1
|
Qu G, Zhang Y, Duan Z, Li K, Xu C. Regulating the FeS x assembly pattern of sulfidated zero-valent iron: All-in-one interface modulation with activated carbon. WATER RESEARCH 2024; 248:120860. [PMID: 37984041 DOI: 10.1016/j.watres.2023.120860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/16/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Specifically designing the heterogeneous interface in sulfidated zero-valent iron (S-ZVI) has been an effective, yet usually overlooked method to improve the decontamination ability. However, the mechanism behind FeSx assembly remains elusive and the lack of modulating strategies that can essentially tune the applicability of S-ZVI further imposes difficulties in creating better-performing S-ZVI with heterogeneous interface. In this study, by introducing powdered activated carbon (PAC) during S-ZVI preparation, S-ZVI/PAC microparticles were prepared to modulate the assembly pattern of FeSx for the applicability and reactivity of the material. S-ZVI/PAC showed robust performance in Cr(VI) sequestration, with 11.16 and 1.78 fold increase in Cr(VI) reactivity compared to ZVI and S-ZVI, respectively. This was attributed to the fact that the introduced PAC could acquire FeSx to enhance the electron transfer capacity matching its adsorption threshold, thus helping to accommodate the transfer of the reduction center to PAC in S-ZVI/PAC. In optimizing the FeSx allocation between ZVI and PAC, the chemical assembly of FeSx on S-ZVI was superior to physical adsorption. Critically, we found that isolated FeSx in the prepared solution was physically adsorbed by the PAC, allowing chemically assembled FeSx on the S-ZVI. This was achieved by controlling the addition sequence of Na2S and PAC, as it effectively controlled the release rate and content of Fe(II) in the preparation solution. S-ZVI/PAC was demonstrated to be extremely effective in simulated wastewater and electrokinetics-permeable reactive barrier (EK-PRB) treatments. Introducing PAC enriches the diversity of sulfidation mechanisms and may realize the universality of the S-ZVI/PAC application scenarios. This study provides a new interface optimization strategy for S-ZVI targeted design towards environmental applications.
Collapse
Affiliation(s)
- Guanjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhongkai Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ke Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Zhu F, Yang Y, Ren W, Iribagiza RM, Wang W. Coupling electrokinetic remediation with flushing using green tea synthesized nano zero-valent iron/nickel to remediate Cr (VI). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9691-9707. [PMID: 37812370 DOI: 10.1007/s10653-023-01767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
This study focuses on a flushing-electrokinetic remediation technology of hexavalent chromium from the chromium slag dump site. A suspension of nanoscale zero-valent iron/nickel fabricated from green tea (GT-nZVI/Ni), was employed as an eluent to degrade Cr (VI) and enhance the remediation effectiveness of a single EK. The removal efficiency of Cr (VI) was compared under different voltages, electrode spacings and pH values of the anolyte. The results demonstrated that the combined flushing and EK achieved a removal rate of Cr (VI) in the soil throughout all the experiments ranging from 83.08 to 96.97% after 120 h. The optimal result was obtained when the voltage was 28 V, the pH value of anolyte was 3 and the electrode spacing was 15 cm. The removal of Cr (VI) reached 91.49% and the energy consumption was 0.32606 kW·h·g-1. The underlying mechanisms responsible for the removal of Cr (VI) by GT-nZVI/Ni flushing-EK primarily involved electromigration, reduction and adsorption co-precipitation processes. The fractionation analysis of Cr (VI) concentration in the soil after remediation showed that the presence of GT-nZVI/Ni facilitated the conversion of Cr (VI) into oxidizable and residual states with low mobility and toxicity. The results of toxicity characteristic leaching procedure (TCLP) indicated that the leaching concentration of Cr (VI) was below 1 mg·L-1, complying with the standards set by the Environmental Protection Agency. Additionally, the phytotoxicity testing revealed that the germination index (GI) of the remediated soil reached 54.75%, indicating no potential harm to plants.
