1
|
Xing S, Zhang C, Guo H, Sheng Y, Liu X. Hydrologic changes induced by groundwater abstraction lead to arsenic mobilization in shallow aquifers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136133. [PMID: 39413516 DOI: 10.1016/j.jhazmat.2024.136133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Intensive groundwater abstraction leads to hydrologic changes of groundwater. Nevertheless, the effects of hydrologic change on groundwater arsenic (As) mobilization remain controversial. Here, we investigated fluctuations in water levels and their effects on As mobilization in the shallow aquifer of the Hetao Basin. Results showed that large groundwater level fluctuations and high horizontal hydraulic gradients occurred in irrigation seasons. In the groundwater near the wetland with higher surface water levels than groundwater levels, biological index values of dissolved organic matter (DOM) ranged from 0.54 to 0.72, and a positive correlation between δ18O values and dissolved organic carbon (DOC) was observed, indicating that groundwater DOM was mainly sourced from surface water. The degradation of allochthone labile DOM drove the reductive dissolution of As-bearing Fe(III) oxides to Fe(II). Both DOC and humification indices of DOM exhibited positive correlations with horizontal hydraulic gradients downstream of the study area, implying that the humified organic matter flushed from aquifer sediments contributed to groundwater DOM. The humified DOM controlled by hydraulic conditions participated in the redox reactions mainly by shuttling electrons to As-bearing Fe(III) oxides. These findings highlight distinct roles of hydrologic changes induced by groundwater abstraction in As mobilization.
Collapse
Affiliation(s)
- Shiping Xing
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Chaoran Zhang
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Xingyu Liu
- Institute of Earth Science, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
2
|
Yin S, Yang L, Yu J, Ban R, Wen Q, Wei B, Guo Z. Optimizing cropland use to reduce groundwater arsenic hazards in a naturally arsenic-enriched grain-producing region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122237. [PMID: 39163674 DOI: 10.1016/j.jenvman.2024.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
In the Hetao Basin, a grain-producing region plagued by naturally occurring arsenic (As) pollution, understanding the role of agricultural cultivation activities in mobilizing As in groundwater is worthwhile. Here we investigated the impact of cropland use characteristics on groundwater As hazards using a model that combines Random Forest (RF) classification with SHapley Additive exPlanation (SHAP). The analysis incorporated eight cropland use characteristics and three natural factors across 1258 groundwater samples as independent variables. Additionally, an optimized cropland use strategy to mitigate groundwater As hazards was proposed. The results revealed that crop cultivation area, especially within a 2500m-radius buffer around sampling points, most significantly influenced the probability of groundwater As concentrations exceeding an irrigation safety threshold of 50 μg/L, achieving an AUC of 0.86 for this prediction. The relative importance of crop areas on As hazards were as follows: sunflower > melon > wheat > maize. Specifically, a high proportion of sunflower area (>30%), particularly in regions with longer cropland irrigation history, tended to elevate groundwater As hazards. Conversely, its negative driving force on groundwater As hazards was more pronounced with the increase in the proportion of wheat area (>5%), in contrast to other crops. Transitioning from sunflower to wheat or melon cultivation in the northeast of the Hetao Basin may contribute to lower groundwater As hazards. This study provides a scientific foundation for balancing food production with environmental safety and public health considerations.
Collapse
Affiliation(s)
- Shuhui Yin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruxin Ban
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Qiqian Wen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhiwei Guo
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Huhhot, 010031, China
| |
Collapse
|
3
|
Majumdar A, Upadhyay MK, Giri B, Yadav P, Moulick D, Sarkar S, Thakur BK, Sahu K, Srivastava AK, Buck M, Tibbett M, Jaiswal MK, Roychowdhury T. Sustainable water management in rice cultivation reduces arsenic contamination, increases productivity, microbial molecular response, and profitability. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133610. [PMID: 38309156 DOI: 10.1016/j.jhazmat.2024.133610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Arsenic (As) and silicon (Si) are two structurally competitive natural elements where Si minimises As accumulation in rice plants, and based on this two-year field trial, the study proposes adopting alternating wetting and drying (AWD) irrigation as a sustainable water management strategy allowing greater Si availability. This field-based project is the first report on AWD's impact on As-Si distribution in fluvio-alluvial soils of the entire Ganga valley (24 study sites, six divisions), seasonal variance (pre-monsoon and monsoon), rice plant anatomy and productivity, soil microbial diversity, microbial gene ontology profiling and associated metabolic pathways. Under AWD to flooded and pre-monsoon to monsoon cultivations, respectively, greater Si availability was achieved and As-bioavailability was reduced by 8.7 ± 0.01-9.2 ± 0.02% and 25.7 ± 0.09-26.1 ± 0.01%. In the pre-monsoon and monsoon seasons, the physiological betterment of rice plants led to the high rice grain yield under AWD improved by 8.4 ± 0.07% and 10.0 ± 0.07%, proving the economic profitability. Compared to waterlogging, AWD evidences as an optimal soil condition for supporting soil microbial communities in rice fields, allowing diverse metabolic activities, including As-resistance, and active expression of As-responsive genes and gene products. Greater expressions of gene ontological terms and complex biochemical networking related to As metabolism under AWD proved better cellular, genetic and environmental responsiveness in microbial communities. Finally, by implementing AWD, groundwater usage can be reduced, lowering the cost of pumping and field management and generating an economic profit for farmers. These combined assessments prove the acceptability of AWD for the establishment of multiple sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Biswajit Giri
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India
| | - Barun Kumar Thakur
- Department of Economics, FLAME University, Pune, Maharashtra 412115, India
| | - Kashinath Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Martin Buck
- Department of Life Science, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK
| | - Mark Tibbett
- Department of Sustainable Land Management and Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Reading RG6 6AR, UK
