1
|
Hosseinian E, Moghanlou AO, Nanekaran FS, Khanizadeh B, Tarighi NM. Synthesis of rGO/ CuBi2O4 nanocomposite as an effective photocatalyst in the reduction of nitroaromatic compounds to corresponding amines under visible light. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2024; 99:2464-2481. [DOI: 10.1002/jctb.7735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/06/2024] [Indexed: 01/05/2025]
Abstract
AbstractBACKGROUNDChemical pollutants, such as nitroaromatic compounds, have been a significant challenge in recent decades of human societies as they contribute to environmental pollution and pose serious health risks due to their high toxicity. One promising and green method to address this issue is the photocatalytic reduction of nitroaromatic compounds to their corresponding amino aromatic compounds. In this study, an rGO/CuBi2O4 nanocomposite was synthesized using the hydrothermal method, involving the simultaneous reduction of graphene oxide and the coupling of CuBi2O4 nanoparticles in its layers. The resulting heterogeneous structure was characterized using various techniques including FTIR, Raman, XPS, XRD, FESEM, TEM, EDAX, UV–Vis DRS, BET, PL spectroscopy, and EIS. Subsequently, the photocatalytic efficiency of the nanocomposite in reducing nitroaromatic compounds to the corresponding aromatic amines under visible light was evaluated.RESULTSThe results indicated that graphene oxide was effectively reduced and coupled with CuBi2O4 nanoparticles in the reduced graphene oxide sheets. The rGO/CuBi2O4 heterogeneous nanocomposite successfully reduced nitroaromatic compounds to the corresponding aromatic amines under visible light. Hydrazine monohydrate was used to supply the necessary hydrogen for the reaction.CONCLUSIONThis study confirmed the high photocatalytic activity of the rGO/CuBi2O4 heterogeneous nanocomposite. Our nanocomposite was more effective than others, reported in similar studies, at reducing nitroaromatic compounds to the corresponding amino aromatic compounds. Additionally, it demonstrated high recycling and reuse properties, as there was no significant change in reaction conversion percentage and nanocomposite amount after 16 reuses. © 2024 Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Elham Hosseinian
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Ali Oji Moghanlou
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Farshid Salimi Nanekaran
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Behnam Khanizadeh
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| | - Nayer Mohammadian Tarighi
- Department of Chemistry, Faculty of Basic Sciences Islamic Azad University, Ardabil Branch Ardabil Iran
| |
Collapse
|
2
|
Li M, Bai L, Jiang S, Sillanpää M, Huang Y, Liu Y. Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131352. [PMID: 37027919 DOI: 10.1016/j.jhazmat.2023.131352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The selective electrochemical reduction of oxygen (O2) via 3e- pathway for the production of hydroxyl radicals (HO) is a promising alternative to conventional electro-Fenton process. Here, we developed a nitrogen-doped CNT-encapsulated Ni nanoparticle electrocatalyst (Ni@N-CNT) with high O2 reduction selectivity for the generation of HO•via 3e- pathway. Exposed graphitized N on the CNT shell, and Ni nanoparticles encapsulated within the tip of the N-CNT, played a key role in the generation of H2O2 intermediate (*HOOH) via a 2e- oxygen reduction reaction. Meanwhile, those encapsulated Ni nanoparticles at the tip of the N-CNT facilitated the sequential HO• generation by directly decomposing the electrogenerated *H2O2 in a 1e- reduction reaction on the N-CNT shell without inducing Fenton reaction. Improved bisphenol A (BPA) degradation efficiency were observed when compared with conventional batch system (97.5% vs 66.4%). Trials using Ni@N-CNT in a flow-through configuration demonstrated a complete removal of BPA within 30 min (k = 0.12 min-1) with a limited energy consumption of 0.068 kW·h·g-1 TOC.
