1
|
Wu Y, Wang H, Zhang L, Zeng W, Peng Y. Multi-omics reveals mechanism of hydroxylamine-enhanced ultimate nitrogen removal in pilot-scale anaerobic/aerobic/anoxic system. WATER RESEARCH 2025; 274:123101. [PMID: 39787834 DOI: 10.1016/j.watres.2025.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Hydroxylamine (HA) dosing is an effective strategy for promoting partial nitrification (PN); however, its impact on endogenous denitrification remains underexplored. In this study, long-term continuous HA dosing (1.4 mg/L) was introduced for over 110 days in a pilot-scale anaerobic/aerobic/anoxic (AOA) system treating municipal wastewater (66.7-75 m3/d). The HA dosing significantly increased the nitrite accumulation ratio to 67.6 ± 5.0 % (p<0.001) and reduced the effluent total inorganic nitrogen concentration from 6.2 ± 2.0 to 2.4 ± 1.1 mg/L (p<0.001), achieving a nitrogen removal efficiency of 87.4 ± 4.5 % (p<0.001) at a hydraulic retention time of 8 h. During the HA dosing, aerobic nitrogen removal contribution increased from 2.4 ± 3.4 % to 25.8 ± 8.1 % (p<0.001), and the anoxic nitrogen removal rate improved from 1.63 ± 0.11 to 2.35 ± 0.13 mg N/(L·h) (p<0.001). Enhanced nitrogen removal was not only achieved through the rapid establishment of PN but also driven by the long-term impact of HA dosing on microbial community dynamics. Multi-omics analyses revealed that HA disrupted the polyphosphate (poly-P) cycle, evidenced by enhanced transcription of ppx (poly-P degradation) and suppressed ppk (poly-P synthesis), thereby reducing energy availability for phosphate-accumulating organisms (PAOs) and shifting the carbon source competition toward glycogen-accumulating organisms (GAOs), with Ca. Competibacter abundance increased from 0.16 % to 1.13 % (p < 0.001). The economic analysis demonstrated that HA reduced sludge production by 11.2 % and saved operating costs by 31.4-42.8 % compared to conventional carbon sources. These findings highlight the potential of HA dosing to achieve sustainable and highly efficient wastewater treatment.
Collapse
Affiliation(s)
- You Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hanbin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Chen C, Xu Z, Hai G, Huang WH, Pao CW, Li H, Jiang K, Zhang N, Liu T. Tailoring the d‑Band Center of High-Entropy Perovskite Oxide Nanotubes for Enhanced Nitrate Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407964. [PMID: 39502021 DOI: 10.1002/smll.202407964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Indexed: 01/18/2025]
Abstract
High-entropy perovskite oxides exhibit promising application prospects in the field of electrocatalysis, owing to their flexible elemental composition, plentiful active sites, and superior structural stability. Herein, high-entropy perovskite oxide nanotubes are prepared with La, Nd, Pr, Er, Eu at A-site by electrospinning as efficient electrocatalysts for nitrate reduction reaction (NO3RR). Electrochemical tests demonstrate that LaNd0.25Pr0.25Er0.25Eu0.25CuO4 nanotubes (LNPEEC NTs) display outstanding NO3RR performance, achieving a NH3 Faraday efficiency (FENH3) of 100% at -0.7 V versus reversible hydrogen electrode (RHE) and a yield rateNH3 of 1378 µg h-1 mg-1 cat. at -1.0 VRHE, outperforming Nd2CuO4 nanotubes (NC NTs). Furthermore, LNPEEC NTs also exhibit excellent stability even after 10 cycles at -0.7 VRHE and -1.0 VRHE. X-ray absorption spectroscopy confirms that multi-component regulation of A-site optimizes the coordination environment of Cu at B-site, increasing the unsaturated Cu sites and thus providing more active sites. Additionally, density functional theory calculations reveal that the doping of multi-component rare-earth elements at A-site in LNPEEC NTs modulates the d-band center of Cu at B-site and reduces the reaction energy barrier of the rate-determining step, thus enhancing the adsorption of NO3 - and promoting the NO3RR performance.
Collapse
Affiliation(s)
- Cun Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhen Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangtong Hai
- Institute of Zhejiang University-Quzhou, Zhejiang University, Quzhou, 324000, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300092, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300092, Taiwan
| | - Hanjun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Deogratias UK, Jin D, Zhang X, Forde NAH, Bhrane GY, Jalloh MA, Wu P. Double-edged effects and regulation mechanism of hydroxylamine in novel nitrogen removal processes: A comprehensive review. JOURNAL OF WATER PROCESS ENGINEERING 2025; 69:106826. [DOI: 10.1016/j.jwpe.2024.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Guo BX, Shi WY, Ai JY, Zhang KJ, Wang QG, Wang WH, Li JF. Synchronous and efficient removal of carbon, nitrogen, and phosphorus from actual rural sewage by composite wetlands enhanced with functional fillers. BIORESOURCE TECHNOLOGY 2024; 414:131566. [PMID: 39366510 DOI: 10.1016/j.biortech.2024.131566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
A composite wetland (CECW) was constructed by introducing P-adsorption filler (EPAF) and activated sludge into traditional wetlands for treating actual sewage. The results showed that EPAF improved P removal through physico-chemical adsorption, and it could be stably regenerated after adsorption saturation without potential risks. Meanwhile, zeolite promoted NH4+-N reduction in sewage by cation exchange. In addition, simultaneous biological removal of carbon, nitrogen, and phosphorus was achieved through nitrification, denitrification, anammox, and aerobic P-accumulation processes induced by Nitrobacter, Proteus Hauser, Candidatus Paracaedibacter, and Brevundimonas. Under the coupling of filler interception/adsorption, microbial assimilation/transformation, flocculation, and plant uptake, CECW obtained the removal rates of 93.22 %, 85.75 %, 91.80 %, 95.38 %, 97.07 %, and 78.05 % for turbidity, TN, NH4+-N, TP, PO43--P, and TCOD, which met the Class 1A standard (GB18918-2002). Therefore, the experiment systematically investigated the effects and mechanism of CECW in treating actual sewage, which could provide reference for rural sewage treatment and sludge utilization.
Collapse
Affiliation(s)
- Bing-Xu Guo
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang 832000, PR China
| | - Wei-Yi Shi
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang 832000, PR China
| | - Jun-Yu Ai
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang 832000, PR China
| | - Ke-Jia Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang 832000, PR China
| | - Qiu-Gang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang 832000, PR China
| | - Wen-Huai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang 832000, PR China.
| | - Jun-Feng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
5
|
Choi B, Kim TI, Kim HH, Kim CM, Park S, Lee S. Enhancing energy and nitrogen removal efficiency through automatic split injection and innovative aeration device: A study of low C/N ratio environments. WATER RESEARCH 2024; 266:122389. [PMID: 39244866 DOI: 10.1016/j.watres.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
A new aeration device based on Bernoulli's principle, Jetventrumixer (JVM), was introduced into an aeration tank in denitrification process, which involved an automatic split injection system (ASIS) into two denitrification tanks every 10 minutes. Real-time monitoring of influent water allowed the calculation of the C/N ratio, enhancing the utilization efficiency of internal carbon sources while reducing the need for external carbon. The comparison of the JVM with the conventional air diffuser for 100 days operation showed that the removal efficiency for NH4+-N in both systems was approximately 98 %, but the nitrification efficiencies were 84 % and 80 %, respectively. This indicates that the JVM achieves an high enough removal efficiency and nitrification efficiency compared with conventional air diffuser system with dramatic reduction in energy consumption by 52.1 %. When the influent wastewater was split and injected into duplicate denitrification tanks at ratios of 3:7, 5:5, and 7:3, the total nitrogen (TN) removal efficiencies were 77 %, 73 %, and 72 %, respectively. In contrast, with the implementation of the ASIS, the TN removal efficiency increased up to 82 %. The increase in TN removal indicates that real-time monitoring could stably track changes chemical composition in wastewater influent over 24 h and introducing ASIS facilitate the efficient utilization of internal carbon sources, thereby enhancing denitrification efficiency and improving TN removal efficiency. Finally, the greenhouse gas (GHG) emissions from the JVM and air diffuser were 9.39401 and 19.60488 tCO2eq year-1, respectively, representing a 52% reduction. Therefore, JVM and ASIS successfully reduced energy consumption and enhanced both nitrification and denitrification efficiencies.
