1
|
Kong X, Zhu Y, Xu H, Ye J, Wang S, Xu H, Zhang R, Tang H, Wang D, Cai D. Three birds with one stone: Sewage sludge deep-drying in 1 hour using secondary aluminum ash to fabricate bricks. WATER RESEARCH 2024; 266:122346. [PMID: 39232256 DOI: 10.1016/j.watres.2024.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Due to the high moisture, strong hydrophilicity, and hard compressibility of sewage sludge (SS), it is difficult to realize the high-efficiency drying. Herein, a novel SS drying technology was developed to quickly and deeply reduce the moisture of SS from 75.6% to 38.5% in 1 h. During the process, secondary aluminum ash (SAA), a solid waste, was added to SS and acted as skeletons to form plenty of channels. Subsequently, NaOH was added and reacted with SAA to produce a lot of heat, resulting in a rapid temperature rise of the system from 20 to 105°C in 60 s. The heat could effectively remove water from these channels, which could be proved by the T1-T2 maps of in-site Low-Field 1H nuclear magnetic resonance. In addition, the extracellular polymeric substances were decomposed by SAA/NaOH successfully, and thus the SS became hydrophobic, favoring the drying. Finally, the dried SS could be used to fabricate unburned bricks. Thus, this work provides a promising method to realize the rapid SS deep drying and high-efficiency utilization of SAA and dried SS.
Collapse
Affiliation(s)
- Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shuang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Heliang Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Rongjun Zhang
- Weifang Shangchang Ecological Agriculture Technology Co., LTD, Weifang, PR China
| | - Hongxia Tang
- Shanghai Solid Waste and Chemical Management Technology Center, Shanghai, 200235, PR China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
Gou L, Dai L, Wang Y. Coupling of struvite crystallization and aqueous phase recirculation for hydrochar upgrading and nitrogen recovery during hydrothermal carbonization of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172682. [PMID: 38663600 DOI: 10.1016/j.scitotenv.2024.172682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Recycling of aqueous phase (AP) as a by-product after hydrothermal carbonization (HTC) of sewage sludge (SS) has been of interest. The combination of magnesium ammonium phosphate (MAP) or the so-called struvite crystallization and aqueous phase (AP) recirculation has great potential for resource recovery and hydrochar enhancement. In this study, both the aqueous phase of HTC after MAP recovery of NH4+-N (AP-MAP) and the untreated aqueous phase of HTC (AP-HTC) were reused for HTC of fresh SS, and both aqueous phases were recycled four times. The effects of the two AP cycles on the properties of AP and hydrochar at 200, 230, and 260 °C were studied, and the effect of temperature on the two AP cycles was similar. The hydrochar produced by the AP-MAP cycle had lower nitrogen content than that of the AP-HTC cycle due to the low ammonia nitrogen (NH4+-N) content, and the combustion performance was improved. MAP recovery reduces the accumulation of NH4+-N in the AP cycle and MAP is also a high-quality fertilizer. Therefore, the combination of MAP recovery and AP recycling provides a feasible technical approach for resource utilization, eutrophic AP treatment, and production of high-quality hydrochar in the HTC process of SS.
Collapse
Affiliation(s)
- Le Gou
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China
| | - Liyi Dai
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| | - Yuanyuan Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
3
|
Liang Z, Yan Q, Ou H, Li D, Zhang Y, Zhang J, Zeng L, Xing M. Effective green treatment of sewage sludge from Fenton reactions: Utilizing MoS 2 for sustainable resource recovery. Proc Natl Acad Sci U S A 2024; 121:e2317394121. [PMID: 38377212 PMCID: PMC10907279 DOI: 10.1073/pnas.2317394121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.
Collapse
Affiliation(s)
- Zhiyan Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Qingyun Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, China
| | - Dawei Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Yayun Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
4
|
Li A, Han H, Zheng K, Zhu M, Xu K, Xu J, Jiang L, Wang Y, Su S, Hu S, Xiang J. Sludge pyrolysis integrated biomass gasification to promote syngas: Comparison of different biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168278. [PMID: 37926253 DOI: 10.1016/j.scitotenv.2023.168278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The sludge pyrolysis and biomass gasification (SPBG) integrated process has been demonstrated to promote hydrogen-rich gas generation from the two solid waste materials by interaction, however, the effect of biomass species is unclear. Six agriculture and forestry biomass were chosen to participate SPBG in the current study to monitor the roles of biomass on product evolution. The results revealed that SPBG has promoted the syngas for all the biomass samples with the gas yields increased by 10.30 %-38.90 %, while the H2 yields increased by 17.31 %-81.40 %. By statistical analysis, it can be concluded that H2 was mainly derived from the gasification reaction of the biomass char and water in the sludge volatile, followed by the cracking of tar, while H elements released from biomass were mainly transformed into CH4 and C2Hy. The syngas composition verified a lot for SPBG experiments with different biomasses. Cellulose intensifies the production of CO through CO bonds cracking on char, while hemicellulose intensifies the production of CH4 through tar polymerization. Therefore, biomass with higher concentrations of cellulose and hemicellulose exhibited improved performance in gas production.
Collapse
Affiliation(s)
- Aishu Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hengda Han
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kaiyue Zheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Zhu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Xu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Xu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long Jiang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Su
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Song Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Xiang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Li Y, Kang M, Wang Y, Bai X, Ye Z. Modulatory Role of Biochar Properties and Environmental Risk of Heavy Metals by Co-Pyrolysis of Fenton Sludge and Biochemical Sludge. TOXICS 2024; 12:57. [PMID: 38251013 PMCID: PMC10820068 DOI: 10.3390/toxics12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Recent studies have reported that Fenton sludge and biochemical sludge contain high concentrations of toxic substances and heavy metals (HMs), whereas improper treatment can pose serious threats to environmental safety. Pyrolysis is considered an efficient technology to replace conventional sludge treatment. This study investigated the pyrolysis and kinetic processes of Fenton sludge and biochemical sludge, revealed the physicochemical properties of sludge biochar, and highlighted the role of co-pyrolysis in sludge immobilization of HMs and environmental risks. Results showed that Fenton sludge and biochemical sludge underwent three stages of weight loss during individual pyrolysis and co-pyrolysis, especially co-pyrolysis, which increased the rate of sludge pyrolysis and reduced the decomposition temperature. The kinetic reaction indicated that the activation energies of Fenton sludge, biochemical sludge, and mixed sludge were 11.59 kJ/mol, 8.50 kJ/mol, and 7.11 kJ/mol, respectively. Notably, co-pyrolysis reduced the activation energy of reactions and changed the specific surface area and functional group properties of the biochar produced from sludge. Meanwhile, co-pyrolysis effectively immobilized Cu, Pb, and Zn, increased the proportion of metals in oxidizable and residual states, and mitigated the environmental risks of HMs in sludge. This study provided new insights into the co-pyrolysis properties of sludge biochar and the risk assessment of HMs.
