1
|
Abdollahi Boraei SB, Bakhshandeh B, Mohammadzadeh F, Haghighi DM, Mohammadpour Z. Clay-reinforced PVC composites and nanocomposites. Heliyon 2024; 10:e29196. [PMID: 38633642 PMCID: PMC11021979 DOI: 10.1016/j.heliyon.2024.e29196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Clay-reinforced polyvinyl chloride (PVC) composites and nanocomposites are one of the newest and most important compounds studied and used in various applications, including the biomedical, automotive industry, water treatment, packaging, fire retarding, and construction. The most important clays used in the synthesis of these composites are Bentonite, Montmorillonite, Kaolinite, and Illite. The addition of these nanoclays to the PVC matrix improves mechanical properties, thermal stability, and yellowness index properties. In this chapter, a detailed study of PVC and its properties, types of nanoclays and their properties, modification of nanoclays, production methods of composites, and nanocomposites of PVC/clay, their characterization, and applications have been performed. Herein, the types, properties, and applications of PVC/clay nanocomposites, as well as their challenges and future remarks, are reviewed.
Collapse
Affiliation(s)
- Seyyed Behnam Abdollahi Boraei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, 1517964311, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mohammadpour
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, 1517964311, Iran
| |
Collapse
|
2
|
Abdou MM, Soliman AGA, Kobisy AS, Abu-Rayyan A, Al-Omari M, Alshwyeh HA, Ragab AH, Al Shareef HF, Ammar NS. Preparation and Evaluation of Phenol Formaldehyde-Montmorillonite and Its Utilization in the Adsorption of Lead Ions from Aqueous Solution. ACS OMEGA 2024; 9:12015-12026. [PMID: 38496995 PMCID: PMC10938315 DOI: 10.1021/acsomega.3c09830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
In this study, phenol formaldehyde-montmorillonite (PF-MMT) was prepared and used for lead ion (Pb2+) adsorption. Batch adsorption experiments were conducted to determine the optimal conditions. The calculated adsorption equilibrium (q) revealed that pseudo-second-order (PSO) and Langmuir isotherm models best fit the experimental data, suggesting chemisorption as the main mechanism. An adsorption capacity (qmax) of 243.9 mg/g was achieved. Fourier transform infrared (FTIR) analysis showed new peaks in PF-MMT-Pb, indicating metal complexation. Scanning electron microscopy (SEM) imaging displayed distinct Pb2+ clusters on the adsorbent surface. Adsorption was rapid, attaining equilibrium within 90 min. Effects of time, dose, concentration, and pH were systematically investigated to optimize the process. Lead ion removal efficiency reached 98.33% under optimum conditions after 90 min. The adsorption process was chemisorption based on the Dubinin-Kaganer-Radushkevich model with a free energy of 14,850 J/mol. The substantial adsorption capacity, rapid kinetics, and high removal efficiency highlight PF-MMT's potential for effective Pb2+ removal from aqueous solution.
Collapse
Affiliation(s)
- Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Cairo 11727, Egypt
| | | | - Atef S. Kobisy
- Egyptian
Petroleum Research Institute, Cairo 11727, Egypt
| | - Ahmed Abu-Rayyan
- Faculty
of Science, Applied Science Private University, Amman 11931, Jordan
| | - Mohammad Al-Omari
- Faculty
of Science, Applied Science Private University, Amman 11931, Jordan
| | - Hussah A. Alshwyeh
- Department
of Biology, College of Science, Imam Abdulrahman
Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic
& Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmed H. Ragab
- Chemistry
Department, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Hossa F. Al Shareef
- Department
of Chemistry, College of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nabila S. Ammar
- Water
Pollution Research Department, National
Research Centre, Giza 12622, Egypt
| |
Collapse
|
3
|
Elhamrouni IA, Ishak MY, Johari WLW, Halimoon N. A novel characterization of alginate-attapulgite-calcium carbonate (AAC) gel adsorption in bacterial biodegradation of used engine oil (UEO). BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2155573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Izeddin Abdalla Elhamrouni
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli, Libya
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Yusoff Ishak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Lutfi Wan Johari
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| | - Normala Halimoon
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Han Q, Tao F, Yang P. Amyloid-Like Assembly to Form Film at Interfaces: Structural Transformation and Application. Macromol Biosci 2023; 23:e2300172. [PMID: 37257459 DOI: 10.1002/mabi.202300172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Protein-based biomaterials are attracting broad interest for their remarkable structural and functional properties. Disturbing the native protein's three-dimensional structural stability in vitro and controlling subsequent aggregation is an effective strategy to design and construct protein-based biomaterials. One of the recent developments in regulating protein structural transformation to ordered aggregation is amyloid assembly, which generates fibril-based 1D to 3D nanostructures as functional materials. Especially, the amyloid-like assembly to form films at interfaces has been reported, which is induced by the effective reduction of the intramolecular disulfide bond. The main contribution of this amyloid-like assembly is the large-scale formation of protein films at interfaces and excellent adhesion to target substrates. This review presents the research progress of the amyloid-like assembly to form films and related applications and thereby provides a guide to exploiting protein-based biomaterials.
Collapse
Affiliation(s)
- Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
5
|
Dat NM, Nam NTH, Cong CQ, Huong LM, Hai ND, Tai LT, An H, Duy BT, Dat NT, Viet VND, Duong HT, Phong MT, Hieu NH. Chitosan membrane drafting silver-immobilized graphene oxide nanocomposite for banana preservation: Fabrication, physicochemical properties, bioactivities, and application. Int J Biol Macromol 2023; 242:124607. [PMID: 37116839 DOI: 10.1016/j.ijbiomac.2023.124607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
In this study, silver-immobilized graphene oxide/chitosan (AGC/CTS) membranes were assembled by the solvent evaporation method, wherein Curcuma longa extract was used to synthesize silver-immobilized graphene oxide (AGC) nanocomposite. The characterization results showed that the AGC was successfully synthesized with AgNPs distributed quite evenly on GO sheets. The as-prepared AGC also exhibited high antibacterial activity and low cytotoxicity towards normal cell lines compared to human epithelial carcinoma cell lines. Besides, the fabrication of AGC/CTS membranes was additionally assessed with different AGC ratios and thicknesses. The results revealed the membrane containing 3 wt% of AGC with great hygroscopicity and elasticity module of 27.03 ± 3.07 MPa. The samples also performed excellent bactericidal capability, along with good mechanical properties for banana preservation. Therewithal, the membrane-coated bananas were also elucidated to be ripened at slower paces and less damage, with no appearance of patches of mold on the banana peel surface, eventually prolonging the shelf life of bananas up to 10 days as compared to the non-coated ones. The aforesaid results confirm the potential application of the AGC/CTS membrane as a safe and alternative fruit preservation agent in the food industry.