Collapse
Affiliation(s)
- Mohua Li
- College of Life Science, Taizhou University, Taizhou 318000, China; College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liang Bai
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou 318000, China.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
3
|
Deka JR, Saikia D, Tsai HG, Chen K, Kuan W, Hsu H, Kao H, Yang Y. One Pot Synthesis of Cubic Mesoporous Silica KIT‐6 Functionalized with Sulfonic Acid for Catalytic Dehydration of Fructose to 5‐Hydroxymethylfurfural. ChemistrySelect 2022. [DOI: 10.1002/slct.202202357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Juti Rani Deka
- Institute of Materials Science and Engineering National Taipei university of Technology Taipei 106 Taiwan, R.O.C
| | - Diganta Saikia
- Department of Chemistry National Central University Chung-Li 32054 Taiwan, R.O.C
| | - Hui‐Hsu Gavin Tsai
- Department of Chemistry National Central University Chung-Li 32054 Taiwan, R.O.C
| | - Ke‐Ting Chen
- Department of Chemistry National Central University Chung-Li 32054 Taiwan, R.O.C
| | - Wei‐Hsuan Kuan
- Department of Chemistry National Central University Chung-Li 32054 Taiwan, R.O.C
| | - Hung‐Cheng Hsu
- Department of Chemistry National Central University Chung-Li 32054 Taiwan, R.O.C
| | - Hsien‐Ming Kao
- Department of Chemistry National Central University Chung-Li 32054 Taiwan, R.O.C
| | - Yung‐Chin Yang
- Institute of Materials Science and Engineering National Taipei university of Technology Taipei 106 Taiwan, R.O.C
| |
Collapse
|
4
|
Liang JL, Chen QN, Zhang JX, Lian WQ, Qiu YX, Xie HY, Liu WT, Xie WT, Xu WQ. A novel triazene-based cadmium metal–organic framework as a selective fluorescent sensor for Hg2+. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Nayl AA, Abd-Elhamid AI, Aly AA, Bräse S. Recent progress in the applications of silica-based nanoparticles. RSC Adv 2022; 12:13706-13726. [PMID: 35530394 PMCID: PMC9073631 DOI: 10.1039/d2ra01587k] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalized silica nanoparticles (SiO2 NPs) have attracted great attention due to their promising distinctive, versatile, and privileged physiochemical characteristics. These enhanced properties make this type of functionalized nanoparticles particularly appropriate for different applications. A lack of reviews that summarizes the fabrications of such nanomaterials and their different applications in the same work has been observed in the literature. Therefore, in this work, we will discuss the recent signs of progress in the fabrication of functionalized silica nanoparticles and their attractive applications that have been extensively highlighted (advanced catalysis, drug-delivery, biomedical applications, environmental remediation applications, and wastewater treatment). These applications have been selected for demonstrating the role of the surface modification step on the various properties of the silica surface. In addition, the current challenges in the applications of functionalized silica nanoparticles and corresponding strategies to discuss these issues and future perspectives for additional improvement have been addressed.
Collapse
Affiliation(s)
- A A Nayl
- Department of Chemistry, College of Science, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - A I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University 61519-El-Minia Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76133 Karlsruhe Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen D-76344 Germany
| |
Collapse
|
7
|
Parida D, Moreau E, Nazir R, Salmeia KA, Frison R, Zhao R, Lehner S, Jovic M, Gaan S. Smart hydrogel-microsphere embedded silver nanoparticle catalyst with high activity and selectivity for the reduction of 4-nitrophenol and azo dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126237. [PMID: 34492989 DOI: 10.1016/j.jhazmat.2021.126237] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
A simple method is reported for the preparation of silver nanoparticle (AgNP) embedded pH-responsive hydrogel microparticle catalyst via Michael addition gelation and in-situ silver nitrate (AgNO3) reduction. The AgNP-hydrogel microsphere exhibited an efficient reduction of pollutants like 4-Nitrophenol (4-NP) and Congo red (CR) under acidic medium with turn over frequency (TOF) of ~170 h-1 and ~124 h-1 respectively. Interestingly, the activity of the catalysts was turned-OFF under a basic medium (≥ pH 12) due to the deswelling pH-responsive matrix surrounding the AgNPs. On the contrary, turning-OFF the hydrogenation of a cationic pollutant like methylene blue (MB) using high pH (≥ 12) was not possible, due to ionic interaction of MB molecules with the negatively charged catalyst at this pH. This feature was used to demonstrate selective hydrogenation of only MB from a mixture of 4-NP and MB. Finally, five recycling steps confirmed the reusability and practical application potential of the catalyst.
