentially similar. The contents of the liable P and Fe ranged from 0.004-0.125 mg/L and 0.050-0.190 mg/L, respectively, and the synchronous distribution of the micro-interface concentration reflects the coupling relationship between them. (2) The correlation analysis of the liable P and Fe concentrations showed that there were significant linear correlations between them (P < 0.05, bilateral). (3) The diffusion fluxes of P and Fe were - 51.76~65.12 μg (m2 d)-1 and - 451.27~457.06 μg (m2 d)-1, respectively, and were shown to be negative at the sediment-water interface for most of the samples, which showed that P and Fe were released from the overlying water into the sediments. (4) This research showed that the diffusive fluxes at the different sites are quite different, which indicates that the phosphorus and iron pollution in the sediments of the Chaiwopu Lake is affected by exogenous inputs. There was no significant correlation between P release flux and pH, ORP, conductivity (EC), the TDS of the overlying water, or the pH, salinity (Ca2+, Mg2+), and nutrient (organic matter) content of the sediment. The release flux of Fe is affected by the pH of the sediment. The results of this study provide references for the research of elements in the water-sediment interface of shallow lakes in arid regions, as well as other areas.
Collapse
Affiliation(s)
- Zhaoyong Zhang
- College of Resource and Environmental Sciences, Xinjiang University, Urumqi, 830046, People's Republic of China.
- Xinjiang Common University Key Laboratory of Smart City and Environmental Stimulation, Xinjiang University, Urumqi, 830046, People's Republic of China.
- Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, 830046, People's Republic of China.
| | - Ran Cao
- College of Resource and Environmental Sciences, Xinjiang University, Urumqi, 830046, People's Republic of China
- Xinjiang Common University Key Laboratory of Smart City and Environmental Stimulation, Xinjiang University, Urumqi, 830046, People's Republic of China
- Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Zulpiya Mamat
- College of Resource and Environmental Sciences, Xinjiang University, Urumqi, 830046, People's Republic of China
- Xinjiang Common University Key Laboratory of Smart City and Environmental Stimulation, Xinjiang University, Urumqi, 830046, People's Republic of China
- Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Anwar Mamat
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Yinguang Chen
- Sate Key Laboratory of Pollution Control and Resource Reuse, School of Environment Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
14
|
Gao L, Gao B, Xu D, Sun K. In-situ measurement of labile Cr(III) and Cr(VI) in water using diffusive gradients in thin-films (DGT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1161-1167. [PMID: 30759556 DOI: 10.1016/j.scitotenv.2018.10.392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
The toxicity and bioavailability of Cr depends on its speciation in the aquatic environment. Here, we developed a new method for simultaneously obtaining in-situ data on labile Cr(III) and Cr(VI) using diffusive gradients in thin films (DGT) and high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A Zr-oxide DGT was applied to accumulate both labile Cr(III) and Cr(VI). The elution of Cr species was carried out with 50 mM EDTA-2Na at pH 9.5 for 1.5 h. Agilent Bio WAX anion-exchange chromatography was used to separate Cr species in the slightly alkaline mobile phase containing 40 mM NH4NO3 at pH 7.4. An ICP-MS was used to quantitatively measure Cr within 4.5 min. Method detection limits were 0.05 μg/L for Cr(III) and 0.02 μg/L for Cr(VI). Labile Cr(III) and Cr(VI) was accurately quantified in synthetic solutions for pH in the range of 5-8 and ionic strength ranging from 10 to 100 mmol L-1. The method allows quantification of labile Cr(III) and Cr(VI) in natural water and was consistent with results of when a separate measurement method based on DGT was used. This study was an attempt at simultaneous in-situ quantification of labile Cr(III) and Cr(VI), and will facilitate in-situ labile Cr speciation analysis in the environment.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|