| | - Manoj Kumar Jaiswal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Gao M, Li H, Xie Z, Li Z, Luo Z, Yu R, Lü C, He J. The fate of Arsenic associated with the transformation of iron oxides in soils: The mineralogical evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169795. [PMID: 38199364 DOI: 10.1016/j.scitotenv.2023.169795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The influence of iron (oxyhydr)oxides on the transformation and migration of arsenic(As) has garnered significant attention. Previous work has largely focused on the transformation of iron oxides related to As fate at molecular and mechanistic levels. However, studies examining the interplay between As concentration and iron oxides transformation within complex soil system are sparse. This study investigates the transformation of iron oxides in soils with varying As concentration during microbial dissimilatory iron reduction (DIR), employing humic acid (HA) as electron shuttle and assesses the impact on As speciation transformation. Comparative analyses indicate that in soils with high As concentration (>1000 mg/kg), the secondary transformation of iron (oxyhydr)oxides to other forms, such as the conversion of ferrihydrite to goethite and lepidocrocite, or schwertmannite to goethite, is impeded. Consequently, the formation of goethite and lepidocrocite, which would typically re-stabilize As, is inhibited, leading to elevated release of As(III). On the other hand, an increase in magnetite formation in soils with low As concentration (<100 mg/kg) appears to re-stabilize As effectively. Furthermore, the formation of new secondary iron (oxyhydr)oxides in soils with As concentration <200 mg/kg enhances fraction F5, which subsequently contributes to the re-immobilization of As, sequestering it within the soil matrix. This process results in a lower release of As(III) from soils with As concentration below 200 mg/kg. These findings enhance the understanding of the interdependent relationship between the transformation of iron oxides and the fate of As in complex soil systems.
Collapse
Affiliation(s)
- Manshu Gao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hao Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhilei Xie
- Environmental Monitoring Center of Inner Mongolia, Hohhot 010011, China
| | - Zhichao Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqi Luo
- Inner Mongolia Third of Geology and Mineral Resources Exploration Development co., LTD, Hohhot 010011, China
| | - Ruihong Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
Wei B, Yin S, Yu J, Yang L, Wen Q, Wang T, Yuan X. Monthly variations of groundwater arsenic risk under future climate scenarios in 2081-2100. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122230-122244. [PMID: 37966647 DOI: 10.1007/s11356-023-30965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
The seasonal variations of shallow groundwater arsenic have been widely documented. To gain insight into the monthly variations and mechanisms behind high groundwater arsenic and arsenic exposure risk in different climate scenarios, the monthly probability of high groundwater arsenic in Hetao Basin was simulated through random forest model. The model was based on arsenic concentrations obtained from 566 groundwater sample sites, and the variables considered included soil properties, climate, topography, and landform parameters. The results revealed that spatial patterns of high groundwater arsenic showed some fluctuations among months under different future climate scenarios. The probability of high total arsenic and trivalent arsenic was found to be elevated at the start of the rainy season, only to rapidly decrease with increasing precipitation and temperature. The probability then increased again after the rainy season. The areas with an increased probability of high total arsenic and trivalent arsenic and arsenic exposure risk under SSP126 were typically found in the high-arsenic areas of 2019, while those with decreased probabilities were observed in low-arsenic areas. Under SSP585, which involves a significant increase in precipitation and temperature, the probability of high total arsenic and trivalent arsenic and arsenic exposure risk was widely reduced. However, the probability of high total arsenic and trivalent arsenic and arsenic exposure risk was mainly observed in low-arsenic areas from SSP126 to SSP585. In conclusion, the consumption of groundwater for human and livestock drinking remains a threat to human health due to high arsenic exposure under future climate scenarios.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China.
| | - Shuhui Yin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangping Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiqian Wen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Yuan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Dick JM, Meng D. Community- and genome-based evidence for a shaping influence of redox potential on bacterial protein evolution. mSystems 2023; 8:e0001423. [PMID: 37289197 PMCID: PMC10308962 DOI: 10.1128/msystems.00014-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Despite deep interest in how environments shape microbial communities, whether redox conditions influence the sequence composition of genomes is not well known. We predicted that the carbon oxidation state (ZC) of protein sequences would be positively correlated with redox potential (Eh). To test this prediction, we used taxonomic classifications for 68 publicly available 16S rRNA gene sequence data sets to estimate the abundances of archaeal and bacterial genomes in river & seawater, lake & pond, geothermal, hyperalkaline, groundwater, sediment, and soil environments. Locally, ZC of community reference proteomes (i.e., all the protein sequences in each genome, weighted by taxonomic abundances but not by protein abundances) is positively correlated with Eh corrected to pH 7 (Eh7) for the majority of data sets for bacterial communities in each type of environment, and global-scale correlations are positive for bacterial communities in all environments. In contrast, archaeal communities show approximately equal frequencies of positive and negative correlations in individual data sets, and a positive pan-environmental correlation for archaea only emerges after limiting the analysis to samples with reported oxygen concentrations. These results provide empirical evidence that geochemistry modulates genome evolution and may have distinct effects on bacteria and archaea. IMPORTANCE The identification of environmental factors that influence the elemental composition of proteins has implications for understanding microbial evolution and biogeography. Millions of years of genome evolution may provide a route for protein sequences to attain incomplete equilibrium with their chemical environment. We developed new tests of this chemical adaptation hypothesis by analyzing trends of the carbon oxidation state of community reference proteomes for microbial communities in local- and global-scale redox gradients. The results provide evidence for widespread environmental shaping of the elemental composition of protein sequences at the community level and establish a rationale for using thermodynamic models as a window into geochemical effects on microbial community assembly and evolution.