Collapse
Affiliation(s)
- Yujian Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zhengfang Ye
- Key Laboratory of Water and Sediment Sciences, Department of Environmental Engineering, Peking University, Ministry of Education, Beijing 100871, China
| |
Collapse
|
6
|
Nabwey HA, Tony MA. Dewatered Sludge Decorated with Nanoparticles for Alum Sludge Conditioning towards the Concept of "End-of-Waste". NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2903. [PMID: 37947747 PMCID: PMC10647506 DOI: 10.3390/nano13212903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The circular economy concept is leading environmental engineering in the search for "End-of-Waste" criteria. Untreated waste residue results from drinking water treatment plants, causing severe environmental issues, and its reuse is essential. In this regard, this investigation introduces the beneficial reuses of alum sludge cake to close the loop between sludge waste generation and reuse. Considering alum sludge as a resource for dewatering instead of its categorization as a waste reflects an "End-of-Waste" approach. Alum sludge cake was thermally calcined at 400 °C and named thermally treated alum sludge cake (TAS-cake). In this study, TAS-cake decorated with magnetite with a percent weight of 5 to 1%, respectively, was labeled as TAS-cake@Fe-(5-1). X-ray diffraction (XRD) and morphologies were applied to characterize the hybrid composite. A Fenton-based hybrid composite was applied to extrude water from alum sludge for 7 min of conditioning time. Furthermore, the factorial design based on response surface methodology (RSM) was applied to optimize the operational variables. TAS-cake@Fe-(5-1) and hydrogen peroxide revealed 1.2 g/L and 740 mg/L doses at pH 3.0, showing pronounced performance and revealing the highest capillary suction time (CST) reduction, which reached 53%. A temperature increase also showed a pronounced enhancement effect on the sludge dewaterability that reached 72% when 55 °C was applied. Thus, such a novel conditioner is a promising candidate for alum sludge conditioning.
Collapse
Affiliation(s)
- Hossam A. Nabwey
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Basic Engineering Science Department, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Maha A. Tony
- Basic Engineering Science Department, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt;
- Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt
| |
Collapse
|
7
|
Mineo A, Cosenza A, Ni BJ, Mannina G. Enhancing the production of volatile fatty acids by potassium permanganate from wasted sewage sludge: A batch test experiment. Heliyon 2023; 9:e21957. [PMID: 38028001 PMCID: PMC10658334 DOI: 10.1016/j.heliyon.2023.e21957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Recovering resources from wastewater treatment is vital for the transition from a linear to a circular economy model in the water sector. Volatile Fatty Acids (VFAs) are valuable products among the possible recovered resources. This study investigates the influence of potassium permanganate (KMnO4) addition during acidogenic fermentation of waste activated sludge for enhancing VFAs production. Specifically, different fermentation batch tests with and without KMnO4 addition were carried out using two distinctive sewage sludges as feedstocks. Results showed that KMnO4 addition increased the VFAs yield up to 144 and 196 mgCOD/g VSS for the two sludges. When KMnO4 was used as pre-treatment, 55 % of sCOD were VFAs. This latter result was mainly debited to the recalcitrant organics' disruption promoted by the oxidative permanganate ability.
Collapse
Affiliation(s)
- Antonio Mineo
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128, Palermo, Italy
| | - Alida Cosenza
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128, Palermo, Italy
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze ed. 8, 90128, Palermo, Italy
| |
Collapse
|
8
|
Cho EJ, Kang JK, Lee CG, Bae S, Park SJ. Use of thermally activated Fenton sludge for Cd removal in zinc smelter wastewater: Mechanism and feasibility of Cd removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122166. [PMID: 37429491 DOI: 10.1016/j.envpol.2023.122166] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Fenton sludge is a byproduct of the Fenton process that contains large amounts of Fe and Ca. Because of the secondary contamination generated during the disposal of this byproduct, ecofriendly treatment methods are needed. In this study, we used Fenton sludge to remove the Cd discharged from a zinc smelter factory, using thermal activation to enhance the Cd adsorption capacity. Among the various temperatures considered (300-900 °C), the Fenton sludge that was thermally activated at 900 °C (TA-FS-900) adsorbed the highest amount of Cd because of its high specific surface area and high Fe content. Cd was adsorbed onto TA-FS-900 via complexation with C-OH, C-COOH, FeO-, and FeOH and cation exchange with Ca2+. The maximum adsorption of TA-FS-900 was 260.2 mg/g, indicating that TA-FS-900 is an efficient adsorbent, comparable to those reported in the literature. The initial Cd concentration in the zinc smelter wastewater discharged was 105.7 mg/L, 98.4% of which was removed by applying TA-FS-900, suggesting the applicability of TA-FS-900 for real wastewater containing high concentrations of various cations and anions. The leaching of heavy metals from TA-FS-900 was within the EPA standard limits. We concluded that the environmental impact of Fenton sludge disposal can be reduced, and the use of Fenton sludge can add value to the treatment of industrial wastewater in terms of the circular economy and environment.
Collapse
Affiliation(s)
- Eun-Ji Cho
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyu Kang
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
9
|
Pang D, Mao Y, Jin Y, Zhang J, Dong J, Wang X, Li J, Wang W. Bidirectional Catalysis Disintegration and Mineral Polymerization via Endogenous Iron(III) from Iron-Rich Sludge in Synergy with Waste Incineration Fly Ash. ACS OMEGA 2023; 8:34663-34677. [PMID: 37779924 PMCID: PMC10536882 DOI: 10.1021/acsomega.3c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
To enhance the utilization of solid waste in cement kiln co-processing, this study analyzed the multifaceted synergy of pyrolysis and mineralization processes of iron-rich sludge (SS) and waste incineration fly ash (FA) at optimal blending ratios. Based on the physicochemical properties of SS and co-pyrolysis experiments, it was found that Fe acted as a positive catalyst in pyrolysis between 700 and 1000 °C, while the endogenous polymerization effect of Fe(III) mineral groups dominated above 800 °C. Additionally, the study investigated the solidification and migration of heavy metals and the transformation of harmful elements (S, Cl, and P). Results indicated that the best mixture ratios for SS and FA were 6:4 and 9:1, respectively, and synergistic pyrolysis and mineral co-curing effects were observed in the pyrolysis temperature range of 50-1000 °C. The synergy between SS and FA allowed for the decomposition and solidification of harmful organic components and heavy metals, reducing environmental risks. Furthermore, in actual production, by mixing 100 tons of SS and FA with Portland cement with a daily output of 2500 tons, the compressive strength during early hydration stages can reach 34.52 MPa on the third day, exceeding the highest performance of Portland cement (62.5R) strength index specified in the standard.