Collapse
Affiliation(s)
- Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Yue Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wentao Ren
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Rose Marie Iribagiza
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Weitao Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| |
Collapse
|
3
|
Sun Q, Zhang Y, Ming C, Wang J, Zhang Y. Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117674. [PMID: 36967696 DOI: 10.1016/j.jenvman.2023.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
With the development of the social economy, soil heavy metal pollution has become a common worldwide issue. Therefore, the remediation of soil heavy metal pollution is imminent. This study aimed to investigate the effect of amended compost on reducing heavy metal bioavailability in soil and relieving heavy metals stress on plants under Cu and Zn stress in a pot experiment. To model the restoration of heavy metal-polluted farming soil, conventional compost (CKw), activated carbon compost (ACw), modified biochar compost (BCw) and rhamnolipid compost (RLw) were utilized. The results showed that the application of amended compost could promote the growth and quality of pakchoi and enhance the stress ability of malondialdehyde and antioxidant enzymes to heavy metals. The distribution of Cu and Zn in different subcellular parts of pakchoi was also affected. The application of amended compost significantly reduced the heavy metals content in the shoot of pakchoi, among which the content of Cu and Zn in the shoot of pakchoi in RLw was significantly decreased by 57.29% and 60.07%, respectively. Our results can provide a new understanding for efficient remediation of contaminated farmland soil by multiple heavy metals.
Collapse
Affiliation(s)
- Qinghong Sun
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Yuxin Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Chenshu Ming
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Jianmin Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
4
|
Ullah H, Lun L, Rashid A, Zada N, Chen B, Shahab A, Li P, Ali MU, Lin S, Wong MH. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1359-1389. [PMID: 35972610 PMCID: PMC9379879 DOI: 10.1007/s10653-022-01354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655 China
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat, 50700 Pakistan
| | - Noor Zada
- Department of Chemistry, Government Post Graduate College, Lower Dir, Timergara, 18300 Pakistan
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077 China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Abou-Shady A, Ali ME, Ismail S, Abd-Elmottaleb O, Kotp YH, Osman MA, Hegab RH, Habib AA, Saudi AM, Eissa D, Yaseen R, Ibrahim GA, Yossif TM, El-Araby H, Selim EMM, Tag-Elden MA, Elwa AES, El-Harairy A. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: process design modifications with brief summaries of main output. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
6
|
Ostovar M, Ghasemi A, Karimi F, Saberi N, Vriens B. Assessment of EDTA-enhanced electrokinetic removal of metal(loid)s from phosphate mine tailings. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mojtaba Ostovar
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Alireza Ghasemi
- School of Civil and Environmental Engineering & Earth Science (SCEEES), Clemson University, Clemson, SC, USA
| | - Farhad Karimi
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Nima Saberi
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Canada
| | - Bas Vriens
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Canada
| |
Collapse
|
7
|
Wang Z, Liu M, Wang L, Chang Z, Li H. Synthesis of Silica-Based Quaternized Adsorption Material and Study on Its Adsorption Behavior for Pu(IV). Molecules 2022; 27:molecules27103110. [PMID: 35630589 PMCID: PMC9145714 DOI: 10.3390/molecules27103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
In this research, we explored the synthesis optimization of the silica-based quaternized adsorption material (SG-VTS-VPQ) and its adsorption behavior for Pu(IV). By optimizing the synthesis process, the grafting amount of 4-vinylpyridine reached 1.25 mmol·g−1. According to the analysis of NMR and XPS, the quaternization rate of pyridine groups reached 91.13%. In the adsorption experiments, the thermodynamic experiment results show that the adsorption of Pu(IV) by SG-VTS-VPQ is more in line with the Langmuir adsorption model and the adsorption type is a typical chemical adsorption; the kinetic results show that adsorption process is more in line with the pseudo first-order kinetic model, and the larger specific surface area of SG-VTS-VPQ plays an important role in the adsorption. The results of the adsorption mechanism show that the adsorption of Pu(IV) by SG-VTS-VPQ is mainly complex anion Pu(NO3)62− and Pu(NO3)5−. This research provides in-depth and detailed ideas for the surface modification and application of porous silica gel, and at the same time provides a new way to develop the direction of the analysis of pretreatment materials in the spent fuel reprocessing field.
