1
|
Wang Y, Wang Z, Wang K, Liang Z, Wang Q, Ding F, Lu Y, Su C. Insight into the evolution of phosphorous conversion, microbial community and functional gene expression during anaerobic co-digestion of food waste and excess sludge with spicy substances exposure. CHEMOSPHERE 2025; 371:144053. [PMID: 39743152 DOI: 10.1016/j.chemosphere.2024.144053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Garlic and chili are widely used as food flavoring agents in food cooking, therefore might be accumulated in large amounts in food waste (FW). The effects of garlic and chili on the dissolution, hydrolysis, acidification and methanation in an anaerobic co-digestion system were investigated during the combined co-digestion of FW and excess sludge (ES). Additionally, the transformation of phosphorus form and microbial metabolism changes during the process were analyzed. The results showed the addition of garlic and chili promoted the release of protein in the soluble chemical oxygen demand. Secondly, the addition of garlic and chili up-regulated the relative abundances of key coding genes pstS, pstA, pstB and pstC. The relative abundances of the pstS and pstC genes increased by 0.0113% and 0.0021%, respectively, when 10 g garlic was added compared with no garlic. Furthermore, with respect to phosphorus conversion, the addition of garlic inhibited the conversion of solid phosphorus to gaseous phosphorus, whereas the addition of chili had the opposite effect. Meanwhile, garlic and chili inhibited the expression of key coding genes in phosphofructokinase. This work provides new insights into the phosphorus conversion and microbial metabolism in the process of anaerobic co-digestion of FW and ES under the influence of spicy substances.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Kaiyi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhu Liang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qing Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Fengxiu Ding
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
2
|
Padigala CT, Satpati GG, Singhvi M, Goswami L, Kushwaha A, Oraon S, Aleksanyan K, Smykovskaya RS, Rawindran H, Wei LJ, Rajak R, Pandit S, Dikshit PK. Nanotechnological advancement in green hydrogen production from organic waste: Recent developments, techno–economic, and life cycle analyses. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 92:672-693. [DOI: 10.1016/j.ijhydene.2024.10.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Wang J, Cheng G, Zhang J, Shangguan Y, Lu M, Liu X. Feasibility and mechanism of recycling carbon resources from waste cyanobacteria and reducing microcystin toxicity by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132333. [PMID: 37634378 DOI: 10.1016/j.jhazmat.2023.132333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Recycling carbon resources from discarded cyanobacteria is a worthwhile research topic. This study focuses on the use of dielectric barrier discharge (DBD) plasma technology as a pretreatment for anaerobic fermentation of cyanobacteria. The DBD group (58.5 W, 45 min) accumulated the most short chain fatty acids (SCFAs) along with acetate, which were 3.0 and 3.3 times higher than the control. The DBD oxidation system can effectively collapse cyanobacteria extracellular polymer substances and cellular structure, improve the biodegradability of dissolved organic matter, enrich microorganisms produced by hydrolysis and SCFAs, reduce the abundance of SCFAs consumers, thereby promoting the accumulation of SCFAs and accelerating the fermentation process. The microcystin-LR removal rate of 39.8% was obtained in DBD group (58.5 W, 45 min) on day 6 of anaerobic fermentation. The toxicity analysis using the ECOSAR program showed that compared to microcystin-LR, the toxicity of degradation intermediates was reduced. The contribution order of functional active substances to cyanobacteria cracking was obtained as eaq- > •OH > 1O2 > •O2- > ONOO-, while the contribution order to microcystin-LR degradation was eaq- > •OH > •O2- > 1O2 > ONOO-. DBD has the potential to be a revolutionary pretreatment method for cyanobacteria anaerobic fermentation.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Jiahua Zhang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ming Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China.