Collapse
Affiliation(s)
- Dongjie Pang
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction
and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yanpeng Mao
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction
and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yang Jin
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction
and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiazheng Zhang
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction
and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jingyi Dong
- Beijing
Ciroten Environmental Protection Technology Co., Ltd., Fengtai District, Beijing 100070, China
| | - Xujiang Wang
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction
and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jingwei Li
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction
and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wenlong Wang
- National
Engineering Laboratory for Reducing Emissions from Coal Combustion,
Engineering Research Center of Environmental Thermal Technology of
Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction
and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
10
|
Xia T, Zhang X, Chen D, Gao Z, Ji Y, Xia J, Wang L. Effects of ceramsite derived from sewage sludge combined with the O 3-FeCl 3/PAM process on the dewatering of waste-activated sludge and investigation of dewatering mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:367-380. [PMID: 37522439 PMCID: wst_2023_224 DOI: 10.2166/wst.2023.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The high water content of waste-activated sludge restricts the subsequent disposal of sludge. The dehydration properties of O3, ferric chloride (FeCl3)/polyacrylamide, and sludge ceramsite sand (SCS) were studied. Simultaneously, the effect of combining the three was investigated to support the deep dehydration of waste-activated sludge. Experimental results showed that with13.42 mg/(g dry solids (DS)) of O3, 109.89 mg/(g DS) of FeCl3, and 100 mesh dosage of 70% DS of sludge ceramsite on weight, the highest sludge net yield was 7.13 kg/(m2·h) and the minimum specific resistance to filtration of sludge cake was 1.02 × 1012 (m/kg). Compared with the compressibility of the raw sludge, the compressibility of the sludge cake decreased by 37.48%. Moreover, the YN (net yield) increased by 73.55%. The results demonstrate that the structure of cracking, flocculation, and hydrophobic framework is the mechanism of sludge dewatering in this combined process. This combined treatment process provides a new perspective for the realization of deep dewatering of sludge and is anticipated to be a successful sludge dehydration method.
Collapse
Affiliation(s)
- Ting Xia
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China E-mail:
| | - Xu Zhang
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Dongjie Chen
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Zaizhuang Gao
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Yuxiao Ji
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Jianjun Xia
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Lei Wang
- Anhui Academy of Environmental Science Research, Hefei 230071, China
| |
Collapse
|
11
|
Wang Z, Guo J, Jia J, Liu W, Yao X, Feng J, Dong S, Sun J. Magnetic Biochar Derived from Fenton Sludge/CMC for High-Efficiency Removal of Pb(II): Synthesis, Application, and Mechanism. Molecules 2023; 28:4983. [PMID: 37446645 DOI: 10.3390/molecules28134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Magnetic biochar composites (MBC) were developed by a simple one-step pyrolysis method using Fenton sludge waste solid and carboxymethyl cellulose sodium. Detailed morphological, chemical, and magnetic characterizations corroborate the successful fabrication of MBC. Batch adsorption experiments show that the synthesized MBC owns high-efficiency removal of Pb(II), accompanied by ease-of-separation from aqueous solution using magnetic field. The experiment shows that the equilibrium adsorption capacity of MBC for Pb(II) can reach 199.9 mg g-1, corresponding to a removal rate of 99.9%, and the maximum adsorption capacity (qm) reaches 570.7 mg g-1, which is significantly better than that of the recently reported magnetic similar materials. The adsorption of Pb(II) by MBC complies with the pseudo second-order equation and Langmuir isotherm model, and the adsorption is a spontaneous, endothermic chemical process. Investigations on the adsorption mechanism show that the combination of Pb(II) with the oxygen-containing functional groups (carboxyl, hydroxyl, etc.) on biochar with a higher specific surface area are the decisive factors. The merits of reusing solid waste resource, namely excellent selectivity, easy separation, and simple preparation make the MBC a promising candidate of Pb(II) purifier.
Collapse
Affiliation(s)
- Zongwu Wang
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Juan Guo
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Junwei Jia
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Wei Liu
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Xinding Yao
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Jinglan Feng
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Shuying Dong
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jianhui Sun
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Chen K, Sun Y, Fan J, Gu Y. The dewatering performance and cracking-flocculation-skeleton mechanism of bioleaching-coal fly ash combined process for sewage sludge. CHEMOSPHERE 2022; 307:135994. [PMID: 35973485 DOI: 10.1016/j.chemosphere.2022.135994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
High water content in sludge will affect the transportation and subsequent disposal of sludge. Bioleaching is a biological sludge conditioning technology, which can effectively improve the dewatering performance of sludge and reduce the content of heavy metals in sludge. Coal fly ash, as a skeleton builder, can also improve the dewatering performance of sludge. In this study, bioleaching combined with coal fly ash (BL-CFA) process was employed to improve sludge dewatering performance. Based on the results of response surface methodology (RSM), the capillary suction time (CST) and water content (WC) of sludge decreased by 52.27% and 38.92%, respectively. The dewatering effect of BL-CFA is superior compared with single process. For extracellular polymeric substances (EPS), the content of protein and polysaccharide in tightly and loosely EPS (TB-EPS and LB-EPS) of sludge decreased after BL-CFA process, while that in soluble EPS (S-EPS) increased. Three-dimensional fluorescence indicated that the weakened fluorescent areas of proteinoid and soluble microbial by-product-like (SMP) organic in LB-EPS and TB-EPS, which is beneficial to the improvement of sludge dewatering performance. Fourier transform infrared (FTIR) spectroscopy showed that the polysaccharides and proteins in the sludge were cleaved and released into the supernatant after BL-CFA process. The variation of particle size revealed that flocculation occurred after adding CFA into acidified sludge, and a supporting structure was formed in the sludge with the assist of CFA through the analysis of the scanning electron microscopy (SEM). Based on the above results, a triple dehydration mechanism was proposed for BL-CFA process, namely, cracking-flocculation-skeleton construction, which endows the combined process with superior sludge dewatering effect and application potential.