Collapse
Affiliation(s)
- Byeongwook Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Earth Environmental System Science (Major in Environmental Engineering), Pukyong National University, Busan 48513, Republic of Korea; Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Tae-In Kim
- Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Hoo Hugo Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chang-Min Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, 9 Seoul 02841, Republic of Korea
| | - Sanghun Park
- Division of Earth Environmental System Science (Major in Environmental Engineering), Pukyong National University, Busan 48513, Republic of Korea.
| | - Sungjong Lee
- Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea.
| |
Collapse
|
6
|
Xiang Y, Song X, Yang Y, Deng S, Fu L, Yang C, Chen M, Pu J, Zhang H, Chai H. Comammox rather than AOB dominated the efficient autotrophic nitrification-denitrification process in an extremely oxygen-limited environment. WATER RESEARCH 2024; 268:122572. [PMID: 39383803 DOI: 10.1016/j.watres.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
The discovery of complete ammonia oxidizer (comammox) has challenged the traditional understanding of the two-step nitrification process. However, their functions in the oxygen-limited autotrophic nitrification-denitrification (OLAND) process remain unclear. In this study, OLAND was achieved using comammox-dominated nitrifying bacteria in an extremely oxygen-limited environment with a dissolved oxygen concentrations of 0.05 mg/L. The ammonia removal efficiency exceeded 97 %, and the total nitrogen removal efficiency reached 71 % when sodium bicarbonate was used as the carbon source. The pseudo-first- and second-order models were found to best fit the ammonia removal processes under low and high loads, respectively, suggesting distinct ammonia removal pathways. Full-length 16S rRNA gene sequencing and metagenomic results revealed that comammox-dominated under different oxygen levels, in conjunction with anammox and heterotrophic denitrifiers. The abundance of enzymes involved in energy metabolism indicates the coexistence of anammox and autotrophic nitrification-heterotrophic denitrification pathways. The binning results showed that comammox bacteria engaged in horizontal gene transfer with nitrifiers, anammox bacteria, and denitrifiers to adapt to an obligate environments. Therefore, this study demonstrated that comammox, anammox, and heterotrophic denitrifiers play important roles in the OLAND process and provide a reference for further reducing aeration energy in the autotrophic nitrogen removal process.
Collapse
Affiliation(s)
- Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Xiaoming Song
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Yilin Yang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Shuai Deng
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Liwei Fu
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China.
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
7
|
Jin D, Zhang X, Zhang X, Zhou L, Zhu Z, Deogratias UK, Wu Z, Zhang K, Ji X, Ju T, Zhu X, Gao B, Ji L, Zhao R, Ruth G, Wu P. A critical review of comammox and synergistic nitrogen removal coupling anammox: Mechanisms and regulatory strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174855. [PMID: 39034010 DOI: 10.1016/j.scitotenv.2024.174855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Nitrification is highly crucial for both anammox systems and the global nitrogen cycle. The discovery of complete ammonia oxidation (comammox) challenges the inherent concept of nitrification as a two-step process. Its wide distribution, adaptability to low substrate environments, low sludge production, and low greenhouse gas emissions may make it a promising new nitrogen removal treatment process. Meanwhile, anammox technology is considered the most suitable process for future wastewater treatment. The diverse metabolic capabilities and similar ecological niches of comammox bacteria and anammox bacteria are expected to achieve synergistic nitrogen removal within a single system. However, previous studies have overlooked the existence of comammox, and it is necessary to re-evaluate the conclusions drawn. This paper outlined the ecophysiological characteristics of comammox bacteria and summarized the environmental factors affecting their growth. Furthermore, it focused on the enrichment, regulatory strategies, and nitrogen removal mechanisms of comammox and anammox, with a comparative analysis of hydroxylamine, a particular intermediate product. Overall, this is the first critical overview of the conclusions drawn from the last few years of research on comammox-anammox, highlighting possible next steps for research.
Collapse
Affiliation(s)
- Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ufoymungu Kisa Deogratias
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xurui Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Bo Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Luomiao Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Guerra Ruth
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
8
|
Jian J, Liao X, Mo Z, Li S, Li L, Chen S, Huang Z, Chen J, Dai W, Sun S. Feasibility of low-intensity ultrasound treatment with hydroxylamine to accelerate the initiation of partial nitrification and allow operation under intermittent aeration. J Environ Sci (China) 2024; 139:446-459. [PMID: 38105067 DOI: 10.1016/j.jes.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 12/19/2023]
Abstract
Partial nitrification is a key aspect of efficient nitrogen removal, although practically it suffers from long start-up cycles and unstable long-term operational performance. To address these drawbacks, this study investigated the effect of low intensity ultrasound treatment combined with hydroxylamine (NH2OH) on the performance of partial nitrification. Results show that compared with the control group, low-intensity ultrasound treatment (0.10 W/mL, 15 min) combined with NH2OH (5 mg/L) reduced the time required for partial nitrification initiation by 6 days, increasing the nitrite accumulation rate (NAR) and ammonia nitrogen removal rate (NRR) by 20.4% and 6.7%, respectively, achieving 96.48% NRR. Mechanistic analysis showed that NH2OH enhanced ammonia oxidation, inhibited nitrite-oxidizing bacteria (NOB) activity and shortened the time required for partial nitrification initiation. Furthermore, ultrasonication combined with NH2OH dosing stimulated EPS (extracellular polymeric substances) secretion, increased carbonyl, hydroxyl and amine functional group abundances and enhanced mass transfer. In addition, 16S rRNA gene sequencing results showed that ultrasonication-sensitive Nitrospira disappeared from the ultrasound + NH2OH system, while Nitrosomonas gradually became the dominant group. Collectively, the results of this study provide valuable insight into the enhancement of partial nitrification start-up during the process of wastewater nitrogen removal.