| |
Collapse
|
4
|
Zhang S, Chen Y, Zhang Z, Ping Q, Li Y. Co-digestion of sulfur-rich vegetable waste with waste activated sludge enhanced phosphorus release and hydrogenotrophic methanogenesis. WATER RESEARCH 2023; 242:120250. [PMID: 37354846 DOI: 10.1016/j.watres.2023.120250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Anaerobic co-digestion of sulfur-rich vegetable waste (SVW) with waste activated sludge (WAS) and the underlying mechanisms associated with methane production and phosphorus (P) release were investigated. Four types of SVW (Chinese cabbage, cabbage, rapeseed cake, and garlic) were utilized for co-digestion with WAS, and the methane yield increased by 7.3%-35.3%; in the meantime, the P release amount from WAS was enhanced by 9.8%-24.9%. The organic carbon in SVW promoted methane production, while organic sulfur and the formation of FeS facilitated P release. Among the four types of SVW, rapeseed cake was identified as the most suitable co-digestion substrate for enhancing both methane production and P release due to its balanced nutrients and relatively high sulfur content. Syntrophic bacteria working with hydrogenotrophic methanogens, iron-reducing bacteria, sulfate-reducing bacteria, and hydrogenotrophic methanogens were enriched. Metabolic pathways related to sulfate reduction and methanogenesis were facilitated, especially hydrogenotrophic methanogenesis. Enzymes involved in hydrogenotrophic methanogenesis were promoted by 76.05%-407.98% with the addition of Chinese cabbage, cabbage, or rapeseed cake. This study provides an eco-friendly technology for promoting P resource and energy recovery from WAS and an in-depth understanding of the corresponding microbial mechanisms.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yifeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Gao Q, Li L, Zhao Q, Wang K, Zhou H, Wang W, Ding J. Insights into high-solids anaerobic digestion of food waste concomitant with sorbate: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 381:129159. [PMID: 37164229 DOI: 10.1016/j.biortech.2023.129159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
High-solids anaerobic digestion (HS-AD) of food waste is increasingly applied commercially. Sorbate, a food preservative extensively used in the food industry, induces potential environmental risks. Results indicated sorbate at 0-10 mg/g VS slightly inhibited methane production, and the cumulative methane yield suggested a negative correlation with 25 mg/g VS sorbate, with a reduction of 15.0% compared to the control (from 285.7 to 253.6 mL CH4/g VS). The reduction in methane yield could be ascribed to the promotion of solubilization and inhibition of acidogenesis and methanogenesis with sorbate addition. Excessive sorbate (25 mg/g VS) resulted in the inhibition of aceticlastic metabolism and the key enzymes activities (e.g., acetate kinase and coenzyme F420). This study deeply elucidated the response mechanism of HS-AD to sorbate, supplemented the potential ecological risk assessment of sorbate, and could provide insights to further prevent the potential risk of sorbate in anaerobic digestion of FW.
Collapse
Affiliation(s)
- Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiye Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
6
|
Xu Q, Long S, Liu X, Duan A, Du M, Lu Q, Leng L, Leu SY, Wang D. Insights into the Occurrence, Fate, Impacts, and Control of Food Additives in Food Waste Anaerobic Digestion: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6761-6775. [PMID: 37070716 DOI: 10.1021/acs.est.2c06345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recovery of biomass energy from food waste through anaerobic digestion as an alternative to fossil energy is of great significance for the development of environmental sustainability and the circular economy. However, a substantial number of food additives (e.g., salt, allicin, capsaicin, allyl isothiocyanate, monosodium glutamate, and nonnutritive sweeteners) are present in food waste, and their interactions with anaerobic digestion might affect energy recovery, which is typically overlooked. This work describes the current understanding of the occurrence and fate of food additives in anaerobic digestion of food waste. The biotransformation pathways of food additives during anaerobic digestion are well discussed. In addition, important discoveries in the effects and underlying mechanisms of food additives on anaerobic digestion are reviewed. The results showed that most of the food additives had negative effects on anaerobic digestion by deactivating functional enzymes, thus inhibiting methane production. By reviewing the response of microbial communities to food additives, we can further improve our understanding of the impact of food additives on anaerobic digestion. Intriguingly, the possibility that food additives may promote the spread of antibiotic resistance genes, and thus threaten ecology and public health, is highlighted. Furthermore, strategies for mitigating the effects of food additives on anaerobic digestion are outlined in terms of optimal operation conditions, effectiveness, and reaction mechanisms, among which chemical methods have been widely used and are effective in promoting the degradation of food additives and increasing methane production. This review aims to advance our understanding of the fate and impact of food additives in anaerobic digestion and to spark novel research ideas for optimizing anaerobic digestion of organic solid waste.