Collapse
|
8
|
Niarchos G, Sörengård M, Fagerlund F, Ahrens L. Electrokinetic remediation for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated soil. CHEMOSPHERE 2022; 291:133041. [PMID: 34826446 DOI: 10.1016/j.chemosphere.2021.133041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Uncontrolled use and disposal of per- and polyfluoroalkyl substances (PFASs) in recent decades has resulted in extensive soil and groundwater contamination, necessitating counteraction. Electrokinetic remediation (EKR) offers a promising approach to in-situ soil remediation. Two novel modifications to conventional EKR were tested for the first time in a laboratory-scale study, to explore the capacity of EKR for PFAS removal. The first modification was a two-compartment setup designed for PFAS extraction from soil to an electrolyte-filled chamber. The second was a single-compartment setup designed to transport and confine contaminants in a chamber filled with granular activated carbon (GAC), thus, combining extraction with stabilisation. Electromigration varied for individual compounds, based mainly on perfluorocarbon chain length and functional group. The results indicated up to 89% concentration and extraction of ∑PFASs for the two-compartment setup, with removal efficiency reaching 99% for individual PFASs with C ≤ 6. Removed PFASs were concentrated adjacent to the anode at the anion exchange membrane, while short-chain compounds were extracted in the anolyte. The single-compartment setup achieved 75% extraction and accumulation of ∑PFASs in GAC. This demonstrates, for the first time, good effectiveness of coupling EKR with AC stabilisation for PFAS removal from soil. Perfluorocarbon chain length was a dominant factor affecting treatment efficiency in both setups, with very high removal rates for short-chain PFASs.
Collapse
Affiliation(s)
- Georgios Niarchos
- Uppsala University, Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05, Uppsala, Sweden.
| | - Mattias Sörengård
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden.
| | - Fritjof Fagerlund
- Uppsala University, Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05, Uppsala, Sweden.
| | - Lutz Ahrens
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
9
|
Han X, Zhang H, Zhang C, Zhao Y, Zhang N, Liang J. Preparation of Sepiolite Nanofibers Supported Zero Valent Iron Composite Material for Catalytic Removal of Tetracycline in Aqueous Solution. Front Chem 2021; 9:736285. [PMID: 34568284 PMCID: PMC8456004 DOI: 10.3389/fchem.2021.736285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/07/2022] Open
Abstract
The heavy use of antibiotics in medicine, stock farming and agriculture production has led to their gradual accumulation in environmental media, which poses a serious threat to ecological environment and human safety. As an efficient and promising catalyst for the degradation of antibiotics, nanoscale zero valent iron (nZVI) has attracted increasing attention in recent years. In this study, sepiolite nanofiber supported zero valent iron (nZVI/SEP) composite was prepared via a facile and environmentally friendly method. The nZVI particles (with size of 20–60 nm) were dispersed evenly on the surface of sepiolite nanofibers, and the catalytic performance for the removal of tetracycline hydrochloride (TC-HCl) in aqueous system was investigated. The effect of nZVI loading amount, catalyst dosage, H2O2 concentration and pH on the removal efficiency of TC-HCl were studied. It was revealed that the sepiolite supporter effectively inhibited the agglomeration of nZVI particles and increased the contact area between contaminant and the active sites, resulting in the higher catalytic performance than pure nZVI material. The TC-HCl removal efficiency of nZVI/SEP composite was up to 92.67% when TC-HCl concentration of 20 mg/L, catalyst dosage of 1.0 g/L, H2O2 concentration of 1.0 mM, pH value of 7. Therefore, the nZVI/SEP composites possess high catalytic activity for TC-HCl removal and have great application prospects in antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyu Han
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Caihong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Yan Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Na Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| |
Collapse
|
10
|
Stanton R, Russell E, Brandt H, Trivedi DJ. Capture of Toxic Oxoanions from Water Using Metal-Organic Frameworks. J Phys Chem Lett 2021; 12:9175-9181. [PMID: 34528794 DOI: 10.1021/acs.jpclett.1c02550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effective capture of common water contaminants using metal-organic frameworks (MOFs) presents a remedy for current environmental concerns arising from the pollution of water sources. The crystalline porous nature of MOFs, their high internal surface area, and exceptional tunability make them suitable candidates for sequestration and removal of pollutants. However, the efficiency of capture depends largely on the nature of the interactions between the anions and the MOF. In this work, to elucidate the host-guest interactions involved in the capture of such pollutants, we explore three characteristically different MOFs: ZIF-8, iMOF-2c, and MOF-74. We demonstrate by ab initio electronic structure calculations the importance of exploiting qualitatively different binding modes for strong host-guest interactions available in the selected MOFs. Our simulations reveal the relative performance of neutral and cationic adsorbents while underscoring the importance of employing MOFs containing open metal sites for the efficient uptake of anions.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Emma Russell
