1
|
Long Y, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Research status and prospect of purification technology of sulfur-containing odor gas. J Environ Sci (China) 2025; 149:301-313. [PMID: 39181644 DOI: 10.1016/j.jes.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 08/27/2024]
Abstract
Catalytic purification of sulphur-containing malodorous gases has attracted wide attention because of its advantages of high purification efficiency, low energy consumption and lack of secondary pollution. The selection of efficient catalysts is the key to the problem, while the preparation and optimisation of catalysts depend on the analysis of experimental results and in-depth mechanistic analysis. By analysing the published literature, bibliometric analysis can identify existing research hotspots, the areas of interest and predict development trends, which can help to identify hot catalysts in the catalytic purification of sulphur-containing odours and to investigate their catalytic purification mechanisms. Therefore, this paper uses bibliometric analysis, based on Web Of Science and CNKI databases, CiteSpace and VOS viewer software to collate and analyse the literature on the purification of sulphur-containing odour pollutants, to identify the current research hotspots, to summarise the progress of research on the catalytic purification of different types of sulphur-containing odours, and to analyse their reaction mechanisms and kinetics. On this basis, the research progress of catalytic purification of different kinds of sulfur odour is summarized, and the reaction mechanism and dynamics are summarized.
Collapse
Affiliation(s)
- Yuhan Long
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang Z, Zhao J, Zhang H, Zhang J, Yue Y, Qian G. Synthesis of amine grafted Cu-BTC and its application in regenerable adsorption of ultra-low concentration methyl mercaptan. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Cao X, Ai T, Xu Z, Lu J, Chen D, He D, Liu J, Tian R, Zhao Y, Luo Y. Insights into the different catalytic behavior between Ce and Cr modified MCM-41 catalysts: Cr2S3 as new active species for CH3SH decomposition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Zhao J, Wang Y, Zhang J, Yue Y, Liu Q, Qian G. Accessibility control of Cu sites to enhance adsorption capacity of ultra-low-concentration methyl mercaptan. CHEMOSPHERE 2022; 305:135511. [PMID: 35777537 DOI: 10.1016/j.chemosphere.2022.135511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Methyl mercaptan (MM) is a typical malodorous gas and low-concentration MM makes human uncomfortable. Adsorption is applied in industry to remove MM. However, adsorptive-site agglomeration results in that adsorbent is not fully utilized. In this work, pore size and unsaturated-site amount of Cu-based metal-organic frameworks (MOFs) were regulated by using different ligands to increase adsorptive-site accessibility for MM. As a result, when Cu2+ sites were imbedded in MOFs network, these sites were inaccessible for MM; when Cu2+ sites were occupied by none-network organics, these sites were accessible for MM after simple activation; when Cu2+ sites were occupied by water, these sites were the most effective for MM removal among above site species. Furthermore, with the increase of bonding sites in ligands, channel pore size of MOFs was increased. Both pore size and unsaturated-site amount were important to MM removal. When above MOFs were used in purification of ultra-low-concentration MM, the regulated MOFs with a big pore size (11 and 5 Å) and water-occupied sites showed a best removal capacity of 160.3 mg g-1. The main result of this work is in favor of understanding structure-efficiency relationship in MOFs. This work also helps to develop effective adsorbents for ultra-low-concentration pollutants.
Collapse
Affiliation(s)
- Jiachun Zhao
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Yixin Wang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China.
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China.