Collapse
Affiliation(s)
- Nguyen Minh Dat
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Che Quang Cong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Le Minh Huong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Duy Hai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Le Tan Tai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Hoang An
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Bui Thanh Duy
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Tien Dat
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam; University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam
| | - Vo Nguyen Dai Viet
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Hoang Thai Duong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Mai Thanh Phong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Yuan X, Li J, Luo L, Zhong Z, Xie X. Advances in Sorptive Removal of Hexavalent Chromium (Cr(VI)) in Aqueous Solutions Using Polymeric Materials. Polymers (Basel) 2023; 15:388. [PMID: 36679268 PMCID: PMC9863183 DOI: 10.3390/polym15020388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Sorptive removal of hexavalent chromium (Cr(VI)) bears the advantages of simple operation and easy construction. Customized polymeric materials are the attracting adsorbents due to their selectivity, chemical and mechanical stabilities. The mostly investigated polymeric materials for removing Cr(VI) were reviewed in this work. Assembling of robust functional groups, reduction of self-aggregation, and enhancement of stability and mechanical strength, were the general strategies to improve the performance of polymeric adsorbents. The maximum adsorption capacities of these polymers toward Cr(VI) fitted by Langmuir isotherm model ranged from 3.2 to 1185 mg/g. Mechanisms of complexation, chelation, reduction, electrostatic attraction, anion exchange, and hydrogen bonding were involved in the Cr(VI) removal. Influence factors on Cr(VI) removal were itemized. Polymeric adsorbents performed much better in the strong acidic pH range (e.g., pH 2.0) and at higher initial Cr(VI) concentrations. The adsorption of Cr(VI) was an endothermic reaction, and higher reaction temperature favored more robust adsorption. Anions inhibited the removal of Cr(VI) through competitive adsorption, while that was barely affected by cations. Factors that affected the regeneration of these adsorbents were summarized. To realize the goal of industrial application and environmental protection, removal of the Cr(VI) accompanied by its detoxication through reduction is highly encouraged. Moreover, development of adsorbents with strong regeneration ability and low cost, which are robust for removing Cr(VI) at trace levels and a wider pH range, should also be an eternally immutable subject in the future. Work done will be helpful for developing more robust polymeric adsorbents and for promoting the treatment of Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Xiaoqing Yuan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyu Zhong
- Hunan Research Academy of Environmental Sciences, Changsha 410014, China
| | - Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater treatment with nanomaterials for the future: A state-of-the-art review. ENVIRONMENTAL RESEARCH 2023; 216:114652. [PMID: 36309214 DOI: 10.1016/j.envres.2022.114652] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Aquatic and terrestrial ecosystems are both threatened by toxic wastewater. The unique properties of nanomaterials are currently being studied thoroughly for treating sewage. Nanomaterials also have the advantage of being capable of removing organic matter, fungi, and viruses from wastewater. Advanced oxidation processes are used in nanomaterials to treat wastewater. Additionally, nanomaterials have a large effective area of contact due to their tiny dimensions. The adsorption and reactivity of nanomaterials are strong. Wastewater treatment would benefit from the development of nanomaterial technology. Second, the paper provides a comprehensive analysis of the unique characteristics of nanomaterials in wastewater treatment, their proper use, and their prospects. In addition to focusing on their economic feasibility, since limited forms of nanomaterials have been manufactured, it is also necessary to consider their feasibility in terms of their technical results. According to this study, the significant adsorption area, excellent chemical reaction, and electrical conductivity of nanoparticles (NPs) contribute to the successful treatment of wastewater.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | | | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno Technická 2896/2, 616 00, Brno, Czech Republic
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology Bhopal, 462 003, Madhya Pradesh, India
| | | | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| |
Collapse
|
8
|
Wae AbdulKadir WAF, Ahmad AL, Ooi BS. Hydrophobic Montmorillonite/PVDF Membrane: Experimental Investigation of Membrane Synthesis toward Wetting Characterization and Performance via DCMD. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Kandiyil J, Vasudevan S, Athiyanathil S. Efficient selective methylene blue adsorption by polyurethane/montmorillonite‐based antifouling electrospun composite membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Juraij Kandiyil
- Department of Chemistry, Materials Research Laboratory National Institute of Technology Calicut Kozhikode India
| | - Suni Vasudevan
- Department of Chemistry, Inorganic and Bio‐inorganic Laboratory National Institute of Technology Calicut Kozhikode India
| | - Sujith Athiyanathil
- Department of Chemistry, Materials Research Laboratory National Institute of Technology Calicut Kozhikode India
| |
Collapse
|
10
|
Kamran U, Rhee KY, Lee SY, Park SJ. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. CHEMOSPHERE 2022; 306:135590. [PMID: 35803370 DOI: 10.1016/j.chemosphere.2022.135590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Graphene derivatives (graphene oxide) are proved as an innovative carbon materials that are getting more attraction in membrane separation technology because of its unique properties and capability to attain layer-to-layer stacking, existence of high oxygen-based functional groups, and generation of nanochannels that successively enhance the selective pollutants removal performance. The review focused on the recent innovations in the development of graphene derivative-based composite hybrid membranes (GDHMs) for the removal of multiple contaminants from wastewater treatment. To design GDHMs, it was observed that at first GO layers undergo chemical treatments with either different polymers, plasma, or sulfonyl. After that, the chemically treated GO layers were decorated with various active functional materials (either with nanoparticles, magnetite, or nanorods, etc.). By preparing GDHMs, properties such as permeability, porosity, hydrophilicity, water flux, stability, feasibility, mechanical strength, regeneration ability, and antifouling tendency were excessively improved as compared to pristine GO membranes. Different types of novel GDHMs were able to remove toxic dyes (77-100%), heavy metals/ions (66-100%), phenols (40-100%), and pharmaceuticals (74-100%) from wastewater with high efficiency. Some of GDHMs were capable to show dual contaminant removal efficacy and antibacterial activity. In this study, it was observed that the most involved mechanisms for pollutants removal are size exclusion, transport, electrostatic interactions, adsorption, and donnan exclusion. In addition to this, interaction mechanism during membrane separation technology has also been elaborated by density functional theory. At last, in this review the discussion related to challenges, limitations, and future outlook for the applications of GDHMs has also been provided.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
11
|
Al-Shaeli M, Al-Juboori RA, Al Aani S, Ladewig BP, Hilal N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156014. [PMID: 35584751 DOI: 10.1016/j.scitotenv.2022.156014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Raed A Al-Juboori
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland.