Collapse
Affiliation(s)
- Jeffrey M. Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Delong Meng
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
7
|
Saha A, Gupta A, Sar P. Metagenome based analysis of groundwater from arsenic contaminated sites of West Bengal revealed community diversity and their metabolic potential. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:91-106. [PMID: 36852697 DOI: 10.1080/10934529.2023.2173919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The study of microbial community in groundwater systems is considered to be essential to improve our understanding of arsenic (As) biogeochemical cycling in aquifers, mainly as it relates to the fate and transport of As. The present study was conducted to determine the microbial community composition and its functional potential using As-contaminated groundwater from part of the Bengal Delta Plain (BDP) in West Bengal, India. Geochemical analyses indicated low to moderate dissolved oxygen (0.42-3.02 mg/L), varying As (2.5-311 µg/L) and Fe (0.19-1.2 mg/L) content, while low concentrations of total organic carbon (TOC), total inorganic carbon (TIC), nitrate, and sulfate were detected. Proteobacteria was the most abundant phylum, while the indiscriminate presence of an array of archaeal phyla, Euryarchaeota, Crenarchaeota, Nanoarchaeota, etc., was noteworthy. The core community members were affiliated to Sideroxydans, Acidovorax, Pseudoxanthomonas, Brevundimonas, etc. However, diversity assessed over multiple seasons indicated a shift from Sideroxydans to Pseudomonas or Brevundimonas dominant community, suggestive of microbial response to seasonally fluctuating geochemical stimuli. Taxonomy-based functional potential showed prospects for As biotransformation, methanogenesis, sulfate respiration, denitrification, etc. Thus, this study strengthened existing reports from this region by capturing the less abundant or difficult-to-culture taxa collectively forming a major fraction of the microbial community.
Collapse
Affiliation(s)
- Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
8
|
Xu Y, Deng Y, Zheng T, Du Y, Jiang H, Pi K, Xie X, Gan Y, Ma T, Wang Y. New evidence for linking the formation of high arsenic aquifers in the central Yangtze River Basin to climate change since Last Glacial Maximum. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129684. [PMID: 36104910 DOI: 10.1016/j.jhazmat.2022.129684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of arsenic (As)-affected groundwater in the Late Pleistocene and Holocene aquifers leads to serious arsenicosis worldwide. However, the geogenic foundational processes underlying the high As aquifers remain elusive. Here we present joint lines of evidences from chronological, sediment geochemical and geomicrobial analysis that climate change since the Last Glacial Maximum (LGM) initiates the genesis of high As aquifers in the central Yangtze River Basin, which represents Quaternary alluvial-lacustrine floodplains affected by arsenicosis occurrence. Optically stimulated luminescence-based sediments dating and grain size characterization indicate that the LGM depositional boundary also separates the Late-Pleistocene/Holocene high arsenic aquifers from the underlying arsenic-depleted aquifers. Further examination of solid-phase As/Fe/S speciation and associated microbial communities function suggests that the pre-LGM depositional environments characteristic of S metabolism engender the fixation of As in pyrite, whereas during the post-LGM period climate change to warm and humid leads to As repartitioning to Fe/Mn oxides in response to strong chemical weathering. This may have contributed to a dynamic fate of As in the post-LGM depositional environments and thus a highly variable aqueous As concentrations over depth. Our results highlight the important roles of climate change has played in the genesis of high As aquifers, with implications for other LGM-affected regions worldwide as well as for the evolution of high arsenic aquifers under future climate change.
Collapse
Affiliation(s)
- Yuxiao Xu
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yamin Deng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Tianliang Zheng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yao Du
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kunfu Pi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yiqun Gan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Teng Ma
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Shen J, Liu H, Zhou H, Chen R. Specific characteristics of the microbial community in the groundwater fluctuation zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76066-76077. [PMID: 35665458 DOI: 10.1007/s11356-022-21166-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Groundwater level fluctuation is a common natural phenomenon that causes alternate changes in oxygen, moisture, and biogeochemical processes in sediments. Microbes are sensitive to these environmental changes. Therefore, a specific microbial community is proposed to form in the groundwater fluctuation zone (GFZ). The vertical distributions of microbial abundance, diversity, and functional microbes and genes in sediment profiles were investigated, focusing on the GFZ, using high-throughput 16S rRNA gene sequencing, qPCR, and the Functional Annotation of Prokaryotic Taxa (FAPROTAX) approach. The relationships between chemical variables and microbial community structure were investigated by redundancy analysis (RDA). Results showed that the microbial abundance and microbial community richness and diversity were higher in the sediments of the GFZ. The nitrate reducers prefer to stay just below the groundwater level in the GFZ. The predominant microbes in the GFZ functioned as nitrifiers and Fe-oxidizers. The specific community in the GFZ is mainly related to NO3- and Fe(III) in the sediment. Consequently, the biochemical processes nitrification and Fe- and Mn-oxidation sequentially happen above the nitrate-reduction zone near the groundwater level in the GFZ. These results provide new knowledge in the biogeochemistry cycle of the GFZ and its disturbance on the vertical distribution and transport of biogenic elements and contaminants.