Collapse
Affiliation(s)
- Dambarudhar Parida
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland.
| | - Eva Moreau
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Rashid Nazir
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Khalifah A Salmeia
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| | - Ruggero Frison
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf CH-8600, Switzerland
| | - Ruohan Zhao
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Sandro Lehner
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Milijana Jovic
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Sabyasachi Gaan
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland.
| |
Collapse
|
8
|
Bilal M, Bagheri AR, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112685. [PMID: 33930637 DOI: 10.1016/j.jenvman.2021.112685] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Nitroaromatic compounds (NACs) are considered important groups of chemicals mainly produced by human and industrial activities. The large-scale application of these xenobiotics creates contamination of the water and soil environment. Despite applicability, NACs have been caused severe hazardous side effects in animals and human systems like different cancers, anemia, skin irritation, liver damage and mutagenic effects. The effective remediation of the NACs from the environment is a significant concern. Researchers have implemented physicochemical and biological methods for the remediation of NACs from the environment. Most of the applied methods are based on adsorption and degradation approaches. Among these methods, degradation is considered a versatile method for the subsequent removal of NACs due to its exceptional properties like simplicity, easy operation, cost-effectiveness, and availability. Most importantly, the degradation process does not generate hazardous side products and wastes compared to other methods. Hence, the importance of NACs, their remediation, and supreme attributes of the degradation method have encouraged us to review the recent progress and development for the removal of these perilous materials using degradation as a versatile method. Therefore, in this review, (i) NACs, physicochemical properties, and their hazardous side effects on humans and animals are discussed; (ii) Physicochemical methods, microbial, anaerobic bioremediation, mycoremediation, and aerobic degradation approaches for the degradation of NACs were thoroughly vetted; (iii) The possible mechanisms for degradation of NACs were investigated and discussed. (iv) The applied kinetic models for evaluation of the rate of degradation were also assessed and discussed. Finally, (vi) current challenges and future prospects of proposed methods for degradation and removal of NACs were also directed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | | | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Sun D, Yin Z, Zeng W, Cao S. Bimetallic Ag/Cu supported hollow SiO2 sphere drives the efficient hydrogenation of nitroarenes. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Hu H, Lu S, Li T, Zhang Y, Guo C, Zhu H, Jin Y, Du M, Zhang W. Controlled growth of ultrafine metal nanoparticles mediated by solid supports. NANOSCALE ADVANCES 2021; 3:1865-1886. [PMID: 36133082 PMCID: PMC9418945 DOI: 10.1039/d1na00025j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
As a unique class of nanomaterials with a high surface-area-to-volume ratio and narrow size distribution, ultrafine metal nanoparticles (UMNPs) have shown exciting properties in many applications, particularly in the field of catalysis. Growing UMNPs in situ on solid supports enables precise control of the UMNP size, and the supports can effectively prevent the aggregation of UMNPs and maintain their high catalytic activity. In this review, we summarize the recent research progress in controlled growth of UMNPs using various solid supports and their applications in catalysis.
Collapse
Affiliation(s)
- Hongyin Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Yue Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Chenxi Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder CO 80309 USA
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder CO 80309 USA
| |
Collapse
|
11
|
Budi CS, Deka JR, Hsu WC, Saikia D, Chen KT, Kao HM, Yang YC. Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124392. [PMID: 33162242 DOI: 10.1016/j.jhazmat.2020.124392] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, a sub-class of microporous crystalline metal organic frameworks (MOFs) with zeolite-like configurations, i.e., zeolitic imidazolate frameworks of single node ZIF-67 and binary nodes ZIF-Co/Zn are used as the supports to develop Cu nanoparticles based nanocatalysts. Their catalytic activities are comparatively evaluated where Cu(x)@ZIF-Co/Zn exhibits better performances than Cu(x)@ZIF-67 in the reduction of synthetic dyes and nitroarenes. For instance, the Cu(0.25)@ZIF-Co/Zn catalyst shows an excellent reaction rate of 2.088 × 10-2 s-1 and an outstanding activity of 104.4 s-1gcat-1 for the reduction of methyl orange. The same catalyst also performs an exceptional catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol with the activity of 216.5 s-1gcat-1. A synergistic role of unique electronic properties rising from the direct contact of Cu NPs with the bimetallic nodes ZIF-Co/Zn, higher surface area of support, appropriate Cu loading and maintainable microporous frameworks with higher thermal and hydrolytic stability collectively enhances the catalytic activity of Cu(x)@ZIF-Co/Zn. Moreover, this catalyst shows excellent stability and recyclability, which can retain high conversion after reuse for 10 cycles.