| | - Saif Al Aani
- The State Company of Energy Production - Middle Region, Ministry of Electricity, Iraq
| | - Bradley P Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Nidal Hilal
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Hacıosmanoğlu GG, Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115397. [PMID: 35660825 DOI: 10.1016/j.jenvman.2022.115397] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
Increased antibiotic use worldwide has become a major concern because of their health and environmental impacts. Since most antibiotic residues can hardly be removed from wastewater using conventional treatments, alternative methods receive great attention. Adsorption is one of the most efficient and cost-effective treatment methods for antibiotics. Among the adsorbents, clay minerals have garnered increasing attention due to their unique properties including availability, high specific surface area, low cost, cation exchange capacity, and good removal efficiency. This paper reviews the recent progress made in the use of natural and modified clay minerals for the removal of antibiotics from water. First, the sources, occurrence, removal and health effects of the antibiotics commonly encountered in water bodies are described. Antibiotic concentration levels and average removal efficiencies measured in conventional activated sludge treatment systems worldwide are also provided to better address the problem. Second, the review explores the characteristics of clay minerals as adsorbent of antibiotics and the factors affecting the adsorption. The review identifies and discusses the future trends and strategies used to increase the adsorption capacity of clay minerals by modification and combination techniques (intercalation of novel functional groups such as organocations, biopolymers and metal pillared-clay minerals, combination with biochar or thermal activation). The quantitative comparisons of clay minerals' ability for antibiotic removal are given. Some natural clay minerals have good removal potential for antibiotics, with maximum adsorption capacities over 100 mg/g. For most other adsorbents, surface modifications and combination techniques resulted in improved adsorption properties (including higher surface area, enhanced adsorption capacity, increased stability and mechanical strength). Finally, the application of these adsorbents at pilot scale, using real wastewater samples, their reuse, economic analysis and life cycle assessment are other issues that have been considered.
Collapse
Affiliation(s)
- Gül Gülenay Hacıosmanoğlu
- Environmental Engineering Department, Faculty of Engineering, Marmara University, Uyanık Cd. No:6, 34840, Istanbul, Turkey.
| | - Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| |
Collapse
|
13
|
ZIF-67 modified MXene/sepiolite composite membrane for oil–water separation and heavy metal removal. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Labied R, Ouraghi M, Hazam S, Touahra F, Lerari D. Effect of Porogen Agent on Bio-Based Membranes Filtration Performances: Experimental and Theoritical Study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Syeda SEZ, Nowacka D, Khan MS, Skwierawska AM. Recent Advancements in Cyclodextrin-Based Adsorbents for the Removal of Hazardous Pollutants from Waters. Polymers (Basel) 2022; 14:2341. [PMID: 35745921 PMCID: PMC9228831 DOI: 10.3390/polym14122341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Water is an essential substance for the survival on Earth of all living organisms. However, population growth has disturbed the natural phenomenon of living, due to industrial growth to meet ever expanding demands, and, hence, an exponential increase in environmental pollution has been reported in the last few decades. Moreover, water pollution has drawn major attention for its adverse effects on human health and the ecosystem. Various techniques have been used to treat wastewater, including biofiltration, activated sludge, membrane filtration, active oxidation process and adsorption. Among the mentioned, the last method is becoming very popular. Moreover, among the sorbents, those based on cyclodextrin have gained worldwide attention due to their excellent properties. This review article overviewed recent contributions related to the synthesis of Cyclodextrin (CD)-based adsorbents to treat wastewater, and their applications, especially for the removal of heavy metals, dyes, and organic pollutants (pharmaceuticals and endocrine disruptor chemicals). Furthermore, new adsorption trends and trials related to CD-based materials are also discussed regarding their regenerative potential. Finally, this review could be an inspiration for new research and could also anticipate future directions and challenges associated with CD-based adsorbents.
Collapse
Affiliation(s)
- Shan E. Zehra Syeda
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Muhammad Shahzeb Khan
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
16
|
Hu X, Li Z, Ge Y, Liu S, Shi C. Enhanced π−π stacks of aromatic ring-rich polymer adsorbent for the rapid adsorption of organic dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Hassan M, Naidu R, Du J, Qi F, Ahsan MA, Liu Y. Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions. Int J Biol Macromol 2022; 207:826-840. [PMID: 35358575 DOI: 10.1016/j.ijbiomac.2022.03.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Mesoporous (~7-8 nm) biopolymer hydrogel beads (HNTs-FeNPs@Alg/β-CD) were synthesised via ionic polymerisation route to separate heavy metal ions. The adsorption capacity of HNTs-FeNPs@Alg/β-CD was higher than that of raw halloysite nano tubes (HNTs), iron nanoparticles (FeNPs), and bare alginate beads. FeNPs induce the magnetic properties of adsorbent and metal-based functional groups in and around the hydrogel beads. The mesoporous surface of the adsorbent permits access of heavy metal ions onto the polymer beads to interact with internal active sites and the mesoporous polymer network. Maximum adsorption capacities of lead (Pb), copper (Cu), cadmium (Cd), and nickel (Ni) were 21.09 mg/g, 15.54 mg/g, 2.47 mg/g, and 2.68 mg/g, respectively. HNTs-FeNPs@Alg/β-CD was able to adsorb heavy metals efficiently (75-99%) under environment-relevant concentrations (200 μg/L) from mixed metal contaminants. The adsorption and selectivity trends of heavy metals were Pb > Cu > Cd > Ni, despite electrostatic binding strength of Cd > Cu > Pb > Ni and covalent binding strength of Pb > Ni > Cu > Cd. It demonstrated that not only chemosorption but also physisorption acts as the sorption mechanism. The reduction in surface area, porosity, and pore volume of the expended adsorbent, along with sorption study results, confirmed that pore filling and intra-particle diffusion played a considerable role in removing heavy metals.