| | - Qiang Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| |
Collapse
|
5
|
Li T, Zhu P, Wang D, Zhang Z, Zhou L. Efficient utilization of the electron energy of antibiotics to accelerate Fe(III)/Fe(II) cycle in heterogeneous Fenton reaction induced by bamboo biochar/schwertmannite. ENVIRONMENTAL RESEARCH 2022; 209:112830. [PMID: 35093307 DOI: 10.1016/j.envres.2022.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The discharge of antibiotics evokes environmental health crisis, and is also a waste of organic energy. Currently, heterogeneous Fenton for antibiotics removal has attracted growing attentions due to wide pH range and no iron sludge production, however, it often suffers from a low formation rate of Fe(II), resulting in difficult application of heterogeneous Fenton technology in sewage treatment. To overcome this drawback, bamboo biochar (BB) is coupled with schwertmannite (Sch) through Acidithiobacillus ferrooxidans-mediated Fe(II) oxidation reaction to obtain a heterogeneous catalyst (Sch/BB) with high adsorption performance and Fenton activity. According to the analysis of experimental results, electrons around C (from BB) can easily transfer to Fe by Fe-O-C bonds to expedite ≡Fe(III)/≡Fe(II) cycle, while electrons of antibiotics adsorbed on Sch/BB surface are effectively utilized to maintain the efficient regeneration of ≡Fe(II) through BB electron shuttle or Fe-O-C bonds between Sch/BB and pollutants, further causing a superior Fenton activity (98% antibiotics removal) of Sch/BB. Moreover, due to its excellent adsorption performance, Sch/BB as filter materials can effectively remove dye pollutants in flow wastewater. These findings provided a high-activity and practical heterogeneous Fenton catalyst for pollutants degradation, while a new perspective for efficient utilization of the electrons of organic pollutants was given.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peng Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dianzhan Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zexin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
6
|
Zhu H, Guo A, Xian L, Wang Y, Long Y, Fan G. Facile fabrication of surface vulcanized Co-Fe spinel oxide nanoparticles toward efficient 4-nitrophenol destruction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128433. [PMID: 35158244 DOI: 10.1016/j.jhazmat.2022.128433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient modulation strategies to boost the degradation efficiencies of non-noble metal catalysts for toxic phenolic compounds involving peroxymonosulfate (PMS)-based oxidation processes is essential but remains an arduous challenge. This study reports the one-pot construction of in-situ surface vulcanized CoFe2O4 @carbon (Sx-CF@C) to boost the PMS activation for 4-nitrophenol (4-NP) destruction. The direct pyrolysis of an aerogel precursor consisted of cobalt nitrate, ferric nitrate, melamine, and thiourea enables the as-formed Sx-CF@C with hierarchical structure, rich oxygen vacancies, and electron/mass transfer, thereby considerably promoting PMS activation performance of Sx-CF@C toward 4-NP degradation. Specifically, the optimal S0.2-CF@C can achieve a removal efficiency of 99% for 4-NP destruction (20 mg/L) through PMS activation. Meanwhile, the catalyst also has generality to degrade a variety of antibiotic and dye organic pollutants. The radical quenching and electron paramagnetic resonance tests reveal the radical and non-radical activation mechanism in the S0.2-CF@C/PMS system. The degradation pathway for 4-NP destruction over the S0.2-CF@C/PMS system is proposed. This study provides an efficient approach to modulate the PMS activation performance of ferrite spinel materials toward the degradation of acute phenolic compounds.
Collapse
Affiliation(s)
- Hui Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - An Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Xian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
7
|
Li C, He L, Yao X, Yao Z. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase. CHEMOSPHERE 2022; 295:133868. [PMID: 35131275 DOI: 10.1016/j.chemosphere.2022.133868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase may possess great advantages in its high removal efficiency, mild conditions, good reliability, wide applicability, and little potential secondary pollution, which has aroused extensive research interests in the past decade. This Overview Article summarizes the latest achievements to eliminate VOCs by chemical oxidation in liquid phase including gas-liquid mass transfer, homogeneous/heterogeneous oxidation, electrochemical oxidation, and coupling technologies. Important research contributions are highlighted in terms of mass transfer, catalytic materials, removal/mineralization efficiency, and reaction mechanism to evaluate their potential industrial applications. The current challenges and future strategies are discussed from the viewpoint of the deep degradation of refractory VOC substrates and their intermediates. It is anticipated that this review will attract more attention toward the development and application of chemical oxidation methods to clear complex industrial organic exhaust gas.
