1
|
Hosseinian E, Moghanlou AO, Nanekaran FS, Khanizadeh B, Tarighi NM. Synthesis of rGO/ CuBi2O4 nanocomposite as an effective photocatalyst in the reduction of nitroaromatic compounds to corresponding amines under visible light. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2024; 99:2464-2481. [DOI: 10.1002/jctb.7735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/06/2024] [Indexed: 01/05/2025]
Abstract
AbstractBACKGROUNDChemical pollutants, such as nitroaromatic compounds, have been a significant challenge in recent decades of human societies as they contribute to environmental pollution and pose serious health risks due to their high toxicity. One promising and green method to address this issue is the photocatalytic reduction of nitroaromatic compounds to their corresponding amino aromatic compounds. In this study, an rGO/CuBi2O4 nanocomposite was synthesized using the hydrothermal method, involving the simultaneous reduction of graphene oxide and the coupling of CuBi2O4 nanoparticles in its layers. The resulting heterogeneous structure was characterized using various techniques including FTIR, Raman, XPS, XRD, FESEM, TEM, EDAX, UV–Vis DRS, BET, PL spectroscopy, and EIS. Subsequently, the photocatalytic efficiency of the nanocomposite in reducing nitroaromatic compounds to the corresponding aromatic amines under visible light was evaluated.RESULTSThe results indicated that graphene oxide was effectively reduced and coupled with CuBi2O4 nanoparticles in the reduced graphene oxide sheets. The rGO/CuBi2O4 heterogeneous nanocomposite successfully reduced nitroaromatic compounds to the corresponding aromatic amines under visible light. Hydrazine monohydrate was used to supply the necessary hydrogen for the reaction.CONCLUSIONThis study confirmed the high photocatalytic activity of the rGO/CuBi2O4 heterogeneous nanocomposite. Our nanocomposite was more effective than others, reported in similar studies, at reducing nitroaromatic compounds to the corresponding amino aromatic compounds. Additionally, it demonstrated high recycling and reuse properties, as there was no significant change in reaction conversion percentage and nanocomposite amount after 16 reuses. © 2024 Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Elham Hosseinian
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Ali Oji Moghanlou
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Farshid Salimi Nanekaran
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Behnam Khanizadeh
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Nayer Mohammadian Tarighi
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| |
Collapse
|
2
|
Nsanzamahoro S, Nan F, Shen L, Iradukunda Y, Li B, Yu WW. Designing a Hypoxia-Activated Sensing Platform Using an Azo Group-Triggered Reaction with the Formation of Silicon Nanoparticles. Anal Chem 2024; 96:11977-11984. [PMID: 38975827 DOI: 10.1021/acs.analchem.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Hypoxia is known as a specific signal of various diseases, such as liver fibrosis. We designed a hypoxia-sensitive fluorometric approach that cleaved the azo bond (N═N) in the presence of hypoxia-controlled agents (sodium dithionite and azoreductase). 4-(2-Pyridylazo) resorcinol (Py-N═N-RC) bears a desirable hypoxia-responsive linker (N═N), and its azo bond breakup can only occur in the presence of sodium dithionite and azoreductase and leads to the release of 2,4-dihydroxyaniline, which can react with 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane to generate yellow fluorescent silicon nanoparticles. This approach exhibited high selectivity and sensitivity toward both sodium dithionite and azoreductase over other potential interferences. The mouse liver microsome, which is known to contain azoreductase, was applied and confirmed the feasibility of the designed platform. Py-N═N-RC is expected to be a practical substrate for hypoxia-related biological analyses. Furthermore, silicon nanoparticles were successfully applied for Hela cell imaging owing to their negligible cytotoxicity and superb biocompatibility.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Lanbo Shen
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - Yves Iradukunda
- Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Li
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Liu Y, Wang G, Ma W, Feng N, Tong J, Kang X, Hu T, Wu H, Yang Q, Xie J. Preparation of magnetically separable and low-cost MC-FePd 3NPs with enhanced catalytic activity in the reduction of p-nitrophenol. NANOTECHNOLOGY 2023; 34:465701. [PMID: 37499636 DOI: 10.1088/1361-6528/aceafd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
To obtain a magnetically separable, low-cost and highly efficient reduction catalyst, microbial carbon-loaded bimetallic palladium/iron nanoparticles (MC-FePd3NPs) were synthesized in this study by using waste yeast residue doped with iron during the preparation process of microbial carbon-loaded monometallic palladium nanoparticles (MC-Pd NPs). The morphology, crystal structure, magnetic properties and catalytic performance of MC-FePd3NPs for the reduction ofp-nitrophenol (p-NP) were investigated by various characterization techniques, such as SEM-EDS, TEM, XRD, PPMS-9 and UV-vis spectroscopy. The catalytic experiments showed that the MC-FePd3NPs prepared under pyrolysis conditions at 700 °C had an apparent rate constant of 1.85 × 10-1s-1which is better than the rate constants of MC-Pd NPs and other palladium-based nanocatalytic materials reported so far. The amount of palladium used in the synthesis of MC-FePd3NPs was half that of MC-Pd NPs. The catalyst exhibited soft magnetic ordering behavior and still showed a catalytic efficiency of 97.4% after five consecutive reaction cycles. Furthermore, employing MC-FePd3NPs reduces the costs of catalyst preparation and use in production. MC-FePd3NPs with efficient catalytic properties, facile magnetic separation and recyclability, and low costs of preparation and use have considerable potential for industrial applications.