Collapse
Affiliation(s)
- Masud Hassan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Jianhua Du
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Md Ariful Ahsan
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States of America.
| | - Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|
18
|
Superior efficacy of biocomposite membranes of chitosan with montmorillonite and kaolin vs pure chitosan for removal of Cu(II) from wastewater. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Wu Y, Ye H, You C, Zhou W, Chen J, Xiao W, Garba ZN, Wang L, Yuan Z. Construction of functionalized graphene separation membranes and their latest progress in water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Bansal P, Batra R, Yadav R, Purwar R. Electrospun polyacrylonitrile nanofibrous membranes supported with montmorillonite for efficient
PM2
.5 filtration and adsorption of Cu (
II
) ions. J Appl Polym Sci 2022. [DOI: 10.1002/app.51582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Priya Bansal
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Radhika Batra
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Reetu Yadav
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
21
|
Abdel Maksoud MIA, Fahim RA, Bedir AG, Osman AI, Abouelela MM, El-Sayyad GS, Elkodous MA, Mahmoud AS, Rabee MM, Al-Muhtaseb AH, Rooney DW. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:519-562. [DOI: 10.1007/s10311-021-01351-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 09/02/2023]
Abstract
AbstractThe rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efficient and very practical due to the easy separation from solutions by an magnetic field. Here we review the synthesis and performance of magnetic oxides such as iron oxides, spinel ferrites, and perovskite oxides for water remediation. We present structural, optical, and magnetic properties. Magnetic oxides are also promising photocatalysts for the degradation of organic pollutants. Antimicrobial activities and adsorption of heavy metals and radionucleides are also discussed.
Collapse
|
22
|
Han B, Weatherley AJ, Mumford K, Bolan N, He JZ, Stevens GW, Chen D. Modification of naturally abundant resources for remediation of potentially toxic elements: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126755. [PMID: 34364213 DOI: 10.1016/j.jhazmat.2021.126755] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Water and soil contamination due to potentially toxic elements (PTEs) represents a critical threat to the global ecosystem and human health. Naturally abundant resources have significant advantages as adsorbent materials for environmental remediation over manufactured materials such as nanostructured materials and activated carbons. These advantages include cost-effectiveness, eco-friendliness, sustainability, and nontoxicity. In this review, we firstly compare the characteristics of representative adsorbent materials including bentonite, zeolite, biochar, biomass, and effective modification methods that are frequently used to enhance their adsorption capacity and kinetics. Following this, the adsorption pathways and sites are outlined at an atomic level, and an in-depth understanding of the structure-property relationships are provided based on surface functional groups. Finally, the challenges and perspectives of some emerging naturally abundant resources such as lignite are examined. Although both unamended and modified naturally abundant resources face challenges associated with their adsorption performance, cost performance, energy consumption, and secondary pollution, these can be tackled by using advanced techniques such as tailored modification, formulated mixing and reorganization of these materials. Recent studies on adsorbent materials provide a strong foundation for the remediation of PTEs in soil and water. We speculate that the pursuit of effective modification strategies will generate remediation processes of PTEs better suited to a wider variety of practical application conditions.
Collapse
Affiliation(s)
- Bing Han
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| | - Anthony J Weatherley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
23
|
Dadi NCT, Bujdák J, Medvecká V, Pálková H, Barlog M, Bujdáková H. Surface Characterization and Anti-Biofilm Effectiveness of Hybrid Films of Polyurethane Functionalized with Saponite and Phloxine B. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7583. [PMID: 34947179 PMCID: PMC8703816 DOI: 10.3390/ma14247583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
The main objective of this work was to synthesize composites of polyurethane (PU) with organoclays (OC) exhibiting antimicrobial properties. Layered silicate (saponite) was modified with octadecyltrimethylammonium cations (ODTMA) and functionalized with phloxine B (PhB) and used as a filler in the composites. A unique property of composite materials is the increased concentration of modifier particles on the surface of the composite membranes. Materials of different compositions were tested and investigated using physico-chemical methods, such as infrared spectroscopy, X-ray diffraction, contact angle measurements, absorption, and fluorescence spectroscopy in the visible region. The composition of an optimal material was as follows: nODTMA/mSap = 0.8 mmol g-1 and nPhB/mSap = 0.1 mmol g-1. Only about 1.5% of present PhB was released in a cultivation medium for bacteria within 24 h, which proved good stability of the composite. Anti-biofilm properties of the composite membranes were proven in experiments with resistant Staphylococcus aureus. The composites without PhB reduced the biofilm growth 100-fold compared to the control sample (non-modified PU). The composite containing PhB in combination with the photodynamic inactivation (PDI) reduced cell growth by about 10,000-fold, thus proving the significant photosensitizing effect of the membranes. Cell damage was confirmed by scanning electron microscopy. A new method of the synthesis of composite materials presented in this work opens up new possibilities for targeted modification of polymers by focusing on their surfaces. Such composite materials retain the properties of the unmodified polymer inside the matrix and only the surface of the material is changed. Although these unique materials presented in this work are based on PU, the method of surface modification can also be applied to other polymers. Such modified polymers could be useful for various applications in which special surface properties are required, for example, for materials used in medical practice.
Collapse
Affiliation(s)
- Nitin Chandra Teja Dadi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Juraj Bujdák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia;
| | - Helena Pálková
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Martin Barlog
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
24
|
de Assis MLM, Junior ED, de Almeida JMF, do Nascimento Silva I, Barbosa RV, Dos Santos LM, Dias EF, Fernandes NS, Martinez-Huitle CA. Photocatalytic degradation of Novacron blue and Novacron yellow textile dyes by the TiO 2/palygorskite nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64440-64460. [PMID: 34312752 DOI: 10.1007/s11356-021-15519-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The photocatalytic discoloration of industrial dyes, Novacron blue (NB) and Novacron yellow (NY), was investigated using composites based on TiO2 and natural palygorskite (Pal-Ti10 and Pal-Ti30). The method consisted of synthesizing the composites starting from a physical mixture of TiO2 and natural palygorskite in the presence of alcohol, for impregnation through calcination under conditions of temperature equal to 450 °C and atmospheric air. The characterization techniques used in this work were FTIR, XRD, XRF, SEM, particle size analysis and zeta potential. The photocatalysis for the NB dye was investigated through the application of a factorial 24 experimental design, aiming at the best experimental conditions and finally applying them in another NY industrial dye. The investigated concentrations of NB were 10 ppm and 30 ppm, the composites were synthesized using 10 and 30% (p/p) of titanium dioxide in palygorskite, the two pH values were 2.0 and 6.0 and the light intensities 9 and 18 W were used. Tests performed at pH 2.0, Pal-Ti30 composite, power 18 W and 10 ppm of dye showed 100% color removal of both dyes in 90 min. The bleaching process followed the pseudo-first order kinetic model, and the apparent constants (Kapp) were 0.0216 min-1 and 0.0193 min-1 for NB and NY dyes, respectively. The results of total organic carbon (TOC) showed mineralization of 61.70% and 58.06% for NB and NY, respectively, in 90 min of treatment, and the by-products were detected by GC-MS.