Collapse
Affiliation(s)
- Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
8
|
Song H, Xu L, Chen M, Cui Y, Wu CE, Qiu J, Xu L, Cheng G, Hu X. Recent progresses in the synthesis of MnO 2 nanowire and its application in environmental catalysis. RSC Adv 2021; 11:35494-35513. [PMID: 35493136 PMCID: PMC9043261 DOI: 10.1039/d1ra06497e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Nanostructured MnO2 with various morphologies exhibits excellent performance in environmental catalysis owing to its large specific surface area, low density, and adjustable chemical properties. The one-dimensional MnO2 nanowire has been proved to be the dominant morphology among various nanostructures, such as nanorods, nanofibers, nanoflowers, etc. The syntheses and applications of MnO2-based nanowires also have become a research hotspot in environmental catalytic materials over the last two decades. With the continuous deepening of the research, the control of morphology and crystal facet exposure in the synthesis of MnO2 nanowire materials have gradually matured, and the catalytic performance also has been greatly improved. Differences in the crystalline phase structure, preferably exposed crystal facets, and even the length of the MnO2 nanowires will evidently affect the final catalytic performances. Besides, the modifications by doping or loading will also significantly affect their catalytic performances. This review carefully summarizes the synthesis strategies of MnO2 nanowires developed in recent years as well as the influences of the phase structure, crystal facet, morphology, dopant, and loading amount on the catalytic performance. Besides, the cutting-edge applications of MnO2 nanowires in the field of environmental catalysis, such as CO oxidation, the removal of VOCs, denitrification, etc., have been also summarized. The application of MnO2 nanowire in environmental catalysis is still in the early exploratory stage. The gigantic gap between theoretical investigation and industrial application is still a great challenge. Compared with noble metal based traditional environmental catalytic materials, the lower cost of MnO2 has injected new momentum and promising potential into this research field.
Collapse
Affiliation(s)
- Huikang Song
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Yan Cui
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Jian Qiu
- Jiangsu ShuangLiang Environmental Technology Co., Ltd Jiangyin 214400 P. R. China
| | - Liang Xu
- Jiangsu ShuangLiang Environmental Technology Co., Ltd Jiangyin 214400 P. R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Nanjing 210044 P. R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan Jinan 250022 P. R. China
| |
Collapse
|
9
|
Tuci G, Liu Y, Rossin A, Guo X, Pham C, Giambastiani G, Pham-Huu C. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier? Chem Rev 2021; 121:10559-10665. [PMID: 34255488 DOI: 10.1021/acs.chemrev.1c00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.
Collapse
Affiliation(s)
- Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Xiangyun Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Charlotte Pham
- SICAT SARL, 20 place des Halles, 67000 Strasbourg, France
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy.,Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
10
|
Hou H, Liu Z, Zhang J, Zhou J, Qian G. A review on fabricating functional materials by heavy metal-containing sludges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:133-155. [PMID: 33063214 DOI: 10.1007/s11356-020-10990-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
With the development of industry, sustainable use of natural resources has become a worldwide hot topic. Heavy metal-containing sludge (HMS) is a hazardous waste after wastewater treatment. At present, HMS is still treated by landfill or landfill after incineration. Considering the components, HMS usually contains various heavy metals and organic compounds, which is potentially used as a raw resource for catalyst production. This review thus concludes recent reports and developments in this field. First, basic technologies are summarized as component regulation, precursor formation, and structure transformations. Second, prepared materials are applied in various catalytic fields, such as gas purification, photocatalysis, electrocatalysis, and Fenton catalysis. During these processes, key factors are multi-metallic components, metal doping, temperature, and pH. They not only influence the formation of HMS-derived catalyst but also the catalytic activity. Furthermore, catalytic activities of HMS-derived catalysts are compared with those synthesized by pure reagents. An assessment and accounting are also supplied if raw resources are substituted by HMS. Finally, in order to apply HMS in a real application, more works must be devoted to the influence of trace metal doping on catalytic activities and stabilities. Besides, more pilot experiments are urgently necessary.
Collapse
Affiliation(s)
- Hao Hou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, People's Republic of China
| | - Zixing Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, People's Republic of China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, People's Republic of China.
- MGI, Shanghai University, Xiapu Town, Xiangdong District, Pingxiang, 337022, Jiangxi, People's Republic of China.
| | - Jizhi Zhou
- School of Economics, Shanghai University, No. 333 Nanchen Road, Shanghai, 200444, People's Republic of China
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, People's Republic of China.
- MGI, Shanghai University, Xiapu Town, Xiangdong District, Pingxiang, 337022, Jiangxi, People's Republic of China.