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Hayden Brandt
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
11
|
Electrokinetics couples with the adsorption of activated carbon-supported hydroxycarbonate green rust that enhances the removal of Sr cations from the stock solution in batch and column. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Huang T, Junjun T, Liu W, Song D, Yin LX, Zhang S. Biotreatment for the spent lithium-ion battery in a three-module integrated microbial-fuel-cell recycling system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:377-387. [PMID: 33819901 DOI: 10.1016/j.wasman.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
A bio-electrochemically (BE) recycling platform was assembled to recover Li and Co from the cathodic materials of spent LIBs in one integrated system. The BE platform consists of three microbial-fuel-cell (MFC) subsystems, including MFC-A, MFC-B, and MFC-C. Co and Li were smoothly recovered from the cathodic materials in the assembled platform. The initial pH and the loading ratios of LiCoO2 both significantly influenced the leaching efficiencies of Li and Co in MFC-A. Approximately 45% Li and 93% Co were simultaneously released through the reduction of LiCoO2 at the initial pH of 1 and the loading ratios of LiCoO2 of 0.2 g/L. The (NH4)2C2O4-modified granular activated carbons (GAC) with a thickness of 1.5 cm was favorably stacked adjacent to the cathode of the MFC-B system. About 98% of removal efficiency (RECo1) and 96% of recovery efficiency (RECo2) of Co were achieved in MFC-B under optimum conditions. The dosing concentration of Li+ lower than 2 mg/L and the (NH4)2CO3 of 0.01-0.02 M were conducive to enhancing the recovery of Li from raffinate and guaranteed the higher power output and coulombic efficiencies in MFC-C. The continuous release of CO2 caused by exoelectrogenic microorganisms on the biofilm facilitated the precipitation of Li2CO3.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China; School of Chemical Engineering & Technology China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Tao Junjun
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Wanhui Liu
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China.
| | - Dongping Song
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Li-Xin Yin
- School of Economics and Management, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu 215500, China.
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|
13
|
Li H, Zheng Y, Yu L, Lin H, Zhang M, Jiao B, Shiau Y, Li D. Efficient electrokinetic remediation of heavy metals from MSWI fly ash using approaching anode integrated with permeable reactive barrier. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22156-22169. [PMID: 33417130 DOI: 10.1007/s11356-021-12340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
During electrokinetic remediation (EKR) of heavy metals (HMs) (Pb, Zn, Cu, and Cd) from municipal solid waste incineration (MSWI) fly ash enhanced by a permeable reactive barrier (PRB), the nearer to the anode, the higher the concentration of H+ ions and the greater the remediation effect. Therefore, a potentially new method of PRB-enhanced EKR using an approaching anode (A-EKR + PRB) was studied to help H+ ions to quickly migrate to the sample near the cathode. Consequently, the HM leaching and total concentrations were reduced, while an energy reduction of nearly 40% was achieved. The results showed that the best remediation ability was obtained when MSWI fly ash was treated for 16 days at a voltage gradient of 2.5 V/cm, the approaching anode was moved after 4 days, and the PRB contained 10 g of activated carbon. After remediation, the environmental risk analysis showed that A-EKR + PRB reduced all the fractions of HMs, especially the acid extractable and oxidizable fractions, which might have been due to the enhancement of acid dissolution and oxidation by the approaching anode. In addition, the environmental risks of the remaining HMs were reduced, and the results indicated that A-EKR + PRB is an advisable choice for remediation of MSWI fly ash.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Lin Yu
- City College of Science and Technology, Chongqing University, Chongqing, 400044, China
| | - Huirong Lin
- National and Local Joint Engineering Research Center for Hazardous Waste Integrated Disposal, Chongqing, 401147, China
| | - Manli Zhang
- Chongqing Solid Waste Management Center, Chongqing, 401147, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- City College of Science and Technology, Chongqing University, Chongqing, 400044, China.
| | - YanChyuan Shiau
- Department of Construction Management, Chung Hua University, No. 707, Wufu Rd., Sec. 2, Hsinchu, 30012, Taiwan.