Collapse
Affiliation(s)
- Mikaely Lizandra Moreira de Assis
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Elmar Damasceno Junior
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil.
| | - Janiele Mayara Ferreira de Almeida
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Isabel do Nascimento Silva
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Rodrigo Victor Barbosa
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Lamara Maciel Dos Santos
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Elizete Faustino Dias
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Nedja Suely Fernandes
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Química Analítica e Meio Ambiente-LAQUAM, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Carlos Alberto Martinez-Huitle
- Universidade Federal do Rio Grande do Norte, Instituto de Química, Laboratório de Eletroquímica Ambiental e Aplicada-LEAA, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| |
Collapse
|
25
|
Bucatariu F, Teodosiu C, Morosanu I, Fighir D, Ciobanu R, Petrila LM, Mihai M. An Overview on Composite Sorbents Based on Polyelectrolytes Used in Advanced Wastewater Treatment. Polymers (Basel) 2021; 13:3963. [PMID: 34833262 PMCID: PMC8625399 DOI: 10.3390/polym13223963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/19/2023] Open
Abstract
Advanced wastewater treatment processes are required to implement wastewater reuse in agriculture or industry, the efficient removal of targeted priority and emerging organic & inorganic pollutants being compulsory (due to their eco-toxicological and human health effects, bio-accumulative, and degradation characteristics). Various processes such as membrane separations, adsorption, advanced oxidation, filtration, disinfection may be used in combination with one or more conventional treatment stages, but technical and environmental criteria are important to assess their application. Natural and synthetic polyelectrolytes combined with some inorganic materials or other organic or inorganic polymers create new materials (composites) that are currently used in sorption of toxic pollutants. The recent developments on the synthesis and characterization of composites based on polyelectrolytes, divided according to their macroscopic shape-beads, core-shell, gels, nanofibers, membranes-are discussed, and a correlation of their actual structure and properties with the adsorption mechanisms and removal efficiencies of various pollutants in aqueous media (priority and emerging pollutants or other model pollutants) are presented.
Collapse
Affiliation(s)
- Florin Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Irina Morosanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Daniela Fighir
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Ramona Ciobanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Larisa-Maria Petrila
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
| | - Marcela Mihai
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| |
Collapse
|
26
|
Polysulfone Membranes Based Hybrid Nanocomposites for the Adsorptive Removal of Hg(II) Ions. Polymers (Basel) 2021; 13:polym13162792. [PMID: 34451330 PMCID: PMC8398493 DOI: 10.3390/polym13162792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Organic-inorganic nanoparticles, which can improve and modify the mechanical and chemical properties of polymers, have been used as fillers to prepare high-performance hybrid nanocomposite membranes. In this study, we explored whether the incorporation of organic nanofillers (graphene (G), graphene oxide (GO), carbon nanotubes (CNTs), or oxidized carbon nanotubes (CNTOxi)) into polysulfone (PSF) and montmorillonite (MMt)-modified PSF membranes could enhance membrane performance for the removal of heavy metal ions from contaminated solutions. These hybrid membranes were prepared by a phase inversion method using chloroform as the solvent. The surface morphologies of the membranes revealed good dispersibility of the organoclay and carbon nanomaterials in the PSF matrix. The hybrid nanocomposite membranes showed significantly improved thermal stability and mechanical properties as compared to the pristine PSF and PSF/MMt membranes. The adsorption efficiencies of these hybrid adsorptive membranes for Hg(II), Pb(II), Sr(II), Fe(III), Zn(II), Ni(II), Al(III), Co(II), Y(III), and Cr(III) were investigated. The PSF/MMt/CNTOxi and PSF/MMt/GO membranes exhibited the highest adsorption efficiencies. In particular, these adsorptive membranes showed selectivity toward Hg(II), and the Hg(II) extraction percentage was maximized at pH 2. The maximum Hg(II) adsorption capacities of PSF/MMt/CNTOxi and PSF/MMt/GO were 151.36 and 144.89 mg/g, respectively, and the adsorption isotherm was in approval with the Langmuir model. These hybrid nanocomposites can be used in water purification application.
Collapse
|
27
|
Dehghankar M, Mohammadi T, Tavakolmoghadam M, Tofighy MA. Polyvinylidene Fluoride/Nanoclays (Cloisite 30B and Palygorskite) Mixed Matrix Membranes with Improved Performance and Antifouling Properties. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mona Dehghankar
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Toraj Mohammadi
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Maryam Tavakolmoghadam
- Polymer, Chemical and Petrochemical Science and Technology Division, Research Institute of Petroleum Industry, Tehran 1485733111, Iran
| | - Maryam Ahmadzadeh Tofighy
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| |
Collapse
|
28
|
Messaoudi M, Douma M, Tijani N, Messaoudi L. Study of the permeability of tubular mineral membranes: application to wastewater treatment. Heliyon 2021; 7:e06837. [PMID: 33981894 PMCID: PMC8082269 DOI: 10.1016/j.heliyon.2021.e06837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 10/24/2022] Open
Abstract
This research work opens up the possibility of developing tubular mineral membranes from Moroccan clay powders and their use in water permeability tests and wastewater treatment. The aim is to show the possibility of using clay as a low-cost raw material for the production of ceramic membranes with high mechanical and chemical performances. In a first step, we developed ceramic membranes by extruding a prepared plastic paste with the addition of an optimized amount of wood powder as organic matter (OM) to improve the porosity characteristics of the final products after firing. Several parameters are controlled such as the chemical and mineralogical composition of the starting clay powder, the granulometry and the final sintering temperature. The effect of sintering temperature in the range from 800 to 1000 °C, and OM addition (5, 10, 15wt%) on tubular membrane properties such as mechanical and chemical resistance, porosity and permeability were investigated. It was found that the incorporation of OM in the raw clay enhance the pore volume and the permeate flux but it was also accompanied by a decrease in mechanical strength. The membrane sintered at 1000 °C with 15wt% of OM is considered as optimized membrane and it was applied for the second stage of this work. This stage concerns the treatment of wastewater from a thermal complex located 12 km south of the city of Meknes, Morocco, through a treatment by a biological disk microstation. The filtrate obtained then undergoes tangential filtration by the membranes elaborated and optimized following the evolution of the pollution parameters. Based on physicochemical and biological analyses of wastewater after treatment by the coupled system, the membranes obtained have a good permeability and an excellent pollution removal performance.