Collapse
Affiliation(s)
- Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Ling Leng
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
7
|
Luo X, Liu Y, Muhmood A, Zhang Q, Wang J, Ruan R, Wang Y, Cui X. Effect of time and temperature of pretreatment and anaerobic co-digestion of rice straw and swine wastewater by domesticated paddy soil microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116218. [PMID: 36108514 DOI: 10.1016/j.jenvman.2022.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Rice straw and swine wastewater are abundant, easy to obtain, and inexpensive biomass materials. Anaerobic digestion of rice straw and swine wastewater effectively regulates the carbon-to-nitrogen ratio and also improves methane production efficiency. The dense lignocellulosic structure, unsuitable carbon-to-nitrogen ratio, and light texture of rice straw hinder its application in anaerobic digestion. Effective pretreatment technologies can improve degradation efficiency and methane production. Our study is the first to apply domesticated paddy soil microbes to enhance the efficiency of hydrolytic acidification of rice straw and swine wastewater at varying temperatures and times. The results show that the highest total organic carbon (1757.2 mg/L), soluble chemical oxygen demand (5341.7 mg/L), and organic acid concentration (4134.6 mg/L) appeared in the hydrolysate after five days of hydrolytic acidification at 37 °C. Moreover, the use of hydrolysate produced 13% more gas and reduced the anaerobic digestion period by ten days compared to the untreated control. This suggests that using domesticated paddy soil microbes as a pretreatment might be a sustainable and cost-effective strategy for improving the degradation efficacy and methane production from lignocellulosic materials.
Collapse
Affiliation(s)
- Xuan Luo
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul, 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| |
Collapse
|
8
|
Fu SF, Wang DH, Xie Z, Zou H, Zheng Y. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154654. [PMID: 35307441 DOI: 10.1016/j.scitotenv.2022.154654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The treatment of food waste digestate with high salinity is a big challenge. This paper evaluated the possibility of using black soldier fly larvae for food waste digestate disposal and insect protein production. Results showed that both digestates from hydrogen and methane fermentations were rich in protein and lipid contents, which benefited the BSFL cultivation. The BSFL reared on digestates from hydrogen and methane fermentations of food waste performed better in pre-pupal weight (19.12% and 41.13% higher, respectively), body length (3.62% and 18.21% higher, respectively) and crude protein contents (7.85% and 39.05% higher, respectively) than that reared on raw food waste. In addition, the maximum body weight growth rate (Rm) of BSFL cultivated on both digestates were 28.28% and 47.10% higher than that of BSFL cultivated on raw food waste, respectively. During BSFL cultivation, organic matter reduction between 40.97% and 46.07% were achieved. Digestates from hydrogen and methane fermentations represent favorable feeding substrates for BSFL cultivation. Using BSFL to treat AD digestate not only provides a digestate disposal approach, but also produces insect biomass and organic fertilizer as value-added byproducts, which shows tremendous potential in digestate disposal.
Collapse
Affiliation(s)
- Shan-Fei Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, PR China.
| | - Dong-Hui Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhong Xie
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
9
|
Wang F, Luo J, Fang S, Huang W, Zhang Y, Zhang L, Cheng X, Du W, Fang F, Cao J, Wu Y. Mechanisms of allicin exposure for the sludge fermentation enhancement: Focusing on the fermentation processes and microbial metabolic traits. J Environ Sci (China) 2022; 115:253-264. [PMID: 34969453 DOI: 10.1016/j.jes.2021.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 06/14/2023]
Abstract