Collapse
Affiliation(s)
- Kai Chen
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Yue Sun
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Jun Fan
- Nanjing Huachuang Environmental Technology Research Institute Co., Ltd, Nanjing, 210096, China
| | - YingPeng Gu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
13
|
Song H, Yang T, Li B, Tong Y, Li R. Hydrothermal liquefaction of sewage sludge into biocrude: Effect of aqueous phase recycling on energy recovery and pollution mitigation. WATER RESEARCH 2022; 226:119278. [PMID: 36323207 DOI: 10.1016/j.watres.2022.119278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal liquefaction (HTL) of sewage sludge is facing the challenges of low biocrude yield, a large number of intractable aqueous phase and heavy metals pollution. In this study, the aqueous phase produced by HTL was recycled as solvent with an aim to improve the biocrude yield and mitigate potential pollution. Results showed that the recycling of aqueous phase increased the biocrude yield from 17.9 to 30.5% and the energy recovery ratio from 40.3 to 61.7%. The recycling could increase the contents of Zn, Cu, Pb and Cr in solid residues by 2.7-3.0 times. It is worth emphasizing that the recycling reduced the COD of aqueous phase by 24.9%. However, the enhanced protein hydrolysis process reduced the calorific value of biocrude from 36.4 to 28.5 MJ/kg, and promoted the migration of the nitrogen to the aqueous phase, which was not environmentally favourable for the direct usage in diesel engines. Analysis showed that the ketones and the phenols in aqueous phase participated in HTL process as reactants, and the acids promoted the hydrolysis of protein in the sludge. Overall, the recycling of aqueous phase effectively improved the energy recovery and alleviated pollution of the sludge HTL.
Collapse
Affiliation(s)
- Hongmin Song
- Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Tianhua Yang
- Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China.
| | - Bingshuo Li
- Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Yao Tong
- Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China
| | - Rundong Li
- Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China.
| |
Collapse
|
14
|
Ebrahimi M, Dunn K, Li H, Rowlings DW, O'Hara IM, Zhang Z. Effect of hydrothermal treatment on deep dewatering of digested sludge: Further understanding the role of lignocellulosic biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152294. [PMID: 34906581 DOI: 10.1016/j.scitotenv.2021.152294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this study, lignocellulose-assisted hydrothermal treatment (HTT) of digestated sludge was studied to further understand the role of biomass in HTT and its effect on subsequent sludge dewatering. HTT of sludge-biomass mixtures at 180 °C for 60 min at a sludge/biomass total solids (TS) ratio of 1:1 led to solid residue moistures of 36%-40% after dewatering using a hydraulic press at 24 MPa, compared to 69.5% without biomass. Further investigation showed that organic acids, especially acetic acid generated from lignocellulosic biomass hydrolysed extracellular polymeric substances (EPS), especially EPS-protein, and improved sludge dewaterability. The role of organic acids was further verified with the addition of 10.0 g/L acetic acid for HTT of sludge at 180 °C in the absence of biomass. It was also observed that in HTT of sludge with 10.0 g/L acetic acid, protein nitrogen was converted to more stable forms of nitrogen such as pyrrole‑nitrogen and quaternary‑nitrogen. However, HTT with acetic acid alone resulted in dewatered solids with high ash contents, which may limit their applications as soil amendments. Combination of biomass and acetic acid with a sludge/biomass TS ratio of 3:1 and acetic acid loading of 10.0 g/L at a HTT temperature of 180 °C for 60 min led to solid moistures of 50.5% with hardwood sawdust and 57.7% with sugarcane bagasse after dewatering at 3 MPa, corresponding to total weight reductions of 66.3% and 55.7%, respectively. In contrast, HTT of sludge at 180 °C for 60 min without acetic acid and biomass resulted in a solid moisture of 76.6% after dewatering at 3 MPa and a corresponding weight reduction of 49.5%. With the use of biomass and acetic acid in HTT, the treated and dewatered solids also had increased carbon content and reduced ash content. These dewatered solids may be used as potential soil amendments though the properties related to soil applications need to be considered in future studies.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Kameron Dunn
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - David W Rowlings
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia; School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
15
|
Liu X, Zhai Y, Liu G, Liu X, Wang B, Wang Z, Zhu Y, Fan Y, Shi H, Xu M. Mechanistic insights into enhanced waste activated sludge dewaterability with Cu(II) and Cu(II)/H 2O 2 treatment: Radical and non-radical pathway. CHEMOSPHERE 2022; 288:132549. [PMID: 34653483 DOI: 10.1016/j.chemosphere.2021.132549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Without extra adjustment of pH, the effects of cupric ions (Cu(II)) and hydrogen peroxide (H2O2) alone or in combination on sludge dewatering were studied. It showed good dewatering capability after treated by Cu(II) and Cu(II)/H2O2, which indicated by the capillary suction times (CST) decreased from 120.8 ± 4.7 s (control) to about 40 s, and the water content (Wc) of sludge cake dropped by about 10%. The results showed that the extracellular polymeric substances (EPS) were destroyed, which characterized by a significant decrease in the biopolymers' concentrations in tightly-bound EPS. Meanwhile, more rough and porous microstructures and higher zeta potentials were obtained after conditioned. Based on the changes of physicochemical properties of sludge, the variations of EPS, and the identification of reactive species, two distinct mechanisms of improved sludge dewatering were postulated. As for Cu(II) treatment, it was mainly due to the surface charge neutralization, strong cytotoxicity of Cu(I) produced by intracellular reduction of Cu(II), and pH decline caused by Cu(II) hydrolysis that improved sludge dewatering performance, which could be noted as a "non-radical pathway". When in combination with H2O2, hydroxyl radicals (·OH) produced by Cu(II)-catalyzed Fenton-like process played a dominant role in degrading sludge flocs and EPS, which could be regarded as a "radical pathway".
Collapse
Affiliation(s)
- Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xiangmin Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ya Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuwei Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Haoran Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Xu
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| |
Collapse
|
16
|
Pan M, Wang W, Duan C, Jiang H, Zhao Y, Qiao J, Huang L, Wang Z, Shen Y, Shi W. Process enhancement of vibrating classifier for tailings classification-dewatering and industrial application. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Xie L, Gou L, Wang Y, Dai L. Co-hydrothermal carbonization of sewage sludge and polyvinyl chloride for the production of high-quality solid fuel with low nitrogen content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150094. [PMID: 34508936 DOI: 10.1016/j.scitotenv.2021.150094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Sewage sludge (SS) and polyvinyl chloride (PVC) are typical solid wastes. Their co-hydrothermal carbonization behavior was investigated in this study. The low-nitrogen solid fuel (0.94 wt%) with high heating value (9.84 MJ·Kg-1) was prepared through parameter optimization at 240 °C for 1.5 h under water loading amount of 0.84 g·cm-3. In an acidic environment, the stubborn protein in SS could be converted into free amino acids, which were generated by the decomposition of PVC under hydrothermal conditions. The stubborn N could be translated into easy-to-remove N, such as nitrile-N and inorganic N, and the dehydration reaction was evidently promoted. The acidic environment at high temperatures caused the dissolution of ash in SS and improved the combustion performance of hydrochar. FT-IR results showed that, with increased PVC loading proportion, -C=N- was converted into -C=O-. Co-hydrothermal carbonization could effectively improve the combustion performance of hydrochar. The addition of PVC could lead to the generation of increased volatile matter, fixed carbon, and unsaturated CC, and the combustion temperature range shifted to a high range. However, the generation of graphite-like carbon was caused by further increasing the PVC loading proportion, which hindered the improvement of its combustion performance. In the parameter optimization study, the increased water loading amount (from 0.54 g·cm-3 to 0.84 g·cm-3) had the most evident effect on the N content in the hydrochar (from 1.50 wt% to 0.94 wt%), which promoted the denitrification efficiency (from 60.11% to 75.00%) and the conversion of -C=N- components, and prevented further polymerization of solid products.