Collapse
Affiliation(s)
- Mohammed Messaoudi
- Laboratory of Materials, Membranes and Nanotechnology, Department of Chemistry, Faculty of Sciences, Moulay Ismail University, PB 11201, Zitoune, Meknes, Morocco
| | - Mohamed Douma
- Laboratory of Materials, Membranes and Nanotechnology, Department of Chemistry, Faculty of Sciences, Moulay Ismail University, PB 11201, Zitoune, Meknes, Morocco
| | - Najib Tijani
- Laboratory of Materials, Membranes and Nanotechnology, Department of Chemistry, Faculty of Sciences, Moulay Ismail University, PB 11201, Zitoune, Meknes, Morocco
| | - Lahcen Messaoudi
- Laboratory of Materials, Membranes and Nanotechnology, Department of Chemistry, Faculty of Sciences, Moulay Ismail University, PB 11201, Zitoune, Meknes, Morocco
| |
Collapse
|
29
|
Xu L, Liu Y, Wang J, Tang Y, Zhang Z. Selective adsorption of Pb 2+ and Cu 2+ on amino-modified attapulgite: Kinetic, thermal dynamic and DFT studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124140. [PMID: 33070005 DOI: 10.1016/j.jhazmat.2020.124140] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Amino-modified attapulgite (M-ATP) was prepared to remove Pb2+ and Cu2+ from the aqueous solution. Fourier transform infrared spectroscopy (FT-IR) spectrums and X-ray powder diffraction (XRD) patterns revealed that a new Si-O-Si bond formed after modification. The result indicates that the graft reaction of ATP occurred at Si-O (2 0 0) tetrahedron crystal face. No matter whether in a single or binary heavy metal ion system, the adsorption experiments displayed that the equilibrium adsorption capacity of M-ATP towards Pb2+ was much higher than Cu2+, which indicated M-ATP more readily adsorbs the Pb2+. The selective adsorption mechanism of Pb2+ and Cu2+ on modified attapulgite was studied by density functional theory (DFT). The Eads of Pb (- 2.01 eV) adsorbed on M-ATP is lower than Cu (- 1.79 eV) through the DFT calculation of adsorption energy (Eads), which indicate that the Pb2+ adsorbed on M-ATP is more stable than Cu2+. Both adsorption experiments and theoretical calculations revealed that due to the stability of Pb2+ adsorption on M-ATP, Pb2+ is more readily adsorbed by M-ATP, and it is difficult for Cu2+ to exchange Pb2+ from M-ATP.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yani Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingang Wang
- Computational Center for Property and Modification on Nanomaterials, College of Sciences, Liaoning University of Petroleum and Chemical Technology, Fushun 113001, China
| | - Ying Tang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhe Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
30
|
Grylewicz A, Mozia S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, Estay H. Copper-Modified Polymeric Membranes for Water Treatment: A Comprehensive Review. MEMBRANES 2021; 11:93. [PMID: 33525631 PMCID: PMC7911616 DOI: 10.3390/membranes11020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/23/2022]
Abstract
In the last decades, the incorporation of copper in polymeric membranes for water treatment has received greater attention, as an innovative potential solution against biofouling formation on membranes, as well as, by its ability to improve other relevant membrane properties. Copper has attractive characteristics: excellent antimicrobial activity, high natural abundance, low cost and the existence of multiple cost-effective synthesis routes for obtaining copper-based materials with tunable characteristics, which favor their incorporation into polymeric membranes. This study presents a comprehensive analysis of the progress made in the area regarding modified membranes for water treatment when incorporating copper. The notable use of copper materials (metallic and oxide nanoparticles, salts, composites, metal-polymer complexes, coordination polymers) for modifying microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO) and reverse osmosis (RO) membranes have been identified. Antibacterial and anti-fouling effect, hydrophilicity increase, improvements of the water flux, the rejection of compounds capacity and structural membrane parameters and the reduction of concentration polarization phenomena are some outstanding properties that improved. Moreover, the study acknowledges different membrane modification approaches to incorporate copper, such as, the incorporation during the membrane synthesis process (immobilization in polymer and phase inversion) or its surface modification using physical (coating, layer by layer assembly and electrospinning) and chemical (grafting, one-pot chelating, co-deposition and mussel-inspired PDA) surface modification techniques. Thus, the advantages and limitations of these modifications and their methods with insights towards a possible industrial applicability are presented. Furthermore, when copper was incorporated into membrane matrices, the study identified relevant detrimental consequences with potential to be solved, such as formation of defects, pore block, and nanoparticles agglomeration during their fabrication. Among others, the low modification stability, the uncontrolled copper ion releasing or leaching of incorporated copper material are also identified concerns. Thus, this article offers modification strategies that allow an effective copper incorporation on these polymeric membranes and solve these hinders. The article finishes with some claims about scaling up the implementation process, including long-term performance under real conditions, feasibility of production at large scale, and assessment of environmental impact.