Collapse
Affiliation(s)
- Junhao Shen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Huazhong Zhou
- Plant Protection Station of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Rong Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| |
Collapse
|
10
|
Battaglia-Brunet F, Naveau A, Cary L, Bueno M, Briais J, Charron M, Joulian C, Thouin H. Biogeochemical behaviour of geogenic As in a confined aquifer of the Sologne region, France. CHEMOSPHERE 2022; 304:135252. [PMID: 35691389 DOI: 10.1016/j.chemosphere.2022.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is one of the main toxic elements of geogenic origin that impact groundwater quality and human health worldwide. In some groundwater wells of the Sologne region (Val de Loire, France), drilled in a confined aquifer, As concentrations exceed the European drinking water standard (10 μg L-1). The monitoring of one of these drinking water wells showed As concentrations in the range 20-25 μg L-1. The presence of dissolved iron (Fe), low oxygen concentration and traces of ammonium indicated reducing conditions. The δ34SSO4 was anticorrelated with sulphate concentration. Drilling allowed to collect detrital material corresponding to a Miocene floodplain and crevasse splay with preserved plant debris. The level that contained the highest total As concentration was a silty-sandy clay containing 26.9 mg kg-1 As. The influence of alternating redox conditions on the behaviour of As was studied by incubating this material with site groundwater, in biotic or inhibited bacterial activities conditions, without synthetic organic nutrient supply, in presence of H2 during the reducing periods. The development of both AsV-reducing and AsIII-oxidising microorganisms in biotic conditions was evidenced. At the end of the reducing periods, total As concentration strongly increased in biotic conditions. The microflora influenced As speciation, released Fe and consumed nitrate and sulphate in the water phase. Microbial communities observed in groundwater samples strongly differed from those obtained at the end of the incubation experiment, this result being potentially related to influence of the sediment compartment and to different physico-chemical conditions. However, both included major Operating Taxonomic Units (OTU) potentially involved in Fe and S biogeocycles. Methanogens emerged in the incubated sediment presenting the highest solubilised As and Fe. Results support the hypothesis of in-situ As mobilisation and speciation mediated by active biogeochemical processes.
Collapse
Affiliation(s)
- Fabienne Battaglia-Brunet
- BRGM, F-45060, Orléans, France; ISTO, UMR7327, Université D'Orléans, CNRS, BRGM, F-45071, Orléans, France.
| | - Aude Naveau
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers/CNRS, UMR 7285, Rue Michel Brunet, F-86022, Poitiers Cedex, France
| | | | - Maïté Bueno
- Universite de Pau et des Pays de L'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physicochimie pour L'Environnement et Les Matériaux-IPREM, UMR5254, 64000, Pau, France
| | | | | | | | | |
Collapse
|
11
|
Ji L, Zhang L, Wang Z, Zhu X, Ning K. High biodiversity and distinct assembly patterns of microbial communities in groundwater compared with surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155345. [PMID: 35460778 DOI: 10.1016/j.scitotenv.2022.155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The differences in bacterial community assembly mechanism between surface water and groundwater, as well as the driving factors of environmental factors, are still unknown. Here we aimed to answer these questions by analyzing microbial community samples from surface water and groundwater. We observed a strong connection between microbial communities in surface water and groundwater and several human pathogens are shared between surface water and groundwater; however, the richness and diversity of groundwater microbial communities were greater than those of surface water, regardless of the season. Additionally, bacterial community compositions of surface water and groundwater differed significantly between seasons. Most importantly, the groundwater community exhibited a highly deterministic assembly process (56% contributed by deterministic process, with neutral community model R2 = 0.277) compared with surface water (51% contributed by deterministic process, with R2 = 0.526). This study provides a deep understanding of the effects of environmental factors on surface water and groundwater microbial communities, to better protect water resources.
Collapse
Affiliation(s)
- Lei Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Xue Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
12
|
Xiu W, Wu M, Nixon SL, Lloyd JR, Bassil NM, Gai R, Zhang T, Su Z, Guo H. Genome-Resolved Metagenomic Analysis of Groundwater: Insights into Arsenic Mobilization in Biogeochemical Interaction Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10105-10119. [PMID: 35763428 DOI: 10.1021/acs.est.2c02623] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-arsenic (As) groundwaters, a worldwide issue, are critically controlled by multiple interconnected biogeochemical processes. However, there is limited information on the complex biogeochemical interaction networks that cause groundwater As enrichment in aquifer systems. The western Hetao basin was selected as a study area to address this knowledge gap, offering an aquifer system where groundwater flows from an oxidizing proximal fan (low dissolved As) to a reducing flat plain (high dissolved As). The key microbial interaction networks underpinning the biogeochemical pathways responsible for As mobilization along the groundwater flow path were characterized by genome-resolved metagenomic analysis. Genes associated with microbial Fe(II) oxidation and dissimilatory nitrate reduction were noted in the proximal fan, suggesting the importance of nitrate-dependent Fe(II) oxidation in immobilizing As. However, genes catalyzing microbial Fe(III) reduction (omcS) and As(V) detoxification (arsC) were highlighted in groundwater samples downgradient flow path, inferring that reductive dissolution of As-bearing Fe(III) (oxyhydr)oxides mobilized As(V), followed by enzymatic reduction to As(III). Genes associated with ammonium oxidation (hzsABC and hdh) were also positively correlated with Fe(III) reduction (omcS), suggesting a role for the Feammox process in driving As mobilization. The current study illustrates how genomic sequencing tools can help dissect complex biogeochemical systems, and strengthen biogeochemical models that capture key aspects of groundwater As enrichment.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Min Wu
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Sophie L Nixon
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Ruixuan Gai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Tianjing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Zhan Su
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| |
Collapse
|
13
|
Li Y, Huang D, Sun W, Sun X, Yan G, Gao W, Lin H. Characterizing sediment bacterial community and identifying the biological indicators in a seawater-freshwater transition zone during the wet and dry seasons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41219-41230. [PMID: 35088267 DOI: 10.1007/s11356-021-18053-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Seawater intrusion has a detrimental effect on agriculture, industry, and human health. One question of particular interest is how the microbial community responds to and reflects seawater intrusion with seasonal variation. The current study explored the seasonal changes in bacterial community composition and interaction in the vicinity of Pearl River Estuary in dry season (January) and wet season (September). Results indicated that the salinity of sediment samples obtained in dry season was higher than that in wet season. The salt stress induced a declined alpha diversity but resulted in a loosely connected and unstable biotic interaction network in the bacterial communities. Random forest prediction and redundancy analysis of bacterial community indicated that salinity substantially affected the bacterial communities. Multiple lines of evidence, including the enrichment of bacterial taxa in the high-salinity location, microbe-microbe interactions, environment-microbe interactions, and machine learning approach, demonstrated that the families Moraxellaceae and Planococcaceae were the keystone taxa and were resistant to salt stress, which suggested that both of them can be used as potential biological indicators of monitoring and controlling seawater intrusion in coastal zone areas.