Collapse
Affiliation(s)
- Canggih Setya Budi
- Department of Chemistry, National Central University, Chung-Li 32054, Taiwan, ROC
| | - Juti Rani Deka
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Wan-Chi Hsu
- Department of Chemistry, National Central University, Chung-Li 32054, Taiwan, ROC
| | - Diganta Saikia
- Department of Chemistry, National Central University, Chung-Li 32054, Taiwan, ROC
| | - Ke-Ting Chen
- Department of Chemistry, National Central University, Chung-Li 32054, Taiwan, ROC
| | - Hsien-Ming Kao
- Department of Chemistry, National Central University, Chung-Li 32054, Taiwan, ROC.
| | - Yung-Chin Yang
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| |
Collapse
|
12
|
Zhang X, Yang P, Yang B, Bai Y, Liu W, Zhang Y. Evaluation of synergistic effect from Ag-AgCl 1/3Br 1/3I 1/3 composite on photocatalytic degradation the oil field pollutants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119029. [PMID: 33120123 DOI: 10.1016/j.saa.2020.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
A series of Ag/AgX (X = Cl, Br, I; X = Cl, Br, or X = Cl, I, or X = Br, I; X = Cl, Br, and I) composite photocatalysts were synthesized via a facile photoreduction. The several characterization methods of X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS) mapping and X-ray photoelectron spectroscopy (XPS) were characterized the samples. Through evaluation the photocatalytic activity of degradation rhodamine, methyl orange, and phenol, Ag-AgCl1/3Br1/3I1/3 exhibited the superior selective photocatalytic activities than other photocatalysts. The reason for improved photocatalytic property of Ag-AgCl1/3Br1/3I1/3 was attributed to the multifarious halogen atoms with the synergistic effect and the surface plasmon resonance (SPR) effect of Ag0. Furthermore, the recycle experiments were conducted to reveal the stability and reusability, the trapping experiments confirmed the active species of Ag-AgCl1/3Br1/3I1/3.
Collapse
Affiliation(s)
- Xu Zhang
- School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ping Yang
- Sichuan Province Academy of Industrial Environmental Monitoring, Chengdu 610045, China; State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Bo Yang
- College of electrical and mechanical engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yang Bai
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Weihua Liu
- School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Yi Zhang
- National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing 401120, China; Institute of Geology and Mineral Resources, Chongqing 401120, China
| |
Collapse
|
13
|
Simultaneous electrochemical determination of nitrofurantoin and nifedipine with assistance of needle-shaped perovskite structure: barium stannate fabricated glassy carbon electrode. Mikrochim Acta 2021; 188:19. [DOI: 10.1007/s00604-020-04645-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
|
14
|
Murphy M, Manoj D, Saravanakumar D, Thenmozhi K, Senthilkumar S. Water insoluble, self-binding viologen functionalized ionic liquid for simultaneous electrochemical detection of nitrophenol isomers. Anal Chim Acta 2020; 1138:89-98. [DOI: 10.1016/j.aca.2020.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
|
15
|
Pd/Mo2N-TiO2 as efficient catalysts for promoted selective hydrogenation of 4-nitrophenol: A green bio-reducing preparation method. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Chernykh MV, Mikheeva NN, Zaikovskii VI, Mamontov GV. Influence of the Ag Content on the Activity of Ag/CeO2 Catalysts in the Reduction of 4-Nitrophenol at Room Temperature and Atmospheric Pressure. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s002315842005002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|