Collapse
Affiliation(s)
- Longfei Xie
- College of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China
| | - Le Gou
- College of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yuanyuan Wang
- College of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| | - Liyi Dai
- College of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
18
|
Hu JI, Ma W, Pan Y, Chen Z, Zhang Z, Wan C, Sun Y, Qiu C. Resolving the Tribo-catalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation. J Colloid Interface Sci 2021; 607:1908-1918. [PMID: 34798707 DOI: 10.1016/j.jcis.2021.09.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/15/2022]
Abstract
The utilization of mechanical energy to control water pollutants under dark conditions is currently a point of study focus. Herein, biochar -zinc oxide (BC-ZnO) composites with various structures were synthesized by co-pyrolysis of cotton and ZnO at different temperature and used for tribo-catalytic reaction. The introduction of BC can improve charge transmission and separation efficiency. Ultraviolet photoelectron spectra (UPS) and density functional theory (DFT) calculation prove the addition of BC can reduce work function of ZnO, and enhance its electron-donating ability. Specially, suitable adsorption amount is the key factor to improve the tribo-catalytic performance. When the pyrolysis temperature is 600 °C, BC-ZnO has the best degradation efficiency, which can degrade 90% Rhodamine B (RhB) in 75 min, while ZnO can degrade only 38%. On this basis, using bovine serum albumin (BSA) as a model, the effect of tribo-catalytic reaction on controlling proteins in water was studied by fluorescence excitation-emission matrix spectroscopy (3D EEM) and infrared microscope, and the transformation of proteins was further analyzed. This study provides a new strategy to improve the tribo-catalytic performance of ZnO, and explores its application prospects of biological wastewater control.
Collapse
Affiliation(s)
- JIng Hu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Wei Ma
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yuzhen Pan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhen Chen
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhe Zhang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chunxiang Wan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yanwen Sun
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chenxi Qiu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
19
|
Sun Y, Shi M, Lu T, Ding D, Sun Y, Yuan Y. Bio-removal of PtCl 62- complex by Galdieria sulphuraria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149021. [PMID: 34280622 DOI: 10.1016/j.scitotenv.2021.149021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Bio-removal of negative charged platinum complex is of great challenge owing to electrostatic repulsions between PtCl62- and general extracellular polymeric substance (EPS) of microorganism. Galdieria sulphuraria (GS) are thermophilic and acidophilic microalga with specific metabolism, which subsequently lead to their unique cellular compositions such as EPS and phycocyanin, possibly providing a strategy to deal with negative charged metal complex. Accordingly, G. sulphuraria are employed to remove negative charged PtCl62- complex with initial concentrations ranging from 0, 10, 20, 30, to 45 ppm. The growth rates of G. sulphuraria with microalgae named as GS-0, GS-10, GS-20, GS-30, and GS-45, respectively, and simultaneously bio-removal efficiencies of PtCl62- are investigated. G. sulphuraria are independent to PtCl62- within 0-30 ppm, while they are inhibited within 45 ppm of PtCl62-. The PtCl62- removal efficiencies of GS-10, GS-20, and GS-30 increase from 94.58%, 95.52%, to 95.92%, while decrease to 71.81% of GS-45. About 92.39%, 93.77%, 94.29%, and 75.21% of PtCl62- adsorbed are accumulated within GS-10, GS-20, GS-30, GS-45, with few in EPS. The PtCl62- complexes accumulated in EPS and algae cells are possibly decomposed to PtCl4 according to the increasing zeta potentials of EPS and algae cells. The results indicate that PtCl62- is efficiently removed by G. sulphuraria, achieving bio-removal of negative charged PtCl62- complex from wastewater.
Collapse
Affiliation(s)
- Yabo Sun
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui 230039, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, PR China
| | - Menghan Shi
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui 230039, PR China
| | - Tao Lu
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui 230039, PR China
| | - Dan Ding
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui 230039, PR China
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui 230039, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, PR China.
| | - Yupeng Yuan
- School of Chemistry & Chemical Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui 230039, PR China
| |
Collapse
|
20
|
Ge D, Zhu Y, Li G, Yuan H, Zhu N. Identifying the key sludge properties characteristics in Fe 2+-activated persulfate conditioning for dewaterability amelioration and engineering implementation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113204. [PMID: 34243089 DOI: 10.1016/j.jenvman.2021.113204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Fe2+-activated persulfate process has been introduced into sludge conditioning currently, however the key sludge properties characteristics are worthwhile comprehensively considering for the engineering implementation and management. The results indicated that both the optimal dosages of persulfate and Fe2+ were 0.6 mmol/gTS for sludge dewaterability amelioration, and the reduction efficiencies of capillary suction time (CST), specific resistance of filtration (SRF), and water content (Wc) of dewatered sludge cake reached to 90.5%, 97.2%, and 22.4%, respectively. Significantly, the persulfate and Fe2+ exerted distinctive roles in the conditioning process. The increased persulfate could promote the oxidatively disintegrated effect on sludge flocs, rendering the decrease of particle size. With the oxidative decomposition of the negatively charged biopolymers, sludge zeta potential rose gradually. However, Fe2+ contributed to more persulfate activation to generate free radicals, and the produced Fe3+ could further electrically neutralize the broken sludge fragments. The core mechanism of Fe2+-activated persulfate conditioning is "destroying and re-building" of sludge flocs. Noteworthily, EPS protein was oxidatively degraded more preferentially than EPS polysaccharide, and the decrease of the α-helix content of EPS protein was conducive to the enhancement of sludge dewaterability. Furthermore, the hydrophilic functional groups reduced clearly and element chemical states on sludge flocs altered pronouncedly, also the destroyed structure and microchannel facilitated the flowability of water. These findings provide theoretical and technical support for the practical engineering implementation of the Fe2+-activated persulfate conditioning process.