Collapse
Affiliation(s)
- Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Tianhe District, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Tianhe District, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Tianhe District, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Tianhe District, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Geng Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Tianhe District, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Tianhe District, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Tianhe District, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
| |
Collapse
|
14
|
Lalinská-Voleková B, Majerová H, Kautmanová I, Brachtýr O, Szabóová D, Arendt D, Brčeková J, Šottník P. Hydrous ferric oxides (HFO's) precipitated from contaminated waters at several abandoned Sb deposits - Interdisciplinary assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153248. [PMID: 35051450 DOI: 10.1016/j.scitotenv.2022.153248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The presented paper represents a comprehensive analysis of ochre sediments precipitated from Fe rich drainage waters contaminated by arsenic and antimony. Ochre samples from three abandoned Sb deposits were collected in three different seasons and were characterized from the mineralogical, geochemical, and microbiological point of view. They were formed mainly by poorly crystallized 2-line ferrihydrite, with the content of arsenic in samples ranging from 7 g·kg-1 to 130 g·kg-1 and content of antimony ranging from 0.25 g·kg-1 up to 12 g·kg-1. Next-generation sequencing approach with 16S RNA, 18S RNA and ITS markers was used to characterize bacterial, fungal, algal, metazoal and protozoal communities occurring in the HFOs. In the 16S RNA, the analysis dominated bacteria (96.2%) were mainly Proteobacteria (68.8%) and Bacteroidetes (10.2%) and to less extent also Acidobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Nitrosprae and Chloroflexi. Alpha and beta diversity analysis revealed that the bacterial communities of individual sites do not differ significantly, and only subtle seasonal changes were observed. In this As and Sb rich, circumneutral microenvironment, rich in iron, sulfates and carbonates, methylotrophic bacteria (Methylobacter, Methylotenera), metal/reducing bacteria (Geobacter, Rhodoferax), metal-oxidizing and denitrifying bacteria (Gallionella, Azospira, Sphingopyxis, Leptothrix and Dechloromonas), sulfur-oxidizing bacteria (Sulfuricurvum, Desulphobulbaceae) and nitrifying bacteria (Nitrospira, Nitrosospira) accounted for the most dominant ecological groups and their impact over Fe, As, Sb, sulfur and nitrogen geocycles is discussed. This study provides evidence of diverse microbial communities that exist in drainage waters and are highly important in the process of mobilization or immobilization of the potentially toxic elements.
Collapse
Affiliation(s)
| | - Hana Majerová
- Hana Majerová, Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ivona Kautmanová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Ondrej Brachtýr
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Dana Szabóová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Darina Arendt
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Jana Brčeková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Peter Šottník
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
15
|
Microbial Community Structure of Arsenic-Bearing Groundwater Environment in the Riverbank Filtration Zone. WATER 2022. [DOI: 10.3390/w14101548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arsenic (As) contamination of groundwater is a global public health problem. Microorganisms have a great effect on the migration and transformation of arsenic. Studying the effect of microbial community structure and function on arsenic release in the groundwater environment of the riverbank filtration zone has important theoretical and practical significance. In this paper, in-situ monitoring technology and molecular biology technology were used to study the microbial community in the process of river water infiltration in the Shenyang Huangjia water source, China. The results showed that the structure, diversity and abundance of the microbial community in groundwater were closely related to the arsenic content. Proteobacteria was the dominant phylum in groundwater of the study area, and Acinetobacter, Pseudomonas, Sulfuritalea, Sphingomonas and Hydrogenophaga etc. were the main dominant bacterial genera. In addition to reducing and oxidizing arsenic, these functional microorganisms also actively participated in the biogeochemical cycle of elements such as iron, manganese, nitrogen and sulfur. There was a significant correlation between dominant bacteria and environmental factors. Fe/Mn had a significant positive correlation with As, which brought potential danger to the water supply in high iron and manganese areas.
Collapse
|
16
|
Zhu X, Chen L, Pan H, Wang L, Zhang X, Wang D. Diversity and biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31110-31120. [PMID: 35001286 DOI: 10.1007/s11356-022-18595-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Microbial sulfate reduction, a vital mechanism for microorganisms living in anaerobic, sulfate-rich environments, is an essential aspect of the sulfur biogeochemical cycle. However, there has been no detailed investigation of the diversity and biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits. To elucidate this issue, soil samples from representative abandoned realgar deposits were collected. Microcosm assays illustrated that all three samples (2-1, 2-2, and 2-3) displayed efficient sulfate and As(V)-respiring activities. Furthermore, a total of 28 novel sequence variants of dissimilatory sulfite reductase genes and 2 new families of dsrAB genes were successfully identified. A novel dissimilatory sulfate-reducing bacterium, Desulfotomaculum sp. JL1, was also isolated from soils, and can efficiently respiratory reduce As(V) and sulfate in 4 and 5 days, respectively. JL1 can promote the generation of yellow precipitates in the presence of multiple electron acceptors (both contain sulfate and As(V) in the cultures), which indicated the biogenesis contribution of sulfate-reducing bacteria to the realgar mine. Moreover, this area had unique microbial communities; the most abundant populations belonged to the phyla Proteobacteria, Chloroflexi, and Acidobacteriota, which were attributed to the unique geochemistry characteristics, such as total organic carbon, total As, NO3-, and SO42-. The results of this study provide new insight into the diversity and biogenesis contributions of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits.