As a frequently used product with antimicrobial activity, consumed allicin might be discharged and concentrated in waste-activated sludge (WAS). However, the influence of allicin (as an exogenous pollutant) on WAS fermentation has not been clearly revealed. This study aimed to disclose the impacts of allicin on volatile fatty acid (VFA) generation during WAS fermentation. The results showed that the appropriate presence of allicin (10 mg/g TSS) significantly enhanced the VFA yield (1894 versus 575 mg COD/L in the control) with increased acetate proportion (24.3%). Further exploration found that allicin promoted WAS solubilization, hydrolysis and acidification simultaneously. Metagenomic analysis revealed that the key genes involved in extracellular hydrolysis metabolism (i.e., CAZymes), membrane transport (i.e., gtsA and ytfT), substrate metabolism (i.e., yhdR and pfkC) and fatty acid synthesis (i.e., accA and accD) were all highly expressed. Allicin also induced the bacteria to produce more signalling molecules and regulate cellular functions, thereby enhancing the microbial adaptive and regulatory capacity to the unfavourable environment. Moreover, the variations in fermentative microbes and their contributions to the upregulation of functional genes (i.e., ytfR, gltL, INV, iolD and pflD) for VFA generation were disclosed. Overall, the simultaneous stimulation of functional microbial abundances and metabolic activities contributed to VFA production in allicin-conditioned reactors.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yunqi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Wu Y, Lu M, Liu X, Chen H, Deng Z, Fu Q, Wang D, Chen Y, Zhong Y. Insights into how poly aluminum chloride and poly ferric sulfate affect methane production from anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151413. [PMID: 34774636 DOI: 10.1016/j.scitotenv.2021.151413] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Poly aluminum chloride (PAC) and poly ferric sulfate (PFS) are widely used in wastewater treatment and sludge dewatering, resulting in their amounts being accumulated substantially in waste activated sludge (WAS). Till now, however, little information about their influence on WAS digestion is available. This work therefore aims to provide insights into how PAC and PFS affect sludge anaerobic digestion. The experimental results showed that PFS's inhibition to methane production was much severer than PAC, in control reactor (0 mg Al or Fe /g TSS), the maximum cumulative methane production was 152.99 ± 7.18 mL/g VSS, when flocculants concentration increased to 30 mg Al/g TSS or 30 mg Fe/g TSS, the yields decreased to 129.54 ± 6.18 mL/g VSS and 89.52 ± 4.82 mL/g VSS respectively. Mechanism explorations exhibited that protein in WAS could bond with flocculants, which would inhibit protein bioconversion. It was also observed that the apparent activation energy (AAE) of organic solubilisation of PAC and PFS-contained sludge were increased by 38.58% and 18.67% respectively. Meanwhile, compared to the PFS, PAC led to more serious suppression of hydrolysis and acidogenesis processes, with propionic acid used as substrate, PFS inhibit methanogenesis more severely than PAC. Illumina MiSeq sequencing analyses showed that the number of sulfate-reducing bacteria (SRB) enriched obviously in PFS reactor. The results revealed that although PFS reduced methane production more severely than PAC, the reduction was mainly enforced by the activity of SRB but not organic enmeshment. Furthermore, PAC severely suppresses acetotrophic methanogens but PFS depress hydrogenotrophic methanogenesis microorganism mainly. Additionally, malodor control and dewaterability enhancement of digested sludge can be realized with PAC existence. The finding obtained in this study would provide insights into the PFS or PAC-involved sludge anaerobic digestion system and might support the important implication for further manipulate WAS treatment in the future.
Collapse
Affiliation(s)
- Yanxin Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Min Lu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China
| |
Collapse
|
11
|
Yan C, Liu Y, Cui X, Cao L, Xiong J, Zhang Q, Wang Y, Ruan R. Improving the efficiency of anaerobic digestion: Domesticated paddy soil microbes enhance the hydrolytic acidification of rice straw and pig manure. BIORESOURCE TECHNOLOGY 2022; 345:126570. [PMID: 34921923 DOI: 10.1016/j.biortech.2021.126570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Improving the efficiency of hydrolytic acidification is critical for methane production from agricultural waste. This study is the first to apply domesticated paddy soil microbes to (DPSM) enhance the hydrolytic acidification of rice straw (RS) and pig manure (PM) to obtain acidizing fluid for anaerobic digestion (AD). At a substrate concentration of 20%, the inoculation of an RS-PM mixture (1:3) with 35% DPSM degraded the volatile solids by 48.1% and yielded 6.8 g/L of volatile fatty acids and 4.7 g/L of acetic acid after seven days of hydrolytic acidification. After 10 days of subsequent AD, the cumulative methane production of the acidizing fluid was 304.96 mL/g COD, similar (P > 0.05) to the control (318.27 mL/g COD). However, the methane production time decreased by 43.4% (from 30 to 17 days), thereby improving the AD efficiency. Inoculation with DPSM is therefore an effective pre-treatment for agricultural waste for methane production.