Collapse
Affiliation(s)
- Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yidan Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, 321025, China
| | - Guobiao Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
21
|
Chen Y, Li X, Zizeng W, Feng L, Xie J, Lin Z, Xu Z, Liu B, Li X, Zheng H. Research on a new cationic polyacrylamide (CPAM) with a cationic microblock structure and its enhanced effect on sludge condition and dewatering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51865-51878. [PMID: 33990923 DOI: 10.1007/s11356-021-14325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Flocculation is one of the commonly used sludge conditioning methods in water supply plants, which can improve the sludge dewatering performance by reducing the specific resistance of sludge (SRF), decreasing the amount of sludge, and finally lowering the transportation cost and subsequent disposal cost of sludge. Therefore, it is particularly important to develop new and efficient flocculants. In this paper, the template copolymer of acryloxy trimethylammonium chloride (DAC) and acrylamide (AM) was successfully synthesized by microwave-template copolymerization (MV-TP) using sodium polyacrylate (NaPAA) as template. The template copolymer was analyzed by infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), and scanning electron microscopy (SEM). It was found that this template copolymer had obvious cationic microblock structure. In addition, the test results of association constant (KM) and polymerization kinetics showed that the MW-TP was assigned to free radical initiated polymerization and the polymerization mechanism was I Zip-up (ZIP). It confirmed the formation of cation fragment structure again. Due to its dense positive charges in this new cationic microblock structure, it greatly improved the functions of electric neutralization, electrical patching, and adsorption bridging. The cationic fragment structure in the template copolymer could help to generate large and dense floc structure and form stable drainage channels. Under external pressure, these large and compact floc structures had greater compressive resistance, which avoided deformation and blockage of drainage channels and voids. It was beneficial to reduce SRF and evidently enhanced sludge dewatering performance.
Collapse
Affiliation(s)
- Yuning Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuhao Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Wang Zizeng
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Jiehong Xie
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zeluan Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zhihong Xu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, No 100, Waihuan Xi Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiang Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Key Laboratory of Energy Engineering Mechanics & Disaster Prevention and Mitigation, Chongqing, 401331, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
22
|
Li Q, Zhang S, Gholizadeh M, Hu X, Yuan X, Sarkar B, Vithanage M, Mašek O, Ok YS. Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147381. [PMID: 33975118 DOI: 10.1016/j.scitotenv.2021.147381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Swine and chicken manures are abundant solid wastes that can be converted into carbonaceous materials through hydrothermal carbonization (HTC). Owing to their unique biochemical compositions, co-HTC of these two types of manures may have significant implications for the generated products. We investigated the co-HTC of swine manure and chicken manure to understand the influence of the interaction between contrasting manures on the properties of the derived products. The results indicated that co-HTC treatment enhanced the formation of solid product and improved the C and N contents, heating value, and energy yield of the resulting hydrochar. Regarding the ignition temperature and comprehensive combustion index, the combustion properties of the hydrochar were enhanced owing to the mutual effect of the HTC intermediates. Additionally, the interaction of the intermediates significantly impacted the transfer of nitrogenous species and generation of organic acids and organic polymers with fused-ring structures. Therefore, co-HTC processing of animal manures could potentially provide a sustainable pathway for the conversion of animal waste into solid products with improved characteristics compared to those produced by treating the two feedstocks separately.
Collapse
Affiliation(s)
- Qingyin Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mortaza Gholizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Xun Hu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Xiangzhou Yuan
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Alexander Crum Brown Road, Crew Building, EH9 3JN Edinburgh, UK
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
Fe(NO3)3 assisted hydrothermal carbonization of sewage sludge: Focusing on characteristics of hydrochar and aqueous phase. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Izydorczyk G, Mikula K, Skrzypczak D, Trzaska K, Moustakas K, Witek-Krowiak A, Chojnacka K. Agricultural and non-agricultural directions of bio-based sewage sludge valorization by chemical conditioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47725-47740. [PMID: 34278553 PMCID: PMC8410704 DOI: 10.1007/s11356-021-15293-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
This literature review outlines the most important-agricultural and non-agricultural-types of sewage sludge management. The potential of waste sludge protein hydrolysates obtained by chemical sludge conditioning was reported. The discussed areas include acidic and alkaline hydrolysis, lime conditioning, polyelectrolyte dewatering and other supporting techniques such as ultrasounds, microwave or thermal methods. The legislative aspects related to the indication of the development method and admission to various applications based on specified criteria were discussed. Particular attention was devoted to the legally regulated content of toxic elements: cadmium, lead, nickel, mercury, chromium and microelements that may be toxic: copper and zinc. Various methods of extracting valuable proteins from sewage sludge have been proposed: chemical, physical and enzymatic. While developing the process concept, you need to consider extraction efficiency (time, temperature, humidity, pH), drainage efficiency of post-extraction residues and directions of their management. The final process optimization is crucial. Despite the development of assumptions for various technologies, excess sewage sludge remains a big problem for sewage treatment plants. The high costs of enzymatic hydrolysis, thermal hydrolysis and ultrasonic methods and the need for a neutralizing agent in acid solubilization limit the rapid implementation of these processes in industrial practice.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Krzystof Trzaska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
25
|
Hydrothermal carbonization of sewage sludge: Catalytic effect of Cl− on hydrochars physicochemical properties. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Hu J, Ma W, Pan Y, Cheng Z, Yu S, Gao J, Zhang Z, Wan C, Qiu C. Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface. CHEMOSPHERE 2021; 276:130170. [PMID: 33743426 DOI: 10.1016/j.chemosphere.2021.130170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT calculation proves the Fe doping introduces the impurity level and decreases the work function from 5.071 eV to 5.045 eV, improves the charge separation of ZnO, and eventually enhances the catalytic reaction efficiency. Characterizing the catalytic reaction process by three-dimensional fluorescence (3D EEM) and fluorescence regional integration (FRI) method, it is found that the T-EPS solution can be degraded 75.8% by Fe-ZnO in 12 min, while ZnO can only degrade 32.2%. Combining with high-resolution scanning probe microscope (HR-SPM) and attenuated total reflection method (ATR-FTIR), hydration layers consist with hydroxyl layer (∼0.23 nm) and water molecular layer (∼0.27 nm) are observed at the interface between Fe-ZnO and T-EPS solution, and terminal hydroxyl group (OHt) is considered to be the active site for the generation of radicals. This study provides an idea for exploring the mechanism of tribo-catalytic reaction and shows its application prospect in the field of microbial inhibition in water.