Collapse
Affiliation(s)
- Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Liyuan Chen
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China.
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China.
| | - Lei Wang
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Xun Zhang
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| | - Dan Wang
- College of Resources and Environment, Yangtze University, 430100, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
17
|
Yang F, Liu S, Jia C, Wang Y. Identification of groundwater microbial communities and their connection to the hydrochemical environment in southern Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14263-14278. [PMID: 34608579 DOI: 10.1007/s11356-021-16812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial community plays an important role in the biogeochemical cycle in coastal groundwater ecosystems. However, the composition and controlling factors of the microbial community in coastal closed groundwater systems (CCGSs) with high salinity have rarely been studied. Here, we investigated and analyzed the hydrochemical characteristics and microbial community composition of seven brine samples with high total dissolved solid (TDS) values ranging from 74.5 to 132.3 g/L within and across three coastal saltworks (Yangkou, Hanting, and Changyi) in southern Laizhou Bay (SLB). The bacterial diversity was independent of salinity. Compared with those of low-salinity groundwater, the diversity of the microbial community in brine was lower, but the richness was slightly higher. There was a significant correlation between the microbial community diversity and groundwater sources, which indicated that the microbial communities were affected by groundwater sources. A comparison of the microbial community compositions of the three saltworks showed that the Hanting and Changyi saltworks had similar microbial communities due to their similar sampling depths. In addition, the main force shaping the differences in the microbial communities in both coastal open groundwater systems (COGSs) and CCGSs was identified as the hydraulic connection with the seawater controlled by hydrogeological conditions formed throughout geological history. This study can help to elucidate the biogeochemical processes in coastal aquifers.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China
| | - Sen Liu
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Chao Jia
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
| | - Yujue Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
18
|
Xiu W, Ke T, Lloyd JR, Shen J, Bassil NM, Song H, Polya DA, Zhao Y, Guo H. Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15181-15195. [PMID: 34706533 DOI: 10.1021/acs.est.1c04117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios > 1) noted Fe(III)-reducers (induced by ammonium oxidation) and As(V)-reducers, emphasizing the As mobilization via Fe(III) and/or As(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As-N-S-Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, P.R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Tiantian Ke
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jiaxing Shen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hokyung Song
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - David A Polya
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yi Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P.R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P.R. China
| |
Collapse
|
19
|
Gao J, Zheng T, Deng Y, Jiang H. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144709. [PMID: 33736355 DOI: 10.1016/j.scitotenv.2020.144709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Understanding the biogeochemical processes controlling arsenic (As) mobilization under bacterial sulfate reduction (BSR) in aquifer sediments is essential for the remediation of high As groundwater. Here, we conducted microcosm experiments with shallow aquifer sediments from the Jianghan Plain (central Yangtze River Basin) under the stimulation of exogenous sulfate. Initially, co-increases of As(III) (from 0.0 to 88.5 μg/L), Fe(II) (from 0.5 to 6.0 mg/L), and S(-II) (from 0.0 to 90.0 μg/L) indicated the concurrent occurrence of sulfate, Fe(III), and arsenate reduction. The corresponding increase of the relative abundance of OTUs classified as sulfate-reducing bacteria, Desulfomicrobium (from 0.5 to 30.6%), and dsrB gene abundance indicated the strong occurrence of BSR during the incubation. The underlying mechanisms of As mobilization could be attributed to the biotic and abiotic reduction of As-bearing iron (hydro)oxides either through the iron-reducing bacteria or the bacterially generated sulfide, which were supported by the variations in solid speciation of Fe, S, and As. As the incubation progressed, we observed a transient attenuation followed by a re-increase of aqueous As, due to the limited abundance of newly-formed Fe-sulfide minerals with a weak ability of As sequestration. Moreover, the formation of thioarsenate (H2AsS4-) during the mobilization of As from the sediments was observed, highlighting that BSR could facilitate As mobilization through multiple pathways. The present results provided new insights for the biogeochemical processes accounting for As mobilization from sediments under BSR conditions.