Collapse
Affiliation(s)
- Yuxing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Guozhen Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Wangrui Ma
- Sino-Platinum Metals Resources (Yimen) Co., Ltd, Yuxi 651100, Yunnan, People's Republic of China
| | - Ningning Feng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Jiaxin Tong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Xinke Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Tao Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Haiyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| | - Quan Yang
- Sino-Platinum Metals Resources (Yimen) Co., Ltd, Yuxi 651100, Yunnan, People's Republic of China
| | - Jianping Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, People's Republic of China
| |
Collapse
|
4
|
Kurt Z, Qu Y, Spain JC. Novel catabolic pathway for 4-Nitroaniline in a Rhodococcus sp. strain JS360. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131473. [PMID: 37146325 DOI: 10.1016/j.jhazmat.2023.131473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
4-Nitroaniline (4NA), the starting material for the first synthesized azo dye, is a toxic compound found in industrial wastewaters. Several bacterial strains capable of 4NA biodegradation were previously reported but the details of the catabolic pathway were not established. To search for novel metabolic diversity, we isolated a Rhodococcus sp. Strain JS360 by selective enrichment from 4NA-contaminated soil. When grown on 4NA the isolate accumulated biomass released stoichiometric amounts of nitrite and released less than stoichiometric amounts of ammonia, indicating that 4NA was used as sole carbon and nitrogen source to support growth and mineralization. Enzyme assays coupled with respirometry provided preliminary evidence that the first and second steps of 4NA degradation involve monooxygenase-catalyzed reactions followed by ring cleavage prior to deamination. Sequencing and annotation of the whole genome revealed candidate monooxygenases that were subsequently cloned and expressed in E.coli. Heterologously expressed 4NA monooxygenase (NamA) and 4-aminophenol (4AP) monooxygenase (NamB) transformed 4NA to 4AP and 4AP to 4-aminoresorcinol (4AR) respectively. The results revealed a novel pathway for nitroanilines and defined two monooxygenase mechanisms likely to be involved in the biodegradation of similar compounds.
Collapse
Affiliation(s)
- Zohre Kurt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0512, Georgia; Middle East Technical University, Ankara, Turkey; Florida State University Panamá, Panama.