Collapse
Affiliation(s)
- Chen Yan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jianghua Xiong
- Agricultural Ecology and Resources Protection Station of Jiangxi Province, Jiangxi, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| |
Collapse
|
12
|
Yin M, Chen H. Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 344:126182. [PMID: 34710600 DOI: 10.1016/j.biortech.2021.126182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the roles of chitosan (CTS) in anaerobic digestion of Waste activated sludge (WAS) were investigated. The results show that the methane production potential of WAS is positively correlated with the CTS content. The presence of 30 g/kg total suspended solids CTS increased the cumulative methane production from 215 ± 1.52 to 272 ± 1.83 mL/g volatile suspended solids. The positively charged amino groups in CTS neutralize the hydroxyl and carboxyl groups of extracellular polymeric substances, which reduces the negative charge on the surface of sludge and promotes sludge agglomeration, thereby inhibiting the release of organic matter. CTS also inhibits hydrolysis and acidification by immobilizing hydrolases and acidulase enzymes. However, CTS flocculates humus to avoid its interference with electron transfer, thereby enhancing the activity of coenzyme F420 and methanogenesis. In addition, CTS increases the abundance of methanogens, which also contributes to methane production.
Collapse
Affiliation(s)
- Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
13
|
Luo J, Zhang L, Du W, Cheng X, Fang F, Cao J, Wu Y, Su Y. Metagenomic approach reveals the fates and mechanisms of antibiotic resistance genes exposed to allicins during waste activated sludge fermentation: Insight of the microbial community, cellular status and gene regulation. BIORESOURCE TECHNOLOGY 2021; 342:125998. [PMID: 34592621 DOI: 10.1016/j.biortech.2021.125998] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
This work revealed the impacts of exogeneous allicins on the antibiotic resistance genes (ARGs) variations during waste activated sludge (WAS) fermentation process. The overall abundance of ARGs was respectively reduced by 4.84 and 9.42% in presence of 0.01 and 0.05 g allicin/g TSS. Allicins disrupted the EPS structure and increased the permeability of cell membranes, which resulted in the release of ARGs for subsequent removal. Allicins also reduced intracellular ATP levels, which was disadvantageous to ARGs dissemination. Besides, allicins affected the microbial community and decreased the abundance of potential hosts based on bacterial taxa-ARGs network analysis. Moreover, the metabolic pathways and genetic expressions (i.e., two-component system, quorum sensing, and SOS response) involved in ARGs propagation were down-regulated, which caused the ARGs alleviation in allicins-stressed reactors. Overall, the simultaneous responses of cellular status, bacterial host, and genetic regulation accounted for the effective ARGs reduction induced by allicins during WAS fermentation.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences. East China Normal University, Shanghai 200241, China.
| |
Collapse
|
14
|
Bilal M, Mehmood T, Nadeem F, Barbosa AM, de Souza RL, Pompeu GB, Meer B, Ferreira LFR, Iqbal HMN. Enzyme-Assisted Transformation of Lignin-Based Food Bio-residues into High-Value Products with a Zero-Waste Theme: A Review. WASTE AND BIOMASS VALORIZATION 2021. [DOI: 10.1007/s12649-021-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Hosseinzadeh A, Zhou JL, Navidpour AH, Altaee A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. BIORESOURCE TECHNOLOGY 2021; 330:124998. [PMID: 33757679 DOI: 10.1016/j.biortech.2021.124998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Renewable energy, water conservation, and environmental protection are the most important challenges today. Osmotic membrane bioreactor (OMBR) is an innovative process showing superior performance in bioenergy production, eliminating contaminants, and low fouling tendency. However, salinity build-up is the main drawback of this process. Identifying the microbial community can improve the process in bioenergy production and contaminant treatment. This review aims to study the recent progress and challenges of OMBRs in contaminant removal, microbial communities and bioenergy production. OMBRs are widely reported to remove over 80% of total organic carbon, PO43-, NH4+ and emerging contaminants from wastewater. The most important microbial phyla for both hydrogen and methane production in OMBR are Firmicutes, Proteobacteria and Bacteroidetes. Firmicutes' dominance in anaerobic processes is considerably increased from usually 20% at the beginning to 80% under stable condition. Overall, OMBR process has great potential to be applied for simultaneous bioenergy production and wastewater treatment.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Amir H Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
16
|
Xiao L, Wang Y, Lichtfouse E, Li Z, Kumar PS, Liu J, Feng D, Yang Q, Liu F. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Digestion of Wastewater: A Review. Front Microbiol 2021; 11:611613. [PMID: 33584577 PMCID: PMC7875893 DOI: 10.3389/fmicb.2020.611613] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recycling waste into new materials and energy is becoming a major challenge in the context of the future circular economy, calling for advanced methods of waste treatment. For instance, microbially-mediated anaerobic digestion is widely used for conversion of sewage sludge into biomethane, fertilizers and other products, yet the efficiency of microbial digestion is limited by the occurrence of antibiotics in sludges, originating from drug consumption for human and animal health. Here we present antibiotic levels in Chinese wastewater, then we review the effects of antibiotics on hydrolysis, acidogenesis and methanogenesis, with focus on macrolides, tetracyclines, β-lactams and antibiotic mixtures. We detail effects of antibiotics on fermentative bacteria and methanogenic archaea. Most results display adverse effects of antibiotics on anaerobic digestion, yet some antibiotics promote hydrolysis, acidogenesis and methanogenesis.