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
14
|
Huang T, Cao ZX, Jin JX, Zhou L, Zhang SW, Liu LF. Hydroxyapatite nanoparticle functionalized activated carbon particle electrode that removes strontium from spiked soils in a unipolar three-dimensional electrokinetic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111697. [PMID: 33246753 DOI: 10.1016/j.jenvman.2020.111697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Biohazard performance of Sr radionuclide can be significantly magnified by its release from the contaminated sedimentation. In this study, hydroxyapatite nanoparticle-functionalized activated carbon electrode (AC-HAP) was synthesized and stacked to the cathode compartment of the electrokinetic (EK) system to develop a unipolar three-dimensional (3D) electrochemical process for Sr2+ removal from spiked soils. Sr2+ adsorption by AC-HAP can be fitted by the pseudo-first-order and pseudo-second-order kinetic models and the Langmuir, Freundlich, and Temkin isotherm models. The largest monolayer adsorption capacity of AC-HAP of 69.49 mg g-1 was evaluated in the pH range of 10-12 and at 40 °C. 3D EK further intensified the adsorption process of AC-HAP and the corresponding Sr2+ removal from aqueous environments. Voltage gradients and proposing time had a significant effect on the migration and transmission of Sr2+ in the electrolyzer. The influence of competitive ions on Sr2+ removal in the stock solutions followed Al3+ < Mg2+ < K+ < Na+ < Ca2+ while followed Al3+ < Na+ < K+ < Mg2+ < Ca2+ in 3D EK. The first three cycles for AC-HAP had taken roughly 50% of the reusability percentage. Sr2+ removal from spiked samples in 3D EK was achieved by acid dissolution, electromigration, and selective uptake on particle electrode.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Zhen-Xing Cao
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Jun-Xun Jin
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Long-Fei Liu
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
15
|
Wen D, Fu R, Li Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123345. [PMID: 32763678 DOI: 10.1016/j.jhazmat.2020.123345] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 05/09/2023]
Abstract
The soil contaminated by inorganic contaminants including heavy metals, radioactive elements and salts has been posing risks for human health and ecological environment, which has been widely paid attention in recent years. The electrokinetic remediation (EKR) technology is recognized as the most potential separation technology, which is commonly used to clean sites that are contaminated with organic and inorganic contaminants. It is the most suitable remediation technology for low permeability porous matrices. The main transport mechanism of pollutants in EKR include electromigration, electroosmosis and electrophoresis, coupled with electrolysis and geochemical reactions. Although arduous endeavors have been carried out to build optimal operating conditions and reveal the mechanism of EKR process, a systematic theoretical foundation hasn't been sorted yet. A comprehensive review on electrokinetic remediation of inorganic contaminants in soil is given in this study, and a more systematic theoretical foundation is sorted out according to the latest theoretical achievements. This theoretical system mainly focuses on the scientific and practical aspects of the application of EKR technology in soil remediation, by which we try to dig into the core of this technology. It contains key motive power of electric phenomena, side effects, energy consumption and supply, and removal of heavy metals, radioactive elements and salts in soil during EKR. In addition, correlations between dehydration, crystallization effect, focusing effect and thermal effect are disclosed; optimal operating conditions for the removal of heavy metals by EKR and EKR coupled with PRB are discussed and sorted out. Also discussed herein is the relationship between energy allocation and energy saving. According to the related findings, some potential improvements are also proposed.