Collapse
Affiliation(s)
- Jie Gao
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
20
|
Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, Hina K, Rinklebe J. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124027. [PMID: 33265048 DOI: 10.1016/j.jhazmat.2020.124027] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
The contamination of aquatic systems with arsenic (As) is considered to be an internationally-important health and environmental issue, affecting over 115 countries globally. Arsenic contamination of aquatic ecosystems is a global threat as it can enter the food chain from As-rich water and cause harmful impacts on the humans and other living organisms. Although different factors (e.g., pH, redox potential, iron/manganese oxides, and microbes) control As biogeochemical cycling and speciation in water systems, the significance of algal species in biotransformation of As is poorly understood. The overarching attribute of this review is to briefly elaborate various As sources and its distribution in water bodies and factors affecting As biogeochemical behavior in aqueous ecosystems. This review elucidates the intriguing role of algae in biotransformation/volatilization of As in water bodies under environmentally-relevant conditions. Also, we critically delineate As sorption, uptake, oxidation and reduction pathways of As by algae and their possible role in bioremediation of As-contaminated water (e.g., drinking water, wastewater). The current review provides the updated and useful framework for government and water treatment agencies to implement algae in As remediation programs globally.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture Peshawar, Pakistan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Kingdom of Saudi Arabia; Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh 33516, Egypt
| | - Safdar Bashir
- University of Agriculture Faisalabad, Sub-campus Depalpur, Okara 56130, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Kiran Hina
- Department of Environmental Sciences, University of Gujrat, Gujrat, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
21
|
Shi W, Song W, Luo Y, Qile G, Zheng J, Lü C, He J. Transformation pathways of arsenic species: SRB mediated mechanism and seasonal patterns. CHEMOSPHERE 2021; 263:128255. [PMID: 33297200 DOI: 10.1016/j.chemosphere.2020.128255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Sulfate reducing bacteria (SRB) mediated reduction plays a key role in the biological cycling of As, which inherently associates with the transformation of As species. However, the potential pathways of As species transformation, the predominant driving process and their explanatory factors regulating seasonal As mobility mediated by SRB remains poorly understood. This study explored the possible pathways of seasonal As species transformation mediated by SRB, and identified the predominant driving process and key environmental factors in response to As mobilization in different seasons. SRB-mediated reduction governed the seasonal mobilization of As, significantly promoted reduction of As (V) and endogenous release of As, and exhibited strong seasonal variability. The flux of As(III) and TAs in group SRB in summer were 1.92-3.53 times higher than those during the ice-bound period. The results showed two distinct stages namely release and re-immobilization both in summer and ice-bound period. While As was easier to be gradually transformed into a more stable state in SRB reduction process during ice-bound period. Both in summer and ice-bound period, SRB presented significant regulating effects on As behavior by influencing loosely adsorbed As, pyrite and As sulfides in sediments as well as the formation of sulfide during the process of SRB reduction. The main effecting pathways on As mobilization were the direct effects of SRB, S2- and Fe2+ in summer, but IP was also an important pathway affecting As mobility during ice-bound period. This work provides new insights into mechanisms responsible for seasonal As mobilization.
Collapse
Affiliation(s)
- Wenjing Shi
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China
| | - Wenjie Song
- Pioneer College, Inner Mongolia University, Hohhot, 010021, China
| | - Yu Luo
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Geer Qile
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Jinli Zheng
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China.
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
22
|
Liu Y, Ma T, Chen J, Xiao C, Liu R, Du Y, Fendorf S. Contribution of clay-aquitard to aquifer iron concentrations and water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140061. [PMID: 32603935 DOI: 10.1016/j.scitotenv.2020.140061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The contribution of aquitards to aquifer water quality can be pronounced but is rarely considered. The aims of this study were to delineate the spatial distribution of iron in a shallow aquitard-aquifer system within Jianghan Plain (JHP) of central China and to identify the origin of high iron within aquifers. Infiltration, hydraulic gradients and sediment chemistry influence the distribution of iron in the aquitard pore water which has a significant effect on the underlying aquifer. Chemical equilibrium modeling of pore water was used to simulate chemical processes influencing aquifer chemistry and determined the possible precipitation of FeCO3, FeS minerals (FeSx) and Fe-oxides (representing hydroxides, oxyhydroxides, and oxides of ferric iron). We presented a conceptual chemical-physical scenario to explain the observed Fe distributions: (1) Increasing iron concentrations with low-level sulfide in aquitard pore water. (2) Increasing iron concentrations with low-level sulfide in aquitard pore water underlying ponded water. (3) Decreasing iron concentrations with high-level sulfide in aquitard pore water. In combination, our findings illustrate the influence of aquitards on aquifer chemistry using Fe within the Jianghan Plain as an example.
Collapse
Affiliation(s)
- Yanjun Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Earth System Science, Stanford University, Stanford 94305, USA
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, Wuhan 430074, China.
| | - Juan Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Cong Xiao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Rui Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yao Du
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford 94305, USA
| |
Collapse
|
23
|
Song D, Jiang Z, Ma T, Dong Y, Shi L. Bacterial and Archaeal Diversity and Abundance in Shallow Subsurface Clay Sediments at Jianghan Plain, China. Front Microbiol 2020; 11:572560. [PMID: 33193171 PMCID: PMC7642157 DOI: 10.3389/fmicb.2020.572560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Clay layers are common in subsurface where microbial activities play an important role in impacting the biogeochemical properties of adjacent aquifers. In this study, we analyzed the community structure and abundance of bacteria and archaea in response to geochemical properties of six clay sediments at different depths in a borehole (112°34'0″E, 30°36'21″N) of Jianghan Plain (JHP), China. Our results suggested that the top two clay layers were oxic, while the remaining bottom four clay layers were anoxic. Both high-throughput sequencing and qPCR of 16S rRNA gene showed relatively high abundance of archaea (up to 60%) in three of the anoxic clay layers. Furthermore, microbial communities in these clay sediments showed distinct vertical stratification, which may be impacted by changes in concentrations of sulfate, HCl-extractable Fe2+ and total organic carbon (TOC) in the sediments. In the upper two oxic clay layers, identification of phyla Thaumarchaeota (11.2%) and Nitrosporales (1.2%) implied nitrification in these layers. In the two anoxic clay layers beneath the oxic zone, high abundances of Anaeromyxobacter, Chloroflexi bacterium RBG 16_58_14 and Deltaproteobacteria, suggested the reductions of nitrate, iron and sulfate. Remarkably, a significant portion of Bathyarchaeota (∼25%) inhabited in the bottom two anoxic clay layers, which may indicate archaeal anaerobic degradation of TOC by these organisms. The results of this study provide the first systematic understandings of microbial activities in subsurface clay layers at JHP, which may help develop microorganism-based solutions for mitigating subsurface contaminations.