Collapse
Affiliation(s)
- Andreina García
- Mining Engineering Department, FCFM, Universidad de Chile, Santiago 8370451, Chile
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Bárbara Rodríguez
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Hugo Giraldo
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Yurieth Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Rodrigo Quezada
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile; (H.G.); (Y.Q.); (R.Q.); (H.E.)
| |
Collapse
|
32
|
Barakan S, Aghazadeh V. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2572-2599. [PMID: 33113058 DOI: 10.1007/s11356-020-10985-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
This review discusses the recent trends in the research over the last 30 years to use clay minerals in natural and modified forms for removing different toxic organic/inorganic pollutants. The natural and modified forms of clay minerals have an exceptional ability to remove different contaminants. However, the modification methods can improve the clay mineral adsorption properties that consequently increase more adsorption sites and functional groups to adsorb different environmental pollutants. This review shows the importance of modification methods and more extension of novel clay preparation based on nanotechnology which could raise the control of pollution. The syntheses of functionalized clays such as pillared clays and porous clay heterostructures introduce the new class of heterostructure materials with high adsorption capacity, capability, and selectivity. Due to the acceptable properties of heterostructure materials including high specific surface area, thermal and mechanical stability, and the existence of multifunctional groups to selective adsorption, this review collects more literature of research related to environmental protection issues. However, it is expected much attention to get a better understanding of the adsorption mechanism, regeneration, and recovery process of these materials.
Collapse
Affiliation(s)
- Shima Barakan
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran
| | - Valeh Aghazadeh
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|
33
|
|
34
|
Ahamad T, Naushad M, Mousa RH, Alshehri SM. Fabrication of starch-salicylaldehyde based polymer nanocomposite (PNC) for the removal of pollutants from contaminated water. Int J Biol Macromol 2020; 165:2731-2738. [PMID: 33736279 DOI: 10.1016/j.ijbiomac.2020.10.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
In the present study, we have fabricated magnetic nanocomposite based on the starch and salicylaldehyde resin embedded with magnetic Fe3O4 nanoparticles (SS@Fe3O4). The fabricated nanocomposite was characterized using various analytical methods including XRD, SEM, FTIR, TGA, TEM, BET and XPS. As-fabricated nanocomposite was used for the adsorption of Pb(II) and Cd(II) from aqueous solution. The adsorption results revealed that the maximum adsorption capacity was found to be 265.4 and 247.2 mg/g for Pb(II) and Cd(II) respectively at pH 6 and room temperature. The adsorption kinetic results support that the adsorption of both the toxic metals was carried out via second order reaction and the rate constants were found to be 6.31 × 10-5 and 7.18 × 10-5 g·mg-1·min-1 for Pb(II) and Cd(II) respectively. The adsorption isotherm displays the Langmuir adsorption isotherm and supports the monolayer and mainly chemisorption with poor physisorption. Additionally, the thermodynamic parameters were evaluated and the adsorption came true in exothermically and spontaneously with both Pb(II) and Cd(II). As-fabricated starch based magnetic nanocomposite displays excellent adsorption as well as outstanding reusability. Therefore, these outcomes support that the SS@Fe3O4 nanocomposite can be used as a promising adsorbent for industrial application.
Collapse
Affiliation(s)
- Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea; School of Life and Allied Health Sciences, Glocal University, Saharanpur, India
| | - Rashed Hassan Mousa
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
35
|
|
36
|
Ouradi A, Cherifi N, Nguyen QT, Benaboura A. Preliminary study of the prepared polysulfone/AN69/clay composite membranes intended for the hemodialysis application. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01062-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Zhou G, Huang L. A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1786086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Guobing Zhou
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| | - Liangliang Huang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
38
|
Exhaustive studies on toxic Cr(VI) removal mechanism from aqueous solution using activated carbon of Aloe vera waste leaves. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Chen F, Ding X, Jiang Y, Guan Y, Wei D, Zheng A, Xu X. Permanent Antimicrobial Poly(vinylidene fluoride) Prepared by Chemical Bonding with Poly(hexamethylene guanidine). ACS OMEGA 2020; 5:10481-10488. [PMID: 32426605 PMCID: PMC7227036 DOI: 10.1021/acsomega.0c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Biofouling is one of the major obstacles in the application of poly(vinylidene fluoride) (PVDF) membrane in water and wastewater treatment. Developing antimicrobial PVDF could kill the attached microbe in the initial stage, thus theoretically inhibiting the formation of biofilm and delaying the occurrence of biofouling. However, the leaching of the antimicrobial component and deterioration of antimicrobial properties remain a concern. In this work, an antimicrobial PVDF (PVDF-g-AGE-PHMG) was developed by chemical bonding PVDF with poly(hexamethylene guanidine hydrochloride) (PHMG). The obtained PVDF-g-AGE-PHMG was blended with pristine PVDF to prepare an antimicrobial PVDF membrane. The results of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed that PHMG was successfully grafted into the PVDF membrane. The morphologies, membrane porosity, water contact angles, antimicrobial properties, mechanical properties, and thermostability of the as-prepared membranes were investigated. When the content of PVDF-g-AGE-PHMG reached 10.0 wt %, the inhibition rates of both antimicrobial PVDF membrane against Escherichia coli and Staphylococcus aureus were above 99.99%. Due to the increased hydrophilicity, excellent antimicrobial activity, nonleaching of antimicrobial component, good mechanical properties, and thermostability, the as-prepared PVDF membrane has promising applications in the field of water treatment.
Collapse
|
40
|
Synthesis of polyaniline/clay nanocomposites by in situ polymerization and its application for the removal of Acid Green 25 dye from wastewater. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03222-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Li M, Liu Y, Shen C, Li F, Wang CC, Huang M, Yang B, Wang Z, Yang J, Sand W. One-step Sb(III) decontamination using a bifunctional photoelectrochemical filter. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121840. [PMID: 31859170 DOI: 10.1016/j.jhazmat.2019.121840] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Developing advanced technologies to achieve decontamination of emerging contaminants such as antimony (Sb) is highly demanded. Herein, we successfully designed a dual-functional photoelectrochemical filter system for "one-step" detoxification and sequestration of highly toxic Sb(III). The key to this technology is a photoelectrical-responsive CNT filter functionalized with nanoscale MIL-88B(Fe) photocatalysts. At 2.5 V and under illumination, a 97.7 ± 1.5 % Sb(III) transformation and a 92.9 ± 2.3 % Sbtotal removal efficiency can be obtained using an optimal hybrid filter (e.g. CM(50:3)) over 2 h continuous filtration. This can be explained by the synergistic effects of the filter's flow-through design, photoelectrochemical reactivity, fine pore size, and plentiful exposed sorption sites. Various advanced characterization techniques validated the system efficacy. Improved Sb(III) removal kinetics were observed when compared with conventional batch system (97.5 % vs 75.8 %). A synergistic effect between photocatalytic (PC) and electrochemical (EC) process were identified (kPEC =0.99 h-1 >kPC=0.21 h-1 + kEC =0.30 h-1). EPR and photochemical characterizations suggested that hydroxyl radicals dominated the Sb(III) conversion. The proposed technology works effectively across a wide range of pH values and water matrixes. The outcomes of this study can facilitate mechanistic insights into photoelectrocatalysis and provide a promising nanotechnology for efficient Sb(III) decontamination.