Collapse
Affiliation(s)
- Leilei Xiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Yiping Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France.,State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenkai Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Dawei Feng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| |
Collapse
|
17
|
Du M, Liu X, Wang D, Yang Q, Duan A, Chen H, Liu Y, Wang Q, Ni BJ. Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. WATER RESEARCH 2021; 188:116539. [PMID: 33125995 DOI: 10.1016/j.watres.2020.116539] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic co-digestion is an attractive option to treat food waste and waste activated sludge, which is increasingly applied in real-world situations. As an active component in Capsicum species being substantially present in food waste in many areas, capsaicin has been recently demonstrated to inhibit the anaerobic co-digestion. However, the interaction between capsaicin and anaerobic co-digestion are still poorly understood. This work therefore aims to deeply understand the fate and impact of capsaicin in the anaerobic co-digestion. Experiment results showed that capsaicin was completely degraded in anaerobic co-digestion by hydroxylation, O-demethylation, dehydrogenation and doubly oxidization, respectively. Although methane was proven to be produced from capsaicin degradation, the increase in capsaicin concentration resulted in decrease in methane yield from the anaerobic co-digestion. With an increase of capsaicin from 2 ± 0.7 to 68 ± 4 mg/g volatile solids (VS), the maximal methane yield decreased from 274.6 ± 9.7 to 188.9 ± 8.4 mL/g VS. The mechanic investigations demonstrated that the presence of capsaicin induced apoptosis, probably by either altering key kinases or decreasing the intracellular NAD+/NADH ratio, which led to significant inhibitions to hydrolysis, acidogenesis, and methanogenesis, especially acetotrophic methanogenesis. Illumina Miseq sequencing analysis exhibited that capsaicin promoted the populations of complex organic degradation microbes such as Escherichia-Shigella and Fonticella but decreased the numbers of anaerobes relevant to hydrolysis, acidogenesis, and methanogenesis such as Bacteroide and Methanobacterium.
Collapse
Affiliation(s)
- Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
18
|
Wang X, Zhang MM, Sun Z, Liu SF, Qin ZH, Mou JH, Zhou ZG, Lin CSK. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123258. [PMID: 32947693 DOI: 10.1016/j.jhazmat.2020.123258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Bioconversion of food waste into value-added products is a promising way to tackle the global food waste management problem. In this study, a novel valorisation strategy for bioenergy and lutein production via microalgal fermentation was investigated. Significant amount of glucose was recovered from enzymatic hydrolysis of food waste. The resultant hydrolysate was then utilised as culture medium in mixotrophic cultivation of Chlorella sp. to obtain high levels of lipid and lutein, whose accumulation patterns were consistent with molecular analyses. The resultant algal lipid derived from microalgal biomass using food hydrolysate was at high quality in terms of biodiesel properties. Further, in semi-continuous fermentation, the average algal biomass was 6.1 g L-1 with 2.5 g L-1 lipid and 38.5 mg L-1 lutein using hydrolysate with an initial glucose concentration of 10 g L-1. Meanwhile, the resultant algal biomass was 6.9 g L-1 with 1.8 g L-1 lipid and 63.0 mg L-1 lutein using hydrolysate with an initial glucose concentration of 20 g L-1, which suggests food waste hydrolysate could trigger algal products preferences. The experimental results of this study suggested the potential of microalgae as a platform for bioconversion of food waste into high-value products, especially sustainable bioenergy.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Man-Man Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
19
|
Xing BS, Han Y, Cao S, Wang XC. Effects of long-term acclimatization on the optimum substrate mixture ratio and substrate to inoculum ratio in anaerobic codigestion of food waste and cow manure. BIORESOURCE TECHNOLOGY 2020; 317:123994. [PMID: 32836034 DOI: 10.1016/j.biortech.2020.123994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The effects of long-term acclimatization on the optimum food waste to cow manure ratio (FW/CM) and substrate to inoculum ratio (S/I) in anaerobic codigestion with FW and CM were investigated by batch trials. For the unacclimated sludge, the highest CH4 yields of 646.6 and 653.4 mL/g VS were achieved under the optimum FW/CM (2.5 VS/VS) and S/I (0.07 VS/VS) ratios, respectively. After more than 550 days of acclimatization, the optimum FW/CM and S/I of the acclimated sludge were improved to 3.4 and 0.68 VS/VS with more anaerobic digestion enzymes and lignocellulose, respectively. Based on high-throughput sequencing analysis, the microbial community structures of bacteria, fungi, and archaea were changed, which was the main reason for the change in the optimum FW/CM and S/I. Therefore, the FW/CM and S/I should be periodically optimized during the long-term operation of codigestion to improve the codigestion efficiency for biogas production.