| |
Collapse
|
11
|
García-Muñoz P, Fresno F, Lefevre C, Robert D, Keller N. Ti-Modified LaFeO 3/β-SiC Alveolar Foams as Immobilized Dual Catalysts with Combined Photo-Fenton and Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57025-57037. [PMID: 33296165 DOI: 10.1021/acsami.0c16647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ti-modified LaFeO3/β-SiC alveolar foams were used as immobilized, highly robust dual catalysts with combined photocatalytic wet peroxide oxidation and photocatalytic activity under UV-A light. They were prepared by incipient wetness impregnation of a β-SiC foam support, by implementing a sol-gel Pechini synthesis at the foam surface in the presence of dried amorphous sol-gel titania as a titanium source. The physicochemical and catalytic features suggest the stabilization at the foam surface of a substituted La1-xTixFeO3 catalyst analogous to its powdery counterpart. Taking 4-chlorophenol removal in water as a model reaction, its dual nature enables both high reaction rates and full total organic carbon (TOC) conversion because of a synergy effect, while its macroscopic structure overcomes the drawback of working with powdery catalysts. Further, it yields photonic efficiencies for degradation and mineralization of ca. 9.4 and 38%, respectively, that strongly outperform those obtained with a reference TiO2 P25/β-SiC foam photocatalyst. The enhancement of the catalyst robustness upon Ti modification prevents any Fe leaching to the solution, and therefore, the optimized macroscopic foam catalyst with 10 wt % catalyst loading operates through pure heterogeneous surface reactions, without any activity loss during reusability test cycles.
Collapse
Affiliation(s)
- Patricia García-Muñoz
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Fernando Fresno
- Photoactivated Processes Unit, IMDEA Energy, Móstoles, 28935 Madrid, Spain
| | - Christophe Lefevre
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS/University de Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Didier Robert
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
12
|
Zhang T, Li C, Sun X, Gao H, Liu X, Sun J, Shi W, Ai S. Iron nanoparticles encapsulated within nitrogen and sulfur co-doped magnetic porous carbon as an efficient peroxymonosulfate activator to degrade 1-naphthol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139896. [PMID: 32534313 DOI: 10.1016/j.scitotenv.2020.139896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
A novel iron nanoparticles encapsulated within nitrogen and sulfur co-doped magnetic porous carbon (Fe-N-S-MPC) was proposed by one-pot pyrolysis strategy to activate peroxymonosulfate (PMS) to degrade 1-naphthol using low-cost lignin as precursors. The Fe-N-S-MPC was characterized for structure and properties by different characterizations. The obtained materials had the morphology of iron nanoparticles encapsulated within nitrogen and sulfur co-doped magnetic porous carbon with rich functional groups and large specific surface area, which made the materials have a good catalytic property. It was proved that the doping of nitrogen and sulfur is pivotal for improving the catalytic performance. The radical quenching experiment confirmed that sulfate radical (SO4-) and hydroxyl radical (OH) are two major reactive oxygen groups. The reaction had phenomenon of the free radicals upsurge in the early stage and the shortage in the later stage. Therefore, a mathematical model was put forward to represent the two-stage reaction kinetics. By adding oxidants in batches, the degradation effect could reach nearly 100% within 30 min. The Fe-N-S-MPC were applied to the degradation of 1-naphthol in soil and showed high degradation performance. This work provided a new type of catalytic material by the high-value utilization of waste for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Ting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Changyu Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xiaoting Sun
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Hu Gao
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xin Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Jianchao Sun
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, Shandong, PR China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
13
|
Zhang C, Wang Y, Zhang X, Wang R, Kou L, Li R, Fan C. Preoxidation-assisted nitrogen enrichment strategy to decorate porous carbon spheres for catalytic adsorption/oxidation of methyl mercaptan. RSC Adv 2020; 10:37644-37656. [PMID: 35515190 PMCID: PMC9057137 DOI: 10.1039/d0ra07375j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/31/2023] Open
Abstract
Porous carbon spheres with high surface area and microporous structure were synthesized from alkyl phenols and formaldehyde via suspension polymerization and steam activation. The effects of air oxidation and ammonia solution heat treatment on the pore structure and surface chemistry of the carbon spheres were studied for catalytic oxidation of CH3SH. The structure property and surface chemistry of the obtained carbon spheres were characterized by N2 adsorption-desorption, FTIR, scanning electron microscopy, XRD, elemental analysis, X-ray photoelectron spectroscopy and Boehm titration, and then thermal analysis and gas chromatography-mass spectrometry were applied to investigate the catalytic oxidation product. Results show that the as-prepared microporous carbon spheres through direct ammonia treatment have a high surface area value of 1710 m2 g-1 and a total pore volume of 0.83 cm3 g-1. Moreover, the preoxidation-assisted nitrogen enrichment strategy not only increases the surface area and total pore volume of the carbon spheres, but also introduces more active nitrogen species such as pyridinic nitrogen and quaternary nitrogen, leading to the highest nitrogen content of 7.13 wt% and the highest CH3SH capacity of 622.8 mg g-1 due to the pyridinic nitrogen and quaternary nitrogen as function of catalysts. In addition, water and oxygen have a beneficial effect on CH3SH oxidation over the nitrogen modified carbon spheres, and the basic oxidation product is CH3SSCH3 that can be further oxidized into CH3SO2SCH3 according to DTG and GC/MS analysis. The great recycling stability after ten cycles with a reserved CH3SH capacity of 97% demonstrates that the porous carbon spheres obtained by preoxidation-assisted enriched nitrogen strategy are promising for catalytic oxidation of CH3SH.