Collapse
Affiliation(s)
- Dandan Song
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
24
|
Chen L, Zhang J, Dai H, Hu BX, Tong J, Gui D, Zhang X, Xia C. Comparison of the groundwater microbial community in a salt-freshwater mixing zone during the dry and wet seasons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110969. [PMID: 32583802 DOI: 10.1016/j.jenvman.2020.110969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/22/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
To gain a better understanding of the microbial community in salt-freshwater mixing zones, in this study, the influence of seasonal variation on the groundwater microbial community was evaluated by high throughput 16S rDNA gene sequencing. The results showed that notable changes in microbial community occurred in a salt-freshwater mixing zone and the groundwater samples in the dry season were more saline than those in the wet season. The increase in precipitation during the wet season relieved local seawater intrusion. Microbial diversity varied greatly with seasons, while no obvious change pattern was found. Proteobacteria was identified as the dominant phylum in all samples. The genus Hydrogenophaga dominated in the dry season, while the genus Acidovorax dominated in the wet season. Dissolved oxygen affected the diversity of the microbial communities during the dry and wet season, while groundwater level had a strong influence on the structure of microbial communities. Phylogenetic molecular network analysis of the microbial communities indicated that increased seawater intrusion led to a more compact microbial network and strengthening the groundwater microbial interactions.
Collapse
Affiliation(s)
- Lin Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, China; Shenyang Geological Survey, China Geological Survey, 110034, Shenyang, China
| | - Jin Zhang
- Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China; Green Development Institute of Zhaoqing, 526000, Zhaoqing, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 510632, Guangzhou, China
| | - Heng Dai
- Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China.
| | - Bill X Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, China; Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China.
| | - Juxiu Tong
- School of Water Resources and Environment, China University of Geosciences (Beijing), 100083, Beijing, China
| | - Dongwei Gui
- Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xiaoying Zhang
- College of Construct Engineering, Jilin University, 130012, Changchun, China
| | - Chuanan Xia
- Institute of Groundwater and Earth Science, Jinan University, 510632, Guangzhou, China
| |
Collapse
|
25
|
Zheng T, Deng Y, Wang Y, Jiang H, Xie X, Gan Y. Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139327. [PMID: 32473437 DOI: 10.1016/j.scitotenv.2020.139327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 05/27/2023]
Abstract
Bacterial sulfate reduction (BSR) plays a vital but complex role in regulating groundwater arsenic concentration. A quarterly hydro-biogeochemical investigation was conducted to clarify how BSR participated in arsenic dynamics in the geogenic As-contaminated alluvial aquifers of the Jianghan Plain, central Yangtze River Basin. Anthropogenic input of sulfate was identified in the transitional season with higher Cl concentrations and Cl/Br molar ratios compared to the monsoon season. Seasonal increase of S(-II) and Fe(II) concentrations in monsoon season suggests the co-occurrence of iron and sulfate reduction. Quantitative analysis of dsrB gene abundance revealed the corresponding variations between dsrB gene abundance (up to 1.2 × 107 copies L-1) and Fe(II) in groundwater. High-throughput sequencing of the dsrB gene identified a considerable proportion of sequences in the sulfate-reducing bacterial community was affiliated with Desulfobulbus (22.7 ± 20.8%) and Desulfocapsa (11.5 ± 11.9%). Moreover, the relative abundance of Desulfocapsa increased with the Fe(II) in the groundwater (R = 0.78, P < 0.01). These results suggest that microbially-mediated sulfate reduction facilitated the abiotic reduction of As-bearing Fe-oxides in the monsoon season after anthropogenic input of sulfate in the transitional season under oscillating redox conditions in the groundwater systems. The present research provides new insights into the critical role of BSR in the seasonal redox cycling of iron and variation of As in the aquifer systems, which are not only applicable in the central Yangtze River basin, but also to other similar As-rich alluvial aquifers worldwide.
Collapse
Affiliation(s)
- Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan 430074, PR China
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yiqun Gan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
26
|
Cavalca L, Zecchin S, Zaccheo P, Abbas B, Rotiroti M, Bonomi T, Muyzer G. Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy. Front Microbiol 2019; 10:1480. [PMID: 31312188 PMCID: PMC6614289 DOI: 10.3389/fmicb.2019.01480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenic contamination of groundwater aquifers is an issue of global concern. Among the affected sites, in several Italian groundwater aquifers arsenic levels above the WHO limits for drinking water are present, with consequent issues of public concern. In this study, for the first time, the role of microbial communities in metalloid cycling in groundwater samples from Northern Italy lying on Pleistocene sediments deriving from Alps mountains has been investigated combining environmental genomics and cultivation approaches. 16S rRNA gene libraries revealed a high number of yet uncultured species, which in some of the study sites accounted for more of the 50% of the total community. Sequences related to arsenic-resistant bacteria (arsenate-reducing and arsenite-oxidizing) were abundant in most of the sites, while arsenate-respiring bacteria were negligible. In some of the sites, sulfur-oxidizing bacteria of the genus Sulfuricurvum accounted for more than 50% of the microbial community, whereas iron-cycling bacteria were less represented. In some aquifers, arsenotrophy, growth coupled to autotrophic arsenite oxidation, was suggested by detection of arsenite monooxygenase (aioA) and 1,5-ribulose bisphosphate carboxylase (RuBisCO) cbbL genes of microorganisms belonging to Rhizobiales and Burkholderiales. Enrichment cultures established from sampled groundwaters in laboratory conditions with 1.5 mmol L-1 of arsenite as sole electron donor were able to oxidize up to 100% of arsenite, suggesting that this metabolism is active in groundwaters. The presence of heterotrophic arsenic resistant bacteria was confirmed by enrichment cultures in most of the sites. The overall results provided a first overview of the microorganisms inhabiting arsenic-contaminated aquifers in Northern Italy and suggested the importance of sulfur-cycling bacteria in the biogeochemistry of arsenic in these ecosystems. The presence of active arsenite-oxidizing bacteria indicates that biological oxidation of arsenite, in combination with arsenate-adsorbing materials, could be employed for metalloid removal.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sarah Zecchin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milan, Italy
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|