Collapse
Affiliation(s)
- Jianxiong Jian
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaojin Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
9
|
Yan Y, Lee J, Han IL, Wang Z, Li G, McCullough K, Klaus S, Kang D, Wang D, Patel A, McQuarrie J, Stinson BM, deBarbadillo C, Dombrowski P, Bott C, Gu AZ. Comammox and unknown ammonia oxidizers contribute to nitrite accumulation in an integrated A-B stage process that incorporates side-stream EBPR (S2EBPR). WATER RESEARCH 2024; 253:121220. [PMID: 38341969 DOI: 10.1016/j.watres.2024.121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/27/2023] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
A novel integrated pilot-scale A-stage high rate activated sludge, B-stage short-cut biological nitrogen removal and side-stream enhanced biological phosphorus removal (A/B-shortcut N-S2EBPR) process for treating municipal wastewater was demonstrated with the aim to achieve simultaneous and carbon- and energy-efficient N and P removal. In this studied period, an average of 7.62 ± 2.17 mg-N/L nitrite accumulation was achieved through atypical partial nitrification without canonical known NOB out-selection. Network analysis confirms the central hub of microbial community as Nitrospira, which was one to two orders of magnitude higher than canonical aerobic oxidizing bacteria (AOB) in a B-stage nitrification tank. The contribution of comammox Nitrospira as AOB was evidenced by the increased amoB/nxr ratio and higher ammonia oxidation activity. Furthermore, oligotyping analysis of Nitrospira revealed two dominant sub-clusters (microdiveristy) within the Nitrospira. The relative abundance of oligotype II, which is phylogenetically close to Nitrospira_midas_s_31566, exhibited a positive correlation with nitrite accumulation in the same operational period, suggesting its role as comammox Nitrospira. Additionally, the phylogenetic investigation suggested that heterotrophic organisms from the family Comamonadacea and the order Rhodocyclaceae embedding ammonia monooxygenase and hydroxylamine oxidase may function as heterotrophic nitrifiers. This is the first study that elucidated the impact of integrating the S2EBPR on nitrifying populations with implications on short-cut N removal. The unique conditions in the side-stream reactor, such as low ORP, favorable VFA concentrations and composition, seemed to exert different selective forces on nitrifying populations from those in conventional biological nutrient removal processes. The results provide new insights for integrating EBPR with short-cut N removal process for mainstream wastewater treatment.
Collapse
Affiliation(s)
- Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Zijian Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Kester McCullough
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States; Hampton Roads Sanitation District, Virginia Beach, VA 23454, United States; modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, Canada
| | - Stephanie Klaus
- Hampton Roads Sanitation District, Virginia Beach, VA 23454, United States
| | - Da Kang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States; Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States
| | - Anand Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Jim McQuarrie
- Denver Metro Wastewater Reclamation District, Denver, CO 80229, United States
| | | | - Christine deBarbadillo
- District of Columbia Water and Sewer Authority, District of Columbia, 5000 Overlook Ave., SW, Washington, DC 20032, United States
| | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA 23454, United States.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
10
|
Fu K, Zhang X, Fan Y, Bian Y, Qiu F, Cao X. The enrichment characterisation of Nitrospira under high DO conditions. ENVIRONMENTAL TECHNOLOGY 2024; 45:2156-2170. [PMID: 36601901 DOI: 10.1080/09593330.2023.2165457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Nitrite-oxidizing bacteria (NOB) are crucial to nitrification and nitrogen elimination in wastewater treatment. Mass reports exist on the links between NOB and other microorganisms, for instance, ammonia-oxidizing bacteria (AOB). However, a few studies exist on the enrichment characterisation of NOB under high dissolved oxygen (DO) conditions. In this study, NOB was designed to be enriched individually under high DO conditions in a continuous aeration sequencing batch reactor (SBR), and the kinetic characterisation of NOB was evaluated. The analysis revealed that the average NO2--N removal rate was steady above 98%, with DO and NO2--N being 3-5 mg L-1 and 50-450 mg L-1, respectively. The NO2--N removal efficiency of the system was significantly enhanced and better than in other studies. The high-throughput sequencing suggested that Parcubacteria_ genera_incertae_sedis was the first dominant genus (21.99%), which often appeared in the NOB biological community with Nitrospira. However, the dominant genus NOB was Nitrospira rather than Nitrobacter (8.49%). This result suggested that Nitrospira was capable of higher NO2--N removal. But lower relative abundance indicated that excessive NO2--N had an adverse effect on the enrichment and activity of Nitrospira. In addition, the nitrite half-saturation constant (KNO2) and the oxygen half-saturation constant (KO) were 1.71 ± 0.19 mg L-1 and 0.95 ± 0.10 mg L-1, respectively. These results showed that the enriched Nitrospira bacteria had different characteristics at the strain level, which can be used as a theoretical basis for wastewater treatment plant design and optimisation.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xuemeng Zhang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yang Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yihao Bian
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Fuguo Qiu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xiuqin Cao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
11
|
Zhang J, Zhou M, Shi F, Lei Z, Wang Y, Hu M, Zhao J. The abundance of comammox bacteria was higher than that of ammonia-oxidizing archaea and bacteria in rhizosphere of emergent macrophytes in a typical shallow lake riparian. Int Microbiol 2024; 27:67-79. [PMID: 38062210 DOI: 10.1007/s10123-023-00465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/20/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106-2.45 × 108 copies g-1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104-3.58 × 106 copies g-1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102-6.89 × 103 copies g-1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.
Collapse
Affiliation(s)
- Jiahui Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Mingzhi Zhou
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Fengning Shi
- Yunnan Hydrology and Water Resources Bureau, Kunming, 650100, China
| | - Ziyan Lei
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Mingming Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China.
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
12
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
13
|
Yan Y, Chen Y, Wu X, Dang H, Zeng T, Ma J, Tang C. Enhanced nitrogen removal from rural domestic sewage via partial nitrification-anammox in integrated vertical subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 233:116338. [PMID: 37311474 DOI: 10.1016/j.envres.2023.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to improve the removal of nitrogen treating rural domestic sewage by developing a novel strategy for achieving partial nitrification-anammox (PNA) in an integrated vertical subsurface flow constructed wetland (VSFCW). The influent ammonia was oxidized to nitrite in the partial nitrification VSFCW (VSFCWPN), and 5 mg/L of hydroxylamine was added under the appropriate dissolved oxygen concentration level (1.2 ± 0.2 mg/L) to stabilize the average nitrite accumulation rate at 88.24% and maintain the effluent NO2--N/NH4+-N ratio at 1.26 ± 0.15. The effluent from VSFCWPN was introduced to the following chamber (VSFCWAN), where ammonia and nitrite were removed by the autotrophic anammox process. This implementation achieved high removal efficiencies for chemical oxygen demand, total nitrogen, and PO43--P, reaching 86.26%, 90.22%, and 78.94%, respectively, with influent concentrations of 120.75 mg/L, 60.02 mg/L, and 5.05 mg/L. Substrate samples were collected from 10 cm height (PN1, AN1) and 25 cm height (PN2, AN2). Microbial community analysis showed that Nitrosomonas dominated the community composition in VSFCWPN, with an increase from 1.61% in the inoculated sludgePN to 16.31% (PN1) and 12.09% (PN2). Meanwhile, Ca. Brocadia accounted for 44.81% (AN1) and 36.50% (AN2) in VSFCWAN. These results confirm the feasibility of the proposed strategy for establishing PNA and efficiently treating rural domestic sewage in an integrated VSFCW.