Collapse
Affiliation(s)
- Changming Zhang
- College of Mining Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86 351 6111190 +86 351 6010551
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province Taiyuan 030008 PR China
| | - Yaqi Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xiaochao Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
| | - Rongxian Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
| | - Lifang Kou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
| | - Rui Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
| | - Caimei Fan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|
14
|
Efficacy of Octahedral Molecular Sieves for green and sustainable catalytic reactions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Hu W, Tong W, Li Y, Xie Y, Chen Y, Wen Z, Feng S, Wang X, Li P, Wang Y, Zhang Y. Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121801. [PMID: 31818653 DOI: 10.1016/j.jhazmat.2019.121801] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
A considerable amount of sewage sludge (SS) is generated from wastewater treatment process, which is hazardous to the environment and in urge to be disposed. In this study, for the first time, we prepared carbocatalyst with abundant surface oxygen functional groups using the hazardous waste of SS as precursor via a facile hydrothermal coupled pyrolysis process. The hydrothermal treatment was found to be crucial for enhancing the oxygen content of sludge carbon (SC), most of which existed as ketonic groups. Catalytic performances of the developed SCs were examined by activating peroxymonosulfate (PMS) to degrade bisphenol A (BPA). Sample with more ketonic group performed better for BPA degradation. Under optimal reaction conditions, 100 % of BPA and 69.53 % of TOC could be removed in 20 min. Singlet oxygen (1O2) was suggested to be the main reactive oxygen species for degrading BPA and a BPA degradation pathway was proposed. The BPA solution showed decreased bio-toxicity after the oxidation process according to the acute ecotoxicity test. This study demonstrated the importance of surface functional groups on carbocatalyst for advanced oxidation process, which could be induced by a facile hydrothermal treatment. The feasibility of utilizing hazardous SS for advanced carbocatalyst fabrication was also revealed.
Collapse
Affiliation(s)
- Wanrong Hu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenhua Tong
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yulin Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yundi Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqing Wen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shangfa Feng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuqian Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Mian MM, Liu G, Fu B. Conversion of sewage sludge into environmental catalyst and microbial fuel cell electrode material: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:525-539. [PMID: 30802667 DOI: 10.1016/j.scitotenv.2019.02.200] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
At present, environmentally friendly and cost-effective disposal of sewage sludge (SS) is the major challenge of wastewater treatment that prompted the concept of sludge valorization. A recent technology, SS conversion into biochar as an efficient catalyst for environmental application, shows great promise to sludge valorization. This review presents the literature and advances of sludge biochar-based catalysts (SBCs), including their synthesis route, physiochemical characteristics, catalytic applications, reaction mechanisms, chemical stability, feasibility, and future aspects. Two major applications of SBCs such as organic pollutants degradation and employing as an electrode material in a microbial fuel cell (MFC) were summarized. The literature has indicated that carbonization of raw or organic/ inorganic-laden sludge produces various metal phase structure and surface functional groups which perform various catalytic reaction such as Fenton-like reaction, ozonation, H2O2/ persulfate activation, and photoreaction in the organic pollutants degradation tests. The degradation efficiency and chemical stability of SBCs have found very satisfying. Moreover, catalysts are highly recyclable, separable, and ensure negligible metal leaching. Secondly, high-temperature carbonized sludge exhibits excellent electrical conductivity which is suitable to use as MFC electrodes. The low-cost sludge biochar-based electrodes (SBEs) performance is comparable to many commercial electrodes. This new technology is concurrently advantageous for environmental pollution remediation, energy production, and harmful metals immobilization, which offer a new route towards SS valorization.
Collapse
Affiliation(s)
- Md Manik Mian
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China.
| | - Biao Fu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China
| |
Collapse
|