| | - Yi Qu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0512, Georgia
| | - Jim C Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0512, Georgia; Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL 32514-5751, United States
| |
Collapse
|
5
|
An S, Manivannan S, Viji M, Shim MS, Hwang BH, Kim K. Surface Roughness Effects of
Pd‐loaded
Magnetic Microspheres on Reduction Kinetics of Nitroaromatics. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seonghwi An
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry Incheon 22012 Republic of Korea
| | - Shanmugam Manivannan
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry Incheon 22012 Republic of Korea
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC) Chungbuk National University Cheongju 28160 Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering Incheon National University Incheon 22012 Republic of Korea
| | - Byeong Hee Hwang
- Division of Bioengineering Incheon National University Incheon 22012 Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry Incheon 22012 Republic of Korea
| |
Collapse
|
6
|
Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145221. [PMID: 33736258 DOI: 10.1016/j.scitotenv.2021.145221] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Cadmium and salinity are the major threats to environmental resources and agricultural practice worldwide. The present work aims green synthesis, characterization, and application of iron oxide nanoparticles for co-alleviation of Cd and salt stresses in wheat plants. The iron oxide NPs were synthesized from a native bacterial strain, Pantoea ananatis strain RNT4, yielding a spherical FeO-NPs with a size ranging from 19 to 40 nm evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Results showed that application of 100 mg kg-1 of the bioengineered FeO-NPs in an original saline soil stimulated wheat plant growth, gaining 36.7% of additional length as compared with the control scenarios, via alleviating the detrimental effects of abiotic stresses and thereby reprogramming the morpho-physiological state of wheat plants. In addition, the presence of FeO-NPs in soil significantly increased the nutrient concentrations of N, P and K+, while reducing the Na+ and Cl- components in the wheat grain. Interestingly, application of the FeO-NPs in Cd-polluted soils eventually reduced wheat plant uptake of Cd by 72.5%, probably due to the adsorption of Cd onto the large surface of NPs and thereby, constraining Cd bioavailability to the plants. It provides the first evidence that a FeO-NPs-based treatment could be a candidate agricultural strategy for mitigating the Cd and salt stresses in Cd-polluted saline soils for safe agriculture practice.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Mudassir Nazir
- Department of agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liaqat Ali
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Taghreed S Alnusaire
- Biology Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Rainer Schulin
- Department of Environmental System Science, ETH Zurich, Zurich, Switzerland
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China; National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Malik MA, Alshehri AA, Abomuti MA, Danish EY, Patel R. Bioengineered Matricaria recutita Extract-Assisted Palladium Nanoparticles for the Congo Red Dye Degradation and Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. TOXICS 2021; 9:103. [PMID: 34064502 PMCID: PMC8148003 DOI: 10.3390/toxics9050103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
The green chemistry method is the preferred approach for synthesizing metal and metal oxide nanoparticles because of its low toxicity, environmental friendliness, feasibility, and safety to human health compared with other chemical or physical methods. The present work reports the phytogenic synthesis of palladium nanoparticles (PdNPs) using an aqueous extract of Matricaria recutita (Chamomile). The phytochemical-mediated synthesis of PdNPs is an economical and eco-friendly approach without using toxic elements as reducing and capping or stabilizing agents. The UV-visible spectroscopic characterization was initially used to confirm the preparation of PdNPs using an aqueous extract of M. recutita flowers as a bioreductant for the reduction of Pd2+ to Pd0 without using any extra capping and reducing agents. The appearance of surface plasmon resonance (SPR) peak at 286 nm confirmed the formation of M. recutita extract-based PdNPs. Furthermore, the PdNPs were characterized by TEM, SEM, EDX, XRD, XPS, and FTIR to confirm their proper synthesis. The thermogravimetric analysis (TGA) was implemented to interpret the decomposition pattern and thermal stability of as-synthesized PdNPs. The biosynthesized PdNPs were further applied as a nanocatalyst in degradation of an azo dye Congo red (CR) in the presence of NaBH4. The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was also investigated in the presence of NaBH4. All the catalytic reactions were performed in water, and no significant loss in catalytic activity was observed after recovery and reusability of the biosynthesized PdNPs.