Collapse
Affiliation(s)
- Yuan Yan
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| | - Xinbo Wu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Tianxu Zeng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Jiao Ma
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Chenxin Tang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
14
|
Daebeler A, Güell‐Bujons Q, Mooshammer M, Zechmeister T, Herbold CW, Richter A, Wagner M, Daims H. Rapid nitrification involving comammox and canonical Nitrospira at extreme pH in saline-alkaline lakes. Environ Microbiol 2023; 25:1055-1067. [PMID: 36651641 PMCID: PMC10947350 DOI: 10.1111/1462-2920.16337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Nitrite-oxidizing bacteria (NOB) catalyse the second nitrification step and are the main biological source of nitrate. The most diverse and widespread NOB genus is Nitrospira, which also contains complete ammonia oxidizers (comammox) that oxidize ammonia to nitrate. To date, little is known about the occurrence and biology of comammox and canonical nitrite oxidizing Nitrospira in extremely alkaline environments. Here, we studied the seasonal distribution and diversity, and the effect of short-term pH changes on comammox and canonical Nitrospira in sediments of two saline, highly alkaline lakes. We identified diverse canonical and comammox Nitrospira clade A-like phylotypes as the only detectable NOB during more than a year, suggesting their major importance for nitrification in these habitats. Gross nitrification rates measured in microcosm incubations were highest at pH 10 and considerably faster than reported for other natural, aquatic environments. Nitrification could be attributed to canonical and comammox Nitrospira and to Nitrososphaerales ammonia-oxidizing archaea. Furthermore, our data suggested that comammox Nitrospira contributed to ammonia oxidation at an extremely alkaline pH of 11. These results identify saline, highly alkaline lake sediments as environments of uniquely strong nitrification with novel comammox Nitrospira as key microbial players.
Collapse
Affiliation(s)
- Anne Daebeler
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- Biology Centre CAS, BudweisInstitute of Soil Biology and BiogeochemistryCzechia
| | - Queralt Güell‐Bujons
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- Institut de Ciències del Mar (ICM‐CSIC), Passeig Marítim de la Barceloneta 37‐49BarcelonaCataloniaSpain
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaViennaAustria
| | | | - Craig W. Herbold
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaViennaAustria
| | - Michael Wagner
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- The Comammox Research PlatformUniversity of ViennaViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Holger Daims
- University of ViennaCentre for Microbiology and Environmental Systems Science, Division of Microbial EcologyViennaAustria
- The Comammox Research PlatformUniversity of ViennaViennaAustria
| |
Collapse
|
15
|
Yang Y, Jiang Y, Long Y, Xu J, Liu C, Zhang L, Peng Y. Insights into the mechanism of the deterioration of mainstream partial nitritation/anammox under low residual ammonium. J Environ Sci (China) 2023; 126:29-39. [PMID: 36503757 DOI: 10.1016/j.jes.2022.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
Residual ammonium is a critical parameter affecting the stability of mainstream partial nitritation/anammox (PN/A), but the underlying mechanism remains unclear. In this study, mainstream PN/A was established and operated with progressively decreasing residual ammonium. PN/A deteriorated as the residual ammonium decreased to below 5 mg/L, and this was paralleled by a significant loss in anammox activity in situ and an increasing nitrite oxidation rate. Further analysis revealed that the low-ammonium condition directly decreased anammox activity in situ via two distinct mechanisms. First, anammox bacteria were located in the inner layer of the granular sludge, and thus were disadvantageous when competing for ammonium with ammonium-oxidizing bacteria (AOB) in the outer layer. Second, the complete ammonia oxidizer (comammox) was enriched at low residual ammonium concentrations because of its high ammonium affinity. Both AOB and comammox presented kinetic advantages over anammox bacteria. At high residual ammonium concentrations, nitrite-oxidizing bacteria (NOB) were effectively suppressed, even when their maximum activity was high due to competition for nitrite with anammox bacteria. At low residual ammonium concentrations, the decrease in anammox activity in situ led to an increase in nitrite availability for nitrite oxidation, facilitating the activation of NOB despite the dissolved oxygen limitation (0.15-0.35 mg/L) for NOB persisting throughout the operation. Therefore, the deterioration of mainstream PN/A at low residual ammonium was primarily triggered by a decline in anammox activity in situ. This study provides novel insights into the optimized design of mainstream PN/As in engineering applications.
Collapse
Affiliation(s)
- Yandong Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Yiming Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yanan Long
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiarui Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
16
|
Liyun C. Influence of inoculation ratio on the performance and microbial community of bacterial-algal symbiotic system for rural wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10838. [PMID: 36744534 DOI: 10.1002/wer.10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this study, co-culture of microalgae and activated sludge in photobioreactors (PBRs) was investigated at different inoculation ratios (0:1, 0.3:1, 0.7:1, and 1.3:1 sludge wt./algae wt.) for rural domestic wastewater treatment under direct solar radiation. Effluent qualities (such as pH, NO2 - , PO4 3- , and NH4 + -N concentrations) were assessed; bacterial and microalgal communities in co-culture system were compared. The microalgal and bacterial biomass fraction played a significant role in the performance and microbial community structure of the treatment system. In reactors with inoculation ratio of 0.3:1 and 0.7:1, the pH exceeded 9 or 10 under solar radiation, which led to some functional bacteria being missing. In the reactor with inoculation ratio of 1.3:1, activated sludge effectively prevented excessive increase in pH in the reactor. Similar observations were made for reactors with inoculation ratios below 1.3:1 by adding sludge halfway through the process. The results show that activated sludge can inhibit excessive increase in pH caused by algal photosynthesis, maintain the activity of nitrite-oxidizing bacteria in PBR, and reduce algae loss with the effluent. PRACTITIONER POINTS: Appropriate fraction of activated sludge can effectively inhibit the excessive increase in pH caused by algal photosynthesis in PBR. Adding activated sludge could maintain the activity of nitrite-oxidizing bacteria in PBR, and reduce microalgae loss with the effluent. Considering the stability of operation and biodiversity in PBR, a 1.3:1 inoculation ratio of activated sludge and microalgae is preferred.
Collapse
Affiliation(s)
- Cai Liyun
- Fujian Key University Laboratory of Estuarine Ecological Security and Environmental Health, School of Environmental Science and Engineering of Xiamen University TanKah Kee College, Zhangzhou, China
| |
Collapse
|
17
|
Kowal P, Mehrani MJ, Sobotka D, Ciesielski S, Mąkinia J. Rearrangements of the nitrifiers population in an activated sludge system under decreasing solids retention times. ENVIRONMENTAL RESEARCH 2022; 214:113753. [PMID: 35772505 DOI: 10.1016/j.envres.2022.113753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Due to the key role of nitrite in novel nitrogen removal systems, nitrite oxidizing bacteria (NOB) have been receiving increasing attention. In this study, the coexistence and interactions of nitrifying bacteria were explored at decreasing solids retention times (SRTs). Four 5-week washout experiments were carried out in laboratory-scale (V = 10 L) sequencing batch reactors (SBRs) with mixed liquor from two full-scale activated sludge systems (continuous flow vs SBR). During the experiments, the SRT was gradually reduced from the initial value of 4.0 d to approximately 1.0 d. The reactors were operated under limited dissolved oxygen conditions (set point of 0.6 mg O2/L) and two process temperatures: 12 °C (winter) and 20 °C (summer). At both temperatures, the progressive SRT reduction was inefficient for the out-selection of both canonical NOB and comammox Nitrospira. However, the dominant NOB switched from Nitrospira to Ca. Nitrotoga, whereas the dominant AOB was always Nitrosomonas. The results of this study are important for optimizing NOB suppression strategies in the novel N removal processes, which are based on nitrite accumulation.