Collapse
Affiliation(s)
- Bao-Shan Xing
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Yule Han
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Sifan Cao
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
20
|
Ali SS, Kornaros M, Manni A, Sun J, El-Shanshoury AERR, Kenawy ER, Khalil MA. Enhanced anaerobic digestion performance by two artificially constructed microbial consortia capable of woody biomass degradation and chlorophenols detoxification. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122076. [PMID: 32004834 DOI: 10.1016/j.jhazmat.2020.122076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Catalpa sawdust (CSW) is a promising biomass-based biofuel. However, the complex lignocellulosic structure limits its efficient utilization in biorefinery applications. It is even more so when chlorophenols (CPs), highly toxic organic substances widely used as wood preservatives, are present. Hence, it is crucial to develop effective and eco-friendly approaches to attain deconstruction of lignocellulose and chlorophenols simultaneously as well as to improve methane (CH4) production efficiently. This study might be the first to explore the performance of the novel constructed microbial consortia CS-5 and BC-4 on woody biomass degradation and CPs detoxification simultaneously with CH4 production. After the degradation of CSW and CPs for 15 days by C5-5 or BC-4, significant reduction in lignocellulosic components and CPs mixture was realized with a total weight loss of 69.2 and 56.3 % and CPs degradation of 89 and 95 %, respectively. The toxicity of individual or mixed CPs after 15 days of degradation was reduced by approximately 90 %. The synergistic action of CS-5 and BC-4 enhanced biogas and CH4 yields over 76 and 64 % respectively, higher than control. Furthermore, CH4 production increased by 113.7 % at the peak phase of AD process. Methanosataceae represented 45.1 % of the methanogenic Archaea in digester G-III.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Alessandro Manni
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | | | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha A Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Biology Department, Faculty of Science, Taif University, Saudi Arabia
| |
Collapse
|
21
|
Kuang Y, Zhao J, Gao Y, Lu C, Luo S, Sun Y, Zhang D. Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18145-18156. [PMID: 32172421 DOI: 10.1007/s11356-020-08207-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Hydrogen generation from food waste anaerobic dark fermentation is identified as a promising strategy for resource recovery. In this work, an innovative strategy of using potassium ferrate (PF), a strong oxidant, to promote anaerobic dark fermentation of food waste to produce hydrogen has been reported. The experimental results revealed that PF enhanced the hydrogen production from food waste, the maximal hydrogen yield was 173.5 mL/g, and the optimal PF dosage was 0.4 g/g total suspended solids. PF shortened the lag phase for hydrogen generation from 120 to 96 h. Mechanisms investigation revealed that PF accelerated the disintegration of organic compounds and increased the soluble organic matter in the liquid phase. The strong oxidation of PF inhibited the processes of hydrolysis, acidification, acetogenesis, homoacetogenesis, and methanogenesis by using synthetic wastewater in the fermentation process. The inhibition of PF on these processes was further verified by the enzyme activity analysis. Economic analysis indicated that 0.1 g/g PF was the optimal dosage. PF treatment is a promising strategy to enhance the production of hydrogen from food waste dark fermentation.
Collapse
Affiliation(s)
- Yan Kuang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China.
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yinjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Dalei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China.
| |
Collapse
|