Collapse
Affiliation(s)
- Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - May Abdullah Abomuti
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - Ekram Y. Danish
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
8
|
Liu J, Li J, Jian P, Jian R. Intriguing hierarchical Co@NC microflowers in situ assembled by nanoneedles: Towards enhanced reduction of nitroaromatic compounds via interfacial synergistic catalysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123987. [PMID: 33265026 DOI: 10.1016/j.jhazmat.2020.123987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Developing highly efficient and cost-effective catalyst with tuned microstructure holds great promise in the reduction of nitroaromatic compounds under mild reaction conditions. Herein, we report a new Co@NC-MF catalyst with a fascinating hierarchical flower-like architecture in situ assembled from uniform Co@NC nanoneedles, which can function as a favorable platform for the efficient reduction of nitroaromatic compounds in the presence of NaBH4. In addition with the structural advantage, the characterization and experimental results demonstrate the enormous advantage of interfacial synergistic catalysis in enhancing the catalytic performance. The outside electron-rich N-doped carbon layer as Lewis basic sites and the inside Co nanoparticles are responsible for the adsorption of 4-nitrophenol (4-NP) and generation of active hydrogen species, respectively. This work contributes to the construction of well-integrated composites with well-balanced interface synergy to boost the catalytic performance in various heterogeneous reactions.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Jinxing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruiqi Jian
- School of Medicine, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
9
|
Mei X, Ding Y, Wang Y, Yang Y, Xu L, Wang Y, Shen W, Zhang Z, Ma M, Guo Z, Xiao Y, Yang X, Zhou B, Xu K, Guo W, Wang C. A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors. BIORESOURCE TECHNOLOGY 2020; 307:123241. [PMID: 32244078 DOI: 10.1016/j.biortech.2020.123241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Nitroaniline (NA) wastewater is known to be highly toxic and biodegradation-resistant. Based on the principles of molecular oxygen supply and biofilm formation, a novel membrane-aerated biofilter (MABF) combining membrane aeration with a biofilter was established for the first time to treat NA wastewater containing the same concentrations of p-nitroaniline (PNA) and o-nitroaniline (ONA). The NA wastewater treatment performance of the MABF was investigated, and the NA biodegradation characteristics were evaluated. When the influent NA concentration was 120 mg/L, the PNA and ONA removal rates reached 100% and 86.56%, respectively. The NA removal loading reached 111.62 g/m3·d, and the total nitrogen (TN) removal rate reached 82.97%. The synergistic effects of the diverse microorganisms in the membrane-aerated and nonaerated zones of the MABF enhanced the removal of NA and nitrogen. This MABF is an economically efficient and environmentally friendly technology for treating wastewater containing toxic and hazardous organic compounds.
Collapse
Affiliation(s)
- Xiang Mei
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Ding
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yihan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wentian Shen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zimiao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyuan Ma
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongwei Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Xiao
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Xu Yang
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Baochang Zhou
- Nanjing RGE Membrane Tech Co., Ltd., Nanjing 210012, China
| | - Kang Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chaofan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Zülfikaroğlu A. The synthesis, experimental and theoretical characterization of a Pd(II) complex from diacetyl monoxime isobutyrohydrazone. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Highly Dispersed Pt Nanoparticles on N-Doped Ordered Mesoporous Carbon as Effective Catalysts for Selective Hydrogenation of Nitroarenes. Catalysts 2020. [DOI: 10.3390/catal10040374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Highly-dispersed Pt nanoparticles supported on nitrogen-modified CMK-3 mesoporous carbon (Pt/N-CMK-3) were first fabricated by a two-step impregnation route. The influences of N content on the catalyst porous structure, Pt nanoparticle size, surface properties, and interaction between Pt species and the support were investigated in detail using N2 sorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS). The N species acted as anchoring sites for the stabilization of Pt particles. Benefiting from the formation of ultrafine metal nanoparticles, the Pt/N-CMK-3 exhibited excellent catalytic activity and selectivity for the selective hydrogenation of nitro aromatics to the corresponding anilines with hydrogen. The Pt/N-CMK-3 catalyst could be reused eight times and keep its catalytic performance.
Collapse
|
12
|
Bakir M, Lawrence MW, Nelson P, Yamin MB. Catalytic C–C cross-coupling and hydrogen evolution by two Pd(II)-complexes of di-2-pyridyl ketone benzoyl hydrazones. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1645329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohammed Bakir
- Department of Chemistry, The University of the West Indies-Mona Campus, Jamaica, West Indies
| | - Mark W. Lawrence
- Department of Chemistry, The University of the West Indies-Mona Campus, Jamaica, West Indies
- School of Natural and Applied Sciences, University of Technology, Jamaica, West Indies
| | - Peter Nelson
- Department of Chemistry, The University of the West Indies-Mona Campus, Jamaica, West Indies
| | - M. Bohari Yamin
- Publication Enhancement Unit, Publishing Centre, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Li Z, Zhang Y, Zhu R, Wen G, Dong C, Li HW. Self-assembled palladium nanoflowers supported on fullerene: Electrochemical catalytic performance for the reduction of 4-nitrophenol. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|