Collapse
Affiliation(s)
- Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland.
| | - Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Ul. Sloneczna 45G, 10-709, Olsztyn, Poland
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
18
|
Du R, Li C, Liu Q, Fan J, Peng Y. A review of enhanced municipal wastewater treatment through energy savings and carbon recovery to reduce discharge and CO 2 footprint. BIORESOURCE TECHNOLOGY 2022; 364:128135. [PMID: 36257527 DOI: 10.1016/j.biortech.2022.128135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
19
|
Sun Z, Li J, Fan Y, Meng J. A quantified nitrogen metabolic network by reaction kinetics and mathematical model in a single-stage microaerobic system treating low COD/TN wastewater. WATER RESEARCH 2022; 225:119112. [PMID: 36166999 DOI: 10.1016/j.watres.2022.119112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A single-stage intermittent aeration microaerobic reactor (IAMR) has been developed for the cost-effective nitrogen removal from piggery wastewater with a low ratio of chemical oxygen demand (COD) to total nitrogen (TN). In this study, a quantified nitrogen metabolic network was constructed based on the metagenomics, reaction kinetics and mathematical model to provide a revealing insight into the nitrogen removal mechanism in the IAMR. Metagenomics revealed that a complex nitrogen metabolic network, including aerobic ammonia and nitrite oxidation, anammox, denitrification via nitrate and nitrite, and nitrate respiration, existed in the IAMR. A novel method for solving kinetic parameters with high stability was developed based on a genetic algorithm. Use this method to calculate the kinetics of various reactions involved in nitrogen metabolism. Kinetics revealed that simultaneous partial nitritation-anammox (PN/A) and partial denitrification-anammox (PDN/A) were the dominant approaches to nitrogen removal in the IAMR. Finally, a kinetics-based model was proposed for quantitatively describing the nitrogen metabolic network under the limitation of COD. 58% ∼ 67% of nitrogen was removed via the anammox-based processes (PN/A and PDN/A), but only 7% ∼ 12% and 1% ∼ 2% of nitrogen were removed via heterotrophic denitrification of nitrite and nitrate, respectively. The half-inhibition constant of dissolved oxygen (DO) on anammox was simulated as 0.37 ∼ 0.60 mg L-1, filling the gap in quantifying DO inhibition on anammox. High-frequency intermittent aeration was identified as the crucial measure to suppress nitrite-oxidizing bacteria, although it has a high affinity for DO and NO2--N. In continuous aeration mode, the simulated NO3--N in the IAMR would rise by 39.6%. The research provides a novel insight into the nitrogen removal mechanism in single-stage microaerobic systems and provides a reliable approach to practicing PN/A and PDN/A for cost-effective nitrogen removal.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
20
|
Venturin B, Rodrigues HC, Bonassa G, Hollas CE, Bolsan AC, Antes FG, De Prá MC, Fongaro G, Treichel H, Kunz A. Key enzymes involved in anammox-based processes for wastewater treatment: An applied overview. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10780. [PMID: 36058650 DOI: 10.1002/wer.10780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood. These processes involve many common metabolites that may act as key factors to control the symbiotic interactions between these organisms, to maximize N-removal efficiency from wastewater. Therefore, this work overviews the current state of knowledge about the metabolism of these microorganisms including key enzymes and intermediate metabolites and summarizes already reported experiences based on the employment of certain metabolites for the improvement of N-removal using anammox-based processes. PRACTITIONER POINTS: Approaches knowledge about the biochemistry and metabolic pathways involved in anammox-based processes. Some molecular tools can be used to determine enzymatic activity, serving as an optimization in nitrogen removal processes. Enzymatic evaluation allied to the physical-chemical and biomolecular analysis of the nitrogen removal processes expands the application in different effluents.
Collapse
Affiliation(s)
- Bruno Venturin
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Gabriela Bonassa
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | | | | | | | - Gislaine Fongaro
- Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| | - Airton Kunz
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Universidade Federal da Fronteira Sul, Erechim, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Wang B, Qiao X, Hou F, Liu T, Pang H, Guo Y, Guo J, Peng Y. Pilot-scale demonstration of a novel process integrating Partial Nitritation with simultaneous Anammox, Denitrification and Sludge Fermentation (PN + ADSF) for nitrogen removal and sludge reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152835. [PMID: 34998749 DOI: 10.1016/j.scitotenv.2021.152835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Anammox process is a cost-effective solution for nitrogen removal, whereas unsatisfactory effluent with nitrate accumulation is usually achieved in treating domestic sewage, owning to the unwanted prevalence of nitrite-oxidizing bacteria (NOB) and the intrinsic nitrate production by anammox bacteria. Herein, a pilot-scale system integrating Partial Nitritation and simultaneous Anammox, Denitrification and Sludge Fermentation (PN + ADSF) process was developed to treat real municipal wastewater. In this process, PN was accomplished in a sequencing batch reactor (SBR) using the strategy of intermittent hydroxylamine addition, while ADSF coupling anammox and heterotrophic denitrification was conducted in an up-flow anaerobic sludge blanket reactor (UASB) to further remove nitrogen. The pilot-scale system achieved total inorganic nitrogen (TIN) concentrations of 10.0 mg N/L in effluent and sludge reduction efficiency of 42.3% simultaneously. The characterization on microbial communities revealed that Candidatus Kuenenia and Thauera were the dominant functional bacteria for anammox and denitrification, respectively. Supported by the slow-release carbon sources from sludge fermentation, heterotrophic denitrification contributed to about 28% of nitrogen removed from the UASB, while anammox played a more important role in nitrogen removal. The pilot-scale demonstration confirmed that the PN + ADSF process is technically feasible for enhanced nitrogen removal and sludge reduction.
Collapse
Affiliation(s)
- Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Xin Qiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Feng Hou
- SDIC Xinkai Water Environment Investment Co., Ltd, China Water Environment Group Ltd, Beijing, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hongtao Pang
- SDIC Xinkai Water Environment Investment Co., Ltd, China Water Environment Group Ltd, Beijing, China
| | - Yuanyuan Guo
- SDIC Xinkai Water Environment Investment Co., Ltd, China Water Environment Group Ltd, Beijing, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China.
| |
Collapse
|
22
|
Cai J, Sun Y, Qaisar M, Wang K, Chen B. Revealing the effect of multiple nitrogen sources on sulfide oxidation by progressively changing nitrate to nitrite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Choi D, Cho K, Hwang K, Yun W, Jung J. Achieving stable nitrogen removal performance of mainstream PN-ANAMMOX by combining high-temperature shock for selective recovery of AOB activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148582. [PMID: 34323753 DOI: 10.1016/j.scitotenv.2021.148582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
This paper describes the new concept of the mainstream partial nitritation (PN)-anaerobic ammonium oxidation (ANAMMOX) combined with a high-temperature shock strategy for the selective recovery of ammonia-oxidizing bacteria (AOB) activity. In the preliminary test, the temperature shock condition for PN was optimized (60 °C and > 20 min). Based on this, the implementation strategy in a continuous stirred tank reactor (CSTR) system was studied further, and the polyvinyl alcohol (PVA)/sodium alginate carrier exposure ratio (ER) and dissolved oxygen (DO) concentration were considered as primary variables. The AOB activity was recovered selectively when the ER of the carrier ranged from 20 to 40%, and the DO was higher than 2.3 mg O2/L. This was not the case for nitrite-oxidizing bacteria (NOB) (AOB: 1.17±0.1 gNH4+-N/LCarrier/d, NOB: 0.34±0.1 gNO3--N/LCarrier/d). As a result, the activity of AOB was recovered selectively with a decrease in Nitrospira spp., which was verified by kinetic and microbial analyses for the AOB (KS, DO = 3.89 mgO2/L) and NOB (KS, DO = 1.14 mgO2/L). Eventually, the mainstream PN-ANAMMOX was achieved with a nitrogen removal efficiency of 81.5±3.3% for 95 days. The findings provide insight to establishing a stable mainstream PN-ANAMMOX process using a high-temperature shock strategy.