Collapse
Affiliation(s)
- Jinglu Hu
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Wei Ma
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yuzhen Pan
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Shuangen Yu
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Jian Gao
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Zhe Zhang
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Chunxiang Wan
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenxi Qiu
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
27
|
Tong S, Shen J, Jiang X, Li J, Sun X, Xu Z, Chen D. Recycle of Fenton sludge through one-step synthesis of aminated magnetic hydrochar for Pb 2+ removal from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124581. [PMID: 33302190 DOI: 10.1016/j.jhazmat.2020.124581] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
In order to achieve proper disposal of Fenton sludge, a new recycle method for preparing adsorbents based on one-step hydrothermal carbonization synthesis of aminated hydrochar from Fenton sludge (AHFS) was developed. It was found that AHFS prepared at 340 °C for 60 min showed Pb2+ adsorption capacity as high as 359.83 mg g-1. Adsorption kinetics and thermodynamics results indicated that chemical interaction, intra-particle diffusion and monolayer homogeneous surface of AHFS dominated in adsorption process. The contribution proportion of different mechanisms, including cation-exchange (43.15%), acidic groups complexation (28.17%) and amino groups complexation (24.06%) to overall Pb2+ adsorption, demonstrated that complexation of surface functional groups played the dominated role in the adsorption process. Especially, the addition of amino was conducive to the increased adsorption capacity of hydrochar. In addition, according to the regeneration test, the magnetic AHFS exhibited a satisfactory reproducibility and recyclability. These findings illustrated that the synthesis of aminated magnetic hydrochar not only provided an innovative and efficient heavy metal adsorbent to remove Pb2+ from wastewater, but also explored a new method for the resource utilization of Fenton sludge.
Collapse
Affiliation(s)
- Siqi Tong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhixiang Xu
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
28
|
Chen K, Liu J, Huang S, Mei M, Chen S, Wang T, Li J. Evaluation of the combined effect of sodium persulfate and thermal hydrolysis on sludge dewatering performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7586-7597. [PMID: 33037543 DOI: 10.1007/s11356-020-11123-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This innovative study makes use of a thermal hydrolysis process (THP) and the conditioner sodium persulfate (SPS) to improve the dewaterability of sewage sludge. The best-operating conditions were optimized using response surface methodology (RSM): 100 mg/g of dry solids (DS) of SPS, 101 min of reaction time of THP, and a temperature of 200 °C. Distribution of extracellular polymeric substances (EPS), zeta potential, bound water, and solid characters were analyzed to reveal the mechanisms involved in the dewatering process. These results indicate that the sewage sludge after treatment (SPS combined with THP) had a superior dewaterability. The specific resistance to filtration (SRF) under the best conditions was 0.51 × 1011 m/kg, decreasing by 91.65% compared to the raw sludge (RS) (6.11 × 1011 m/kg). This mechanism could be explained as follows: (1) Aromaticity and hydrophobicity of sludge cake after SPS + THP treatment was increased; (2) sludge flocs were re-flocculated by charge neutralization, giving rise to a loose and porous structure; (3) the structure of extracellular polymeric substances and cells was destroyed, and the bound water was released. Overall, the conditioning by combination of SPS and THP is an effective mean to improve sewage sludge dewaterability. Graphical abstract.
Collapse
Affiliation(s)
- Kai Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Simian Huang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Meng Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Si Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Teng Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China.
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China.
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China.
- Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430073, China.
| |
Collapse
|
29
|
Zhou C, Zhou H, Huang B, Yao G, Lai B. Recent advances in the preparation, application and end-of-life treatment of magnetic waste-derived catalysts for the pollutant oxidation degradation in water. CHEMOSPHERE 2021; 263:128197. [PMID: 33297162 DOI: 10.1016/j.chemosphere.2020.128197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
30
|
Li J, Pan L, Yu G, Li C, Xie S, Wang Y. Synthesis of an easily recyclable and safe adsorbent from sludge pyrochar for ciprofloxacin adsorption. ENVIRONMENTAL RESEARCH 2021; 192:110258. [PMID: 33011224 DOI: 10.1016/j.envres.2020.110258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Utilization of sludge pyrochar (SP) is the terminal step to loop the entire harmless disposal process of sewage sludge with pyrolysis. A new, easily recyclable, and safe adsorbent with well-immobilized heavy metals (HMs) was prepared from SP for ciprofloxacin (CIP) adsorption. The operational conditions for the adsorbent preparation were systematically optimized based on recycling rate and adsorption performance. Additionally, the adsorption conditions, adsorption kinetics, isotherms, and regeneration of adsorbents were further investigated in the present study. The results showed that easily recyclable and safe adsorbents were successfully prepared at 1100 °C under N2 atmospheric conditions (SPA-N-1100) with a maximum CIP adsorption capacity of 10.42 mg/g. SPA-N-1100 exhibited good CIP adsorption performance at an adsorption temperature of 45 °C and pH between 8.0 and 9.0. The adsorbents were regenerated by thermal desorption at 450 °C with a thorough decomposition of CIP. The adsorption mechanism was mainly dominated by its special porous microspheres-accumulation structure and surface species (e.g., FeP and graphite). Moreover, HMs in the adsorbents were well immobilized in SPA-N-1100 by the generation of new metal mineral phases and encapsulation of melting minerals, which had an ultralow potential for ecological risk during application.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Lanjia Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guangwei Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Chunxing Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK, 2800, Denmark
| | - Shengyu Xie
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
31
|
Xu ZX, Song H, Li PJ, Zhu X, Zhang S, Wang Q, Duan PG, Hu X. A new method for removal of nitrogen in sewage sludge-derived hydrochar with hydrotalcite as the catalyst. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122833. [PMID: 32497858 DOI: 10.1016/j.jhazmat.2020.122833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The high content of nitrogen in hydrochar produced from hydrothermal carbonization (HTC) of sewage sludge (SS) leads to serious NOx pollution when the hydrochar is used as a solid fuel. Mg-Ga layered double hydroxides (LDHs), Mg-Al LDHs and their calcined samples (layered double oxides, LDO) were prepared. The LDHs and LDO all can notably promote the removal of nitrogen element, in which organic-N was transferred to NH4+-N to cause increasing pH value. Mg-Al LDO showed the highest efficiency for the removal of nitrogen among the catalysts. The thermal decomposition of the N-organic matter with acidic sites in catalyst was the key step to release NH3. The key role of basic sites in Mg-Al LDO was that it can effectively destroy the cell wall and extracellular polymeric substances structure. The lipid-like substance did not participate in the carbonization reaction, but they can be absorbed by the hydrochar. Partial SS floc directly transformed to hydrochar according to "solid-solid" reaction. The reaction pathways of remove nitrogen were proposed.