Collapse
Affiliation(s)
- Dongdong Wen
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rongbing Fu
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Qian Li
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
16
|
Comparative Adsorption of Pb2+ on Nanostructured Iron–Zirconium Oxide with Fe-to-Zr Molar Ratio of 1:1 and 1:2: Thermodynamic and Kinetic Studies. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04715-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wang Z, Wu X, Luo S, Wang Y, Tong Z, Deng Q. Shell biomass material supported nano-zero valent iron to remove Pb 2+ and Cd 2+ in water. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201192. [PMID: 33204474 PMCID: PMC7657911 DOI: 10.1098/rsos.201192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Nanoscale zero-valent iron (NZVI) has a high adsorption capacity for heavy metals, but easily forms aggregates. Herein, preprocessed undulating venus shell (UVS) is used as support material to prevent NZVI from reuniting. The SEM and TEM results show that UVS had a porous layered structure and NZVI particles were evenly distributed on the UVS surface. A large number of adsorption sites on the surface of UVS-NZVI are confirmed by IR and XRD. UVS-NZVI is used for adsorption of Pb2+ and Cd2+ at pH = 6.00 in aqueous solution, and the experimental adsorption capacities are 29.91 and 38.99 mg g-1 at optimal pH, respectively. Thermodynamic studies indicate that the adsorption of ions by UVS-NZVI is more in line with the Langmuir model when Pb2+ or Cd2+ existed alone. For the mixed solution of Pb2+ and Cd2+, only the adsorption of Pb2+ by UVS-NZVI conforms to the Langmuir model. In addition, the maximum adsorption capacities of UVS-NZVI for Pb2+ and Cd2+ are 93.01 and 46.07 mg g-1, respectively. Kinetic studies demonstrate that the determination coefficients (R 2) of the pseudo first-order kinetic model for UVS-NZVI adsorption of Cd2+ and Pb2+ are higher than those of the pseudo second-order kinetic model and Elovich kinetic model. Highly efficient performance for metal removal makes UVS-NZVI show potential application to heavy metal ion adsorption.
Collapse
Affiliation(s)
- Zheng Wang
- School of Science, Hainan University, Haikou 570228, People's Republic of China
| | - Xique Wu
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Shengxu Luo
- School of Science, Hainan University, Haikou 570228, People's Republic of China
- Key Laboratory of Ministry of Education of Advanced Materials of Tropical Island Resources, Hainan University, Haikou 570228, People's Republic of China
| | - Yanshi Wang
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Zhuang Tong
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Qin Deng
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
18
|
Yu YH, Su JF, Shih Y, Wang J, Wang PY, Huang CP. Hazardous wastes treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1833-1860. [PMID: 32866315 DOI: 10.1002/wer.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics related to hazardous waste management in water, soils, sediments, and air. The review covered treatment technologies applying physical, chemical, and biological principles for the remediation of contaminated water, soils, sediments, and air. PRACTICAL POINTS: This report provides a review of technologies for the management of waters, wastewaters, air, sediments, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) in three scientific areas of physical, chemical, and biological methods. Physical methods for the management of hazardous wastes including general adsorption, sand filtration, coagulation/flocculation, electrodialysis, electrokinetics, electro-sorption ( capacitive deionization, CDI), membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, potassium permanganate processes, and Fenton and Fenton-like process were reviewed. Biological methods such as aerobic, anoxic, anaerobic, bioreactors, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed. Case histories were reviewed in four areas including contaminated sediments, contaminated soils, mixed industrial solid wastes and radioactive wastes.
Collapse
Affiliation(s)
- Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jenn Fang Su
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan
| | - Yujen Shih
- Graduate Institute of Environmental Essngineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Jianmin Wang
- Department of Civil Architectural and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Po Yen Wang
- Department of Civil Engineering, Widener University, Chester, Pennsylvania, USA
| | - Chin Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
19
|
Ishag A, Li Y, Zhang N, Wang H, Guo H, Mei P, Sun Y. Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: A review. ENVIRONMENTAL RESEARCH 2020; 188:109855. [PMID: 32846643 DOI: 10.1016/j.envres.2020.109855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Owing to high surface energy, strong chemical reactivity and large surface area, nanoscale zero-valent iron (nZVI) as a novel emerging material has been extensively utilized in environmental cleanup. Although a lot of reviews regarding the removal of organic contaminants and heavy metals on nZVI are summarized in recent years, the advanced progress concerning the removal of radionuclides on nZVI is still scarce. In this review, we summarized the removal of technetium (Tc), uranium (U), selenium (Se) and other radionuclides on nZVI and nZVI-based composites, then their interaction mechanisms were reviewed in details. This review is crucial for the environmental chemist and material engineer to exploit the actual application of nZVI-based composites as the emerging materials of permeable reactive barrier on the removal of radionuclides from aqueous solutions.