Collapse
Affiliation(s)
- Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, South Korea
| | - Kwanghyun Hwang
- GS Engineering and Construction Research Institute, GRAN SEOUL, 33 Jong-ro, Jongno-gu, Seoul, South Korea
| | - Wonsang Yun
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea.
| |
Collapse
|
24
|
Liu W, Shen C, Liu C, Zhang S, Hao S, Peng Y, Li J. Achieving stable mainstream nitrogen and phosphorus removal assisted by hydroxylamine addition in a continuous partial nitritation/anammox process from real sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148478. [PMID: 34217093 DOI: 10.1016/j.scitotenv.2021.148478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Hydroxylamine (NH2OH) as the putative intermediate for anammox ensures the robustness of partial nitritation/anammox (PN/A) process; however, the feasible for NH2OH addition to improve the stability of PN/A process under low-strength ammonia (NH4+-N) condition need to be further investigated. In this study, the restoration and steady operation of mainstream PN/A process were investigated to treat real sewage with in situ NH2OH added in a continuous alternating anoxic/aerobic with integrated fixed-film activated sludge (A3-IFAS) reactor. Results showed that the deteriorated PN/A process caused by nitrate (NO3--N) built-up was rapidly restored with a distinct decrease of the NO3--Nproduced/NH4+-Nconsumed ratio from 28.7% to <10.0% within 20 days, after 5 mg N/L of NH2OH was added daily into the aerobic zone of A3-IFAS reactor. After 230 days of operation, the average total nitrogen (TN) and phosphate (PO43--P) removal efficiencies of 80.8% and 91.5%, respectively were stably achieved, with average effluent sCOD, NH4+-N, TN and PO43--P concentrations reaching 23.1, 2.3, 7.7 and 0.4 mg/L, respectively. Microbial community characterization revealed Candidatus Brocadia (3.60% and 2.92%) and Ignavibacteriae (1.56% and 2.66%) as the dominant anammox bacteria and denitrifying bacteria, respectively, jointly attached in the biofilm_1 and biofilm_2, while Candidatus Microthrix (5.17%) dominant in floc sludge was main responsible for phosphorus removal. This study confirmed that NH2OH addition is an effective strategy for nitrite-oxidizing bacteria suppression, contributing to the in situ restoration of PN/A process and high stable mainstream nitrogen and phosphorus removal in a continuous PN/A process from real sewage.
Collapse
Affiliation(s)
- Wenlong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Shen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Chao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Shufeng Hao
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
25
|
Clagnan E, Brusetti L, Pioli S, Visigalli S, Turolla A, Jia M, Bargna M, Ficara E, Bergna G, Canziani R, Bellucci M. Microbial community and performance of a partial nitritation/anammox sequencing batch reactor treating textile wastewater. Heliyon 2021; 7:e08445. [PMID: 34901500 PMCID: PMC8637490 DOI: 10.1016/j.heliyon.2021.e08445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023] Open
Abstract
Implementation of onsite bioremediation technologies is essential for textile industries due to rising concerns in terms of water resources and quality. Partial nitritation-anaerobic ammonium oxidation (PN/A) processes emerged as a valid, but unexplored, solution. In this study, the performance of a PN/A pilot-scale (9 m3) sequencing batch reactor treating digital textile printing wastewater (10-40 m3 d-1) was monitored by computing nitrogen (N) removal rate and efficiencies. Moreover, the structure of the bacterial community was assessed by next generation sequencing and quantitative polymerase chain reaction (qPCR) analyses of several genes, which are involved in the N cycle. Although anaerobic ammonium oxidation activity was inhibited and denitrification occurred, N removal rate increased from 16 to 61 mg N g VSS-1 d-1 reaching satisfactory removal efficiency (up to 70%). Ammonium (18-70 mg L-1) and nitrite (16-82 mg L-1) were detected in the effluent demonstrating an unbalance between the aerobic and anaerobic ammonia oxidation activity, while constant organic N was attributed to recalcitrant azo dyes. Ratio between nitrification and anammox genes remained stable reflecting a constant ammonia oxidation activity. A prevalence of ammonium oxidizing bacteria and denitrifiers suggested the presence of alternative pathways. PN/A resulted a promising cost-effective alternative for textile wastewater N treatment as shown by the technical-economic assessment. However, operational conditions and design need further tailoring to promote the activity of the anammox bacteria.
Collapse
Affiliation(s)
- Elisa Clagnan
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Silvia Pioli
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Simone Visigalli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Mingsheng Jia
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Martina Bargna
- Lariana Depur Spa, Via Laghetto 1, 22073 Fino Mornasco, Italy
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giovanni Bergna
- Lariana Depur Spa, Via Laghetto 1, 22073 Fino Mornasco, Italy
| | - Roberto Canziani
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Micol Bellucci
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
26
|
Yuan D, Zheng L, Tan Q, Wang X, Xing Y, Wang H, Wang S, Zhu G. Comammox activity dominates nitrification process in the sediments of plateau wetland. WATER RESEARCH 2021; 206:117774. [PMID: 34757282 DOI: 10.1016/j.watres.2021.117774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The recent discovery of complete ammonia oxidation (comammox) has increased our understanding of nitrification. Although comammox has been shown to play an important role in plain wetland ecosystems, studies of comammox contribution are still limited in plateau wetland ecosystems. Here, we analyzed the abundance, activity, community and biogeochemical mechanisms of the comammox bacteria in Yunnan-kweichow and Qinghai-Tibet plateau wetlands from elevations of 1000-5000 m. Comammox bacteria were widely distributed in all 16 sediment samples with abundances higher than 0.96 ± 0.26 × 107 copies g-1 (n = 16). Comammox showed high activity (1.18 ± 0.17 to 1.98 ± 0.08 mg N kg-1 d-1) at high-elevation (3000-5000 m) and dominated the nitrification process (activity contribution: 37.20 - 60.62%). The activity contribution of ammonia-oxidizing bacteria (1.07 ± 0.08 to 2.79 ± 0.35 mg N kg-1 d-1) dominated the nitrification process (44.55 - 64.15%) in low-elevation (1000-3000 m) samples. All detected comammox Nitrospira belonged to clade A, while clade B was not detected. Elevation always had a strongest effect on key comammox species. Thus, we infer that elevation may drive the high relative abundance of the species Candidatus Nitrospira nitrificans (avg. 12.40%) and the low relative abundance of the species Nitrospira sp. SG-bin2 (avg. 4.75%) in high-elevation samples that showed a high comammox activity (avg. 1.62 mg N kg-1 d-1) and high contribution (avg. 46.08%) to the nitrification process. These results indicate that comammox may be an important and currently underestimated microbial nitrification process in plateau wetland ecosystems.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huipeng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
27
|
Partial Nitrification in a Sequencing Moving Bed Biofilm Reactor (SMBBR) with Zeolite as Biomass Carrier: Effect of Sulfide Pulses and Organic Matter Presence. WATER 2021. [DOI: 10.3390/w13182484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work aimed to achieve partial nitrification (PN) in a Sequencing Moving Bed Biofilm Reactor SMBBR with zeolite as a biomass carrier by using sulfide pulses in the presence of organic matter as an inhibitor. Two conditions were evaluated: sulfide (HS−) = 5 mg S/L and vvm (air volume per liquid volume per minute, L of air L−1 of liquid min−1) = 0.1 (condition 1); and a HS− = 10 mg S/L and a vvm = 0.5 (condition 2). The simultaneous effect of organic matter and sulfide was evaluated at a Chemical Oxygen Demand (COD) = 350 mg/L and HS− = 5 mg S/L, with a vvm = 0.5. As a result, using the sulfide pulse improved the nitrite accumulation in both systems. However, Total Ammonia Nitrogen (TAN) oxidation in both processes decreased by up to 60%. The simultaneous presence of COD and sulfide significantly reduced the TAN and nitrite oxidation, with a COD removal yield of 80% and sulfide oxidation close to 20%. Thus, the use of a sulfide pulse enabled PN in a SMBBR with zeolite. Organic matter, together with the sulfide pulse, almost completely inhibited the nitrification process despite using zeolite.