Collapse
Affiliation(s)
- Zhi-Xiang Xu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Hao Song
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Pei-Jun Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuan Zhu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shu Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, 210037, Nanjing, China
| | - Qian Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Pei-Gao Duan
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Xun Hu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
32
|
Liang J, Zhang P, Cai Y, Wang Q, Zhou Z. Thermal effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1406-1411. [PMID: 32291829 DOI: 10.1002/wer.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This review paper focuses on the researches published in 2019 in the field of thermal effects in wastewater and solid waste treatment. The content of this review paper includes five parts: wastewater and sludge treatment, nutrient removal and recovery, membrane technology, heavy metal removal and immobilization, and organic waste utilization. © 2020 Water Environment Federation PRACTITIONER POINTS: Thermal effect plays an important role in treatment of wastewater and sewage sludge. Recovery of nitrogen and phosphorus from wastewater and sewage sludge reduces environmental pollution and offers new products. Temperature improves removal and recovery of heavy metals and organic wastes.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| | - Zeyan Zhou
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Brisolara KB, Gentile B, Puszykowski K, Bourgeois J. Residuals, sludge, and biosolids: Advancements in the field. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1541-1551. [PMID: 32668078 DOI: 10.1002/wer.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Advancements in the field of residuals, sludge, and biosolids have been made in 2019. This review outlines the major contributions of researchers that have been published in peer-reviewed journals and conference proceedings throughout 2019 and includes brief summaries from over 125 articles. The review is organized in sections including life cycle and risk assessments; characteristics, quality, and measurement including micropollutants, nanoparticles, pathogens, and metals; sludge treatment technologies including dewatering, digestion, composting, and wetlands; disposal and reuse including adsorbents, land application and agricultural uses, nutrient recovery, and innovative uses; odor and air emissions; and energy issues.
Collapse
Affiliation(s)
- Kari B Brisolara
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Bailey Gentile
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Kate Puszykowski
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John Bourgeois
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
34
|
Chen S, Huang J, Xiao T, Gao J, Bai J, Luo W, Dong B. Carbon emissions under different domestic waste treatment modes induced by garbage classification: Case study in pilot communities in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137193. [PMID: 32062281 DOI: 10.1016/j.scitotenv.2020.137193] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The GHGs contributions (tally by carbon emissions) during treatment of domestic food waste and residual waste from pilot communities (contained 2365 families) in Shanghai, China, under different Modes induced by garbage classification were investigated. It was found that under the present condition of garbage classification in Shanghai, 51.8% of the food waste could be separated finally. With garbage classification, the load of landfill was saved by 17.3% (Mode 2) and 16.5% (Mode 3), the moisture of garbage for incineration was reduced by 13.6%, and the lower heating value (LHV) of garbage was increased by 16.2%. Applying the life-cycle assessment (LCA) methodology and Life Cycle Inventory (LCI) with material flows, net carbon emissions during the treatment of garbage were found to be in the following order: Mode 3 (1.60 × 10-3 kg CE/kg waste) < Mode 2 (4.85 × 10-3 kg CE/kg waste) < Mode 1 (4.94 × 10-3 kg CE/kg waste) < landfill (1.49 × 10-2 kg CE/kg waste). Mode 2 and Mode 3 were replaceable patterns of Mode 1, and anaerobic digestion was the recommendable strategy to recover energy from food waste. Especially, there was no obvious benefit of increasing the separation proportion of food waste to 60% (or above) for reducing net carbon emissions in the following treatment processes.
Collapse
Affiliation(s)
- Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jialiang Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianfeng Bai
- WEEE Research Centre of Shanghai Second Polytechnic University, Shanghai 201209, China
| | - Wei Luo
- Beijing Jinghuan Intelligent Environmental Protection Technology Co., Ltd, Beijing 100101, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
35
|
Wu X, Li X, Yang Q, Xu Q, Tao Z, Huang X, Wu Y, Tao L, Pi Z, Chen Z, Wang D. Effect of citric acid on extracellular polymeric substances disruption and cell lysis in the waste activated sludge by pH regulation. BIORESOURCE TECHNOLOGY 2020; 302:122859. [PMID: 32018085 DOI: 10.1016/j.biortech.2020.122859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
This paper investigated the effects of citric acid (CA) on extracellular polymer destruction and cell lysis in sludge at different initial pH by measuring capillary suction time (CST), extracellular polymeric substances (EPS) and intracellular bound water. The results indicated that under CA concentration at 0.05 g/g suspended solids (SS) and initial pH 4, the CST value decreased from 175.5 s to 112.3 s, slime extracellular polymeric substances (S-EPS) and loosely bound EPS (LB-EPS) content respectively to increase from 4.92 to 41.43, 2.27 to 5.49 mg/g volatile suspended solids (Vss), while tightly bound EPS (TB-EPS) content to decrease from 12.35 to 5.01 mg/g (Vss), which suggested CA could disrupt outer EPS effectively. Intracellular bound water content decreased from 1.23 g/g to 0.41 g/g dry solid (DS). As a result, CA could release intracellular bound water effectively, thereby improving sludge dewatering degree.
Collapse
Affiliation(s)
- Xuewei Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ziletao Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoding Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - You Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lingjuan Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhuo Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
36
|
Gao J, Wang Y, Yan Y, Li Z, Chen M. Protein extraction from excess sludge by alkali-thermal hydrolysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8628-8637. [PMID: 31904100 DOI: 10.1007/s11356-019-07188-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The protein in excess sludge can be extracted effectively by the alkali-thermal method, and the extracted protein can be used as a foaming agent and in other industrial raw materials to realize its resource utilization. In this paper, the factors influencing sludge protein extraction by the alkali-thermal method were optimized based on the protein extraction rate and the polypeptide content, which determine the foaming performance of the extracted protein. The results showed that the optimal conditions were a pH of 12, a temperature of 120 °C, a reaction time of 4 h, and a sludge moisture content of 92%. Under these optimized conditions, the extraction rate of protein and the concentration of polypeptides were 88.3% and 6599 mg/L, respectively. Additionally, the foaming performance of the extracted protein solution was tested, and the foamability and foam stability were close to 450% and 88.8%, respectively. Therefore, the sludge protein extracted by the alkali-thermal method can meet the relevant standards of foam extinguishing agents and concrete foaming agents in China. In addition, the dewatering performance of the hydrolyzed sludge was improved by 93.1%, which provided favorable conditions for the subsequent separation of the protein solution.
Collapse
Affiliation(s)
- Jianlei Gao
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingchun Wang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixin Yan
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zheng Li
- Zhengzhou University Multi-Functional Design and Research Academy Co, Zhengzhou, 450002, China
| | - Manli Chen
- Zhengzhou University Multi-Functional Design and Research Academy Co, Zhengzhou, 450002, China
| |
Collapse
|