Collapse
Affiliation(s)
- Alhadi Ishag
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ying Li
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ning Zhang
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Huihui Wang
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Han Guo
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Peng Mei
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yubing Sun
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
20
|
Qian L, Chen Y, Ouyang D, Zhang W, Han L, Yan J, Kvapil P, Chen M. Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134215. [PMID: 31494413 DOI: 10.1016/j.scitotenv.2019.134215] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The application of biochar-supported nanoscale zero-valent iron (biochar-nZVI) was successfully implemented in a field demonstration for the first time. To overcome the significant shortcomings of nZVI agglomeration for in-situ groundwater remediation, biochar-nZVI was injected into groundwater using direct-push and water pressure driven packer techniques for a site impacted by chlorinated solvents in the North China Plain. The field demonstration comprising two-step injections was implemented to demonstrate the effectiveness of nZVI and biochar-nZVI respectively. The outcome of the demonstration revealed a sharp reduction of contaminant concentrations of chlorinated solvents in 24 h following the first injection of nZVI, but the rebound of the concentrations of these contaminants in groundwater has occurred within the next two weeks. However, application of biochar-nZVI greatly enhanced the removal of chlorinated solvents in groundwater over the longer period of 42 days. The enhanced removal of chlorinated solvents in groundwater by biochar-nZVI is mainly attributed to the synergistic effects of adsorption and reduction. The adsorption by biochar significantly reduced the level of chlorinated solvents in groundwater. Overall increases in ferrous iron and chloride concentrations after the injections indicated that the reduction has occurred during the removal of chlorinated solvents in groundwater. In summary, biochar-supported nZVI could be potentially used for the effective remediation of chlorinated solvents in groundwater.
Collapse
Affiliation(s)
- Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Yun Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Ouyang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Petr Kvapil
- Technical University of Liberec, Studentska 2, CZ46117 Liberec, Czech Republic
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
21
|
Huang T, Liu L, Zhang S. Electrokinetic removals of arsenate and arsenite from the aqueous environment by a fluidized bed of superparamagnetic iron oxide nanoparticle-coated pyrite microelectrodes. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1708113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, China
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, China
| | - Longfei Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, China
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, Hengyang, China
| |
Collapse
|
22
|
Huang T, Song D, Wang G, Li G, Geng C, Yao C, Liu W, Zhang S. High adsorption performance of synthesized hexametaphosphate green rust towards Cr(VI) removal and its mechanism explorations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109642. [PMID: 31586745 DOI: 10.1016/j.jenvman.2019.109642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Hexametaphosphate intercalated green rust (hexa-P GR) was fabricated by a coprecipitation process in an anaerobic environment to improve the adsorption of hexa-P GR for Cr(VI) and the total Cr under various aqueous conditions. Three kinetic models including the pseudo-first-order, intraparticle, and Elovich were appropriate in describing the adsorption of hexa-P GR towards Cr(VI) and the total Cr. The maximum mono-layer adsorption capacities (mg/g) of hexa-P GR for Cr(VI) at pH of 2 and 7 were 87.64 and 92.25, respectively, with the theoretical maximum capacity (mg/g) of 52.73 being obtained at pH of 7. Some competing cations existing in solutions such as Al3+, Ca2+, and Mg2+ would consume more hexa-P GR to remove Cr species. The neutral and weak alkaline environment was conducive to the hexa-P GR reuse, while the strong alkaline environment was beneficial to the removal of the total Cr. The orthogonal variables including the initial pH, the flow rate, and the Cr(VI) concentration all significantly influenced Cr removal. The sequences of reaction pathways referring to the adsorption of hexa-P GR differently occurred in various pH conditions.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China.
| | - Dongping Song
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China.
| | - Guangshuai Wang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Gen Li
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Cong Geng
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Chen Yao
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Wanhui Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China.
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|