Collapse
|
28
|
Xu J, Li C, Zhu N, Shen Y, Yuan H. Alleviating the nitrite stress on anaerobic ammonium oxidation by pyrolytic biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145800. [PMID: 33610985 DOI: 10.1016/j.scitotenv.2021.145800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/22/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The nitrite (NO2-) inhibition in anaerobic ammonium oxidation (anammox) process is widely reported. Here, the effects of three pyrolytic biochars (CS300, CS550 and CS800) were investigated to alleviate NO2- stress on anammox process under exposure of varied NO2--N concentrations (70, 200, 400 and 600 mg L-1). No nitrite inhibition was observed at 70 mg N L-1. However, the total nitrogen removal efficiency (TNREs) decreased with NO2--N concentration increased, while the biochar-amended groups achieved higher TNREs than the control (CK). At 200 mg N L-1, the TNREs were 60.2%, 99.0%, 98.5% and 86.6% for CK, CS300, CS550 and CS800, respectively. At 400 mg N L-1, the TNREs were 23.3%, 56.0%, 37.1% and 29.7% for CK, CS300, CS550 and CS800, respectively. At 600 mg N L-1 in which severe inhibition was observed, the TNREs were increased by 231% (p = 0.002), 149% (p = 0.014), and 51.0% (p = 0.166) for CS300, CS550 and CS800, respectively, as compared to CK, with the corresponding specific anammox activity increased by 3.1-, 2,0- and 1.1-folds, respectively. CS300 enriched the relative abundance of Candidatus Kuenenia and increased the gene copies of functional genes (hzsA, hdh, nirS and nirK). Besides, CS300 effectively alleviated the suppression of three membrane-associated enzyme complexes for anammox electron transport chain, indicating the possible contribution of redox-active moieties of CS300 to energy conversion metabolism for mitigating the NO2--N inhibition. This study provided an effective strategy for alleviating NO2--N stress by applying an environmentally compatible material (biochar) on anammox process.
Collapse
Affiliation(s)
- Jiajia Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chao Li
- Hunan BISEN Environmental & Energy Co. Ltd., Changsha 410100, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Hunan BISEN Environmental & Energy Co. Ltd., Changsha 410100, China.
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
29
|
Lei Z, Wang L, Wang J, Yang S, Hou Z, Wang XC, Chen R. Partial-nitritation of low-strength anaerobic effluent: A moderate-high dissolved oxygen concentration facilitates ammonia-oxidizing bacteria disinhibition and nitrite-oxidizing bacteria suppression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145337. [PMID: 33736393 DOI: 10.1016/j.scitotenv.2021.145337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Integrating anaerobic treatment with partial nitritation (PN)/anammox is a promising technology to achieve energy-efficient wastewater treatment, while partial nitritation of the mainstream anaerobic effluent (Aneff) was rarely reported. A PN reactor fed with low-strength Aneff was employed in this study to investigate the performance and technology bottleneck of this process. When operated at low dissolved oxygen (DO) concentration (0.30-0.43 mg/L), gene coding hydroxylamine oxidation (hao) was severely suppressed by bio-refractory organics, which results in a decreased ammonia-oxidizing bacteria activity and nitrite accumulation rate. The ammonium conversion and nitrite accumulation were recovered by increasing the DO concentration to a moderate-high level (1.10 ± 0.20 mg/L) and achieved long-term stable operation. At this condition, hao showed a dramatic increase while gene encoding nitrite oxidoreductase was appropriately suppressed; the effluent NO2-/NH4+ ratio reached 1.17, and a low NO3-/NOx- ratio of 0.38 was achieved simultaneously. The findings in this study revealed the adverse effects of Aneff on PN and supported a practical operating strategy for efficient PN of Aneff.
Collapse
Affiliation(s)
- Zhen Lei
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Lianxu Wang
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Jun Wang
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Shuming Yang
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Zhaoyang Hou
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Xiaochang C Wang
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
30
|
Li D, Fang F, Liu G. Efficient Nitrification and Low-Level N 2O Emission in a Weakly Acidic Bioreactor at Low Dissolved-Oxygen Levels Are Due to Comammox. Appl Environ Microbiol 2021; 87:e00154-21. [PMID: 33975896 PMCID: PMC8208134 DOI: 10.1128/aem.00154-21r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/13/2021] [Indexed: 01/31/2023] Open
Abstract
Nitrification is an essential process for nutrient removal from wastewater and an important emission source of nitrous oxide (N2O), which is a powerful greenhouse gas and a dominant ozone-depleting substance. In this study, nitrification and N2O emissions were tested in two weakly acidic (pH 6.3 to 6.8) reactors: one with dissolved oxygen (DO) at over 2.0 mg/liter and the other with DO at approximately 0.5 mg/liter. Efficient nitrification was achieved in both reactors. Compared to that in the high-DO reactor, N2O emission in the low-DO reactor decreased slightly, by 20%, and had insignificant correlation with the fluctuations of DO (P = 0.935) and nitrite (P = 0.713), indicating that N2O might not be produced mainly via nitrifier denitrification. Based on quantitative PCR (qPCR), quantitative fluorescent in situ hybridization (qFISH), and functional gene amplicon and metagenome sequencing, it was found that complete ammonia oxidizers (comammox), i.e., Nitrospira organisms, significantly outnumbered canonical ammonia-oxidizing bacteria (AOB) in both weakly acidic reactors, especially in the low-DO reactor with the comammox/AOB amoA gene ratio increasing from 6.6 to 17.1. Therefore, it was speculated that the enriched comammox was the primary cause for the slightly decreased N2O emission under long-term low DO in the weakly acidic reactor. This study demonstrated that the comammox Nitrospira can survive well under the weakly acidic and low-DO conditions, implying that achieving efficient nitrification with low N2O emission as well as low energy and alkalinity consumption is feasible for wastewater treatment.IMPORTANCE Nitrification in wastewater treatment is an important process for eutrophication control and an emission source for the greenhouse gas N2O. The nitrifying process is usually operated at a slightly alkaline pH and high DO (>2 mg/liter) to ensure efficient nitrification. However, it consumes a large amount of energy and chemicals, especially for wastewater without sufficient alkalinity. This paper demonstrates that comammox can adapt well to the weakly acidic and low-DO bioreactors, with a result of efficient nitrification and low N2O emission. These findings indicate that comammox organisms are significant for sustainable wastewater treatment, which provides an opportunity to achieve efficient nitrification with low N2O production as well as low energy and chemical consumption simultaneously.