Collapse
Affiliation(s)
- Mohua Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, 201620, Shanghai, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, 09599, Germany
| |
Collapse
|
42
|
Ang MBMY, Deang ABG, Aquino RR, Basilia BA, Huang SH, Lee KR, Lai JY. Assessing the Performance of Thin-Film Nanofiltration Membranes with Embedded Montmorillonites. MEMBRANES 2020; 10:E79. [PMID: 32357447 PMCID: PMC7281585 DOI: 10.3390/membranes10050079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
In this study, the basal spacing of montmorillonite (MMT) was modified through ion exchange. Two kinds of MMT were used: sodium-modified MMT (Na-MMT) and organo-modified MMT (O-MMT). These two particles were incorporated separately into the thin-film nanocomposite polyamide membrane through the interfacial polymerization of piperazine and trimesoyl chloride in n-hexane. The membrane with O-MMT (TFNO-MMT) has a more hydrophilic surface compared to that of membrane with Na-MMT (TFNNa-MMT). When various types of MMT were dispersed in the n-hexane solution with trimesoyl chloride (TMC), O-MMT was well-dispersed than Na-MMT. The poor dispersion of Na-MMT in n-hexane led to the aggregation of Na-MMT on the surface of TFNNa-MMT. TFNO-MMT displayed a uniform distribution of O-MMT on the surface, because O-MMT was well-dispersed in n-hexane. In comparison with the pristine and TFNNa-MMT membranes, TFNO-MMT delivered the highest pure water flux of 53.15 ± 3.30 L∙m-2∙h-1 at 6 bar, while its salt rejection for divalent ions remained at 95%-99%. Furthermore, it had stable performance in wide operating condition, and it exhibited a magnificent antifouling property. Therefore, a suitable type of MMT could lead to high separation efficiency.
Collapse
Affiliation(s)
- Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Amira Beatriz Gaces Deang
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Ruth R. Aquino
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Blessie A. Basilia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
- Industrial Technology Development Institute, Department of Science and Technology, DOST Compound, Taguig City 1631, Philippines
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Applied Research Center for Thin-Film Metallic Glass, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
43
|
Soltani S, Razinobakht SA, Asmatulu R. Effect of carbon black silanization on isothermal curing kinetics of epoxy nanocomposites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seyed Soltani
- Department of Mechanical EngineeringFlorida Polytechnic University Lakeland Florida
| | | | - Ramazan Asmatulu
- Department of Mechanical EngineeringWichita State University Wichita Kansas
| |
Collapse
|
44
|
The Recent Progress in Modification of Polymeric Membranes Using Organic Macromolecules for Water Treatment. Symmetry (Basel) 2020. [DOI: 10.3390/sym12020239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For decades, the water deficit has been a severe global issue. A reliable supply of water is needed to ensure sustainable economic development in population growth, industrialization and urbanization. To solve this major challenge, membrane-based water treatment technology has attracted a great deal of attention to produce clean drinking water from groundwater, seawater and brackish water. The emergence of nanotechnology in membrane science has opened new frontiers in the development of advanced polymeric membranes to enhance filtration performance. Nevertheless, some obstacles such as fouling and trade-off of membrane selectivity and permeability of water have hindered the development of traditional polymeric membranes for real applications. To overcome these issues, the modification of membranes has been pursued. The use of macromolecules for membrane modification has attracted wide interests in recent years owing to their interesting chemical and structural properties. Membranes modified with macromolecules have exhibited improved anti-fouling properties due to the alteration of their physiochemical properties in terms of the membrane morphology, porosity, surface charge, wettability, and durability. This review provides a comprehensive review of the progress made in the development of macromolecule modified polymeric membranes. The role of macromolecules in polymeric membranes and the advancement of these membrane materials for water solution are presented. The challenges and future directions for this subject are highlighted.
Collapse
|
45
|
Liu Q, Zhou Y, Lu J, Zhou Y. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. CHEMOSPHERE 2020; 241:125043. [PMID: 31683417 DOI: 10.1016/j.chemosphere.2019.125043] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Over the past few decades, cyclodextrin-based adsorbents have drawn worldwide attention as new-generation adsorbents for wastewater treatment due to its extraordinary physicochemical properties. This review outlined the recent development in the synthesis of cyclodextrin-based adsorbents as well as highlighted their applications in the removal of heavy metals, dyes, endocrine disrupting chemicals (EDCs), and mixed pollutants from water. The cross-linked and immobilized cyclodextrin-based adsorbents exhibited excellent adsorption performances. The removal of dyes and heavy metals were effectively controlled by ion exchanging, mainly depending upon the pH; while the adsorptions of EDCs always occurred in cyclodextrin cavities and pH-independent. An easier separation process between aqueous and adsorbents could be achieved compared to native cyclodextrin, which promoted the application of cyclodextrin-based adsorbents in practical industry. This review could provide an inspiration for the advanced study in the development of cyclodextrin-based adsorbents for high efficiency wastewater treatment.
Collapse
Affiliation(s)
- Qiming Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Hongkou District, Shanghai, 200092, China
| | - Jian Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Hongkou District, Shanghai, 200092, China.
| |
Collapse
|
46
|
Thiebault T, Brendlé J, Augé G, Limousy L. Cleaner Synthesis of Silylated Clay Minerals for the Durable Recovery of Ions (Co2+ and Sr2+) from Aqueous Solutions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Thiebault
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
- EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 Place Jussieu, F-75005 Paris, France
| | - Jocelyne Brendlé
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Grégoire Augé
- ONET Technologies, 36 Boulevard de l’Océan, CS 20280, 13258 Marseille Cedex 09, France
| | - Lionel Limousy
- Université de Haute-Alsace, IS2M, CNRS, UMR 7361, 3b Rue Alfred Werner, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|