Collapse
Affiliation(s)
- Deyong Li
- School of the Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Jinan University, Guangzhou, China
- School of the Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Fang Fang
- College of the Environment and Ecology, Chongqing University, Chongqing, China
| | - Guoqiang Liu
- School of the Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Jinan University, Guangzhou, China
- School of the Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Efficient nitrification and low N 2O emission in a weakly acidic bioreactor at low dissolved oxygen levels are due to comammox. Appl Environ Microbiol 2021; 87:AEM.00154-21. [PMID: 33741624 DOI: 10.1128/aem.00154-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nitrification is an essential process for nutrient removal from wastewater and an important emission source of nitrous-oxide (N2O), which is a powerful greenhouse gas and a dominant ozone-depleting substance. In this study, nitrification and N2O emissions were tested in two weakly acidic (pH = 6.3-6.8) reactors: one with dissolved oxygen (DO) over 2.0 mg/L and the other with DO approximately 0.5 mg/L. Efficient nitrification was achieved in both reactors. Compared to the high-DO reactor, N2O emission in the low-DO reactor decreased slightly by 20% and had insignificant correlation with the fluctuations of DO (P = 0.935) and nitrite (P = 0.713), indicating that N2O might not be mainly produced via nitrifier denitrification. Based on qPCR, qFISH, functional gene amplicon and metagenome sequencing, it was found that complete ammonia oxidizer (comammox) Nitrospira significantly outnumbered canonical ammonia-oxidizing bacteria (AOB) in both weakly acidic reactors, especially in the low DO reactor with the comammox/AOB amoA gene ratio increasing from 6.6 to 17.1. Therefore, it was speculated that the enriched comammox was the primary cause for the slightly decreased N2O emission under long-term low DO in weakly acidic reactor. This study demonstrated that comammox Nitrospira can survive well under the weakly acidic and low-DO conditions, implying that achieving efficient nitrification with low N2O emission as well as low energy and alkalinity consumption is feasible for wastewater treatment.ImportanceNitrification in wastewater treatment is an important process for eutrophication control and an emission source for greenhouse gas of N2O. The nitrifying process is usually operated at a slightly alkaline pH and high DO (>2 mg/L) to ensure efficient nitrification. However, it consumes a large amount of energy and chemicals especially for wastewater without sufficient alkalinity. This manuscript demonstrated that comammox can adapt well to the weakly acidic and low-DO bioreactors, with a result of efficient nitrification and low N2O emission. These findings indicate that comammox are significant for sustainable wastewater treatment, which provides an opportunity to achieve efficient nitrification with low N2O production as well as low energy and chemical consumption simultaneously.
Collapse
|
32
|
Yang Y, Herbold CW, Jung MY, Qin W, Cai M, Du H, Lin JG, Li X, Li M, Gu JD. Survival strategies of ammonia-oxidizing archaea (AOA) in a full-scale WWTP treating mixed landfill leachate containing copper ions and operating at low-intensity of aeration. WATER RESEARCH 2021; 191:116798. [PMID: 33444853 DOI: 10.1016/j.watres.2020.116798] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 05/04/2023]
Abstract
Recent studies indicate that ammonia-oxidizing archaea (AOA) may play an important role in nitrogen removal by wastewater treatment plants (WWTPs). However, our knowledge of the mechanisms employed by AOA for growth and survival in full-scale WWTPs is still limited. Here, metagenomic and metatranscriptomic analyses combined with a laboratory cultivation experiment revealed that three active AOAs (WS9, WS192, and WS208) belonging to family Nitrososphaeraceae were active in the deep oxidation ditch (DOD) of a full-scale WWTP treating landfill leachate, which is configured with three continuous aerobic-anoxic (OA) modules with low-intensity aeration (≤ 1.5 mg/L). AOA coexisted with AOB and complete ammonia oxidizers (Comammox), while the ammonia-oxidizing microbial (AOM) community was unexpectedly dominated by the novel AOA strain WS9. The low aeration, long retention time, and relatively high inputs of ammonium and copper might be responsible for the survival of AOA over AOB and Comammox, while the dominance of WS9, specifically may be enhanced by substrate preference and uniquely encoded retention strategies. The urease-negative WS9 is specifically adapted for ammonia acquisition as evidenced by the high expression of an ammonium transporter, whereas two metabolically versatile urease-positive AOA strains (WS192 and WS208) can likely supplement ammonia needs with urea. This study provides important information for the survival and application of the eutrophic Nitrososphaeraceae AOA and advances our understanding of archaea-dominated ammonia oxidation in a full-scale wastewater treatment system.
Collapse
Affiliation(s)
- Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Craig W Herbold
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Man-Young Jung
- Division of Biology Education, Department of Science Education, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, South Korea; Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Faculty of Science Education, Jeju National University, Jeju 6324, South Korea
| | - Wei Qin
- School of Oceanography, University of Washington, Seattle, Washington, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Huan Du
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China.
| |
Collapse
|
33
|
Zhao J, Zhao J, Xie S, Lei S. The role of hydroxylamine in promoting conversion from complete nitrification to partial nitrification: NO toxicity inhibition and its characteristics. BIORESOURCE TECHNOLOGY 2021; 319:124230. [PMID: 33049441 DOI: 10.1016/j.biortech.2020.124230] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This study investigated a strategy for hydroxylamine (NH2OH) addition for promoting the conversion of complete nitrification to partial nitrification in a sequencing batch reactor (SBR). The results showed that continuous dosing of 5 mg-N/L NH2OH into a complete nitrification reactor for 16 days led to an increase in the nitrite accumulation ratio (NAR) from 0.22% to 95.08% and a significant enhancement in the accumulation of NO and N2O in the liquid. The maximum concentration of NO in each cycle rose with the increase of NAR during NH2OH addition. With the stopping of NH2OH addition, the partial nitrification disappeared progressively in 21 days. The analysis for microbial community showed that Nitrospira was the main NOB and its relative abundance decreased with NH2OH addition and recovered after the cessation of NH2OH addition. Accordingly, NH2OH has a significant and reversible inhibition on Nitrospira and its essence might be related to NO toxicity.
Collapse
Affiliation(s)
- Junkai Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China.
| | - Shuting Xie
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Shuhan Lei
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| |
Collapse
|
34
|
Cheng H, Jiang ZY, Ma XX, Wang YS. Nitrogen dynamics in the mangrove sediments affected by crabs in the intertidal regions. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:669-675. [PMID: 32333253 DOI: 10.1007/s10646-020-02212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Crab is an important benthonic animal in mangrove ecosystem, however, the potential function of crabs on nitrogen (N) transformation in mangrove ecosystems is still poorly understood. The present study aimed to explore the potential effect of crab burrows on nitrification/denitrification within the sediments. The results showed that the presence of crab burrows could directly promote soil nitrification, the regions within more crab burrows appeared to possess higher nitrification. Higher AOA and AOB gene copies were also observed in the sediments surrounding crab burrows than those in the sediments without crab burrow. On the contrary, lower nirS copies, a denitrification related gene, were detected in the sediments surrounding crab burrows. In summary, the present study proposed new evidences of nitrification enhancement deriving by crabs, the presence of crabs might be significant in alleviating nitrification inhibition and benefits the growth of mangroves under tidal flooding.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhao-Yu Jiang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiao-Xia Ma
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- School of Life Sciences, Jinan University, Guangzhou, 510632, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|