1
|
Tian Z, Zhang X, Zhang Y, Wu Z, Luan G, Bao L, Ji Y, Cui M, Li C. A MOF-on-MOF heterostructure ratiometric/colorimetric dual-mode fluorescence sensor based on support vector machine for detecting tetracyclines in animal-derived foods. Food Chem 2024; 460:140690. [PMID: 39106752 DOI: 10.1016/j.foodchem.2024.140690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
The misuse of tetracyclines in livestock production poses significant health risks. Thus, establishing convenient detection methods to replace complex laboratory tests for food safety is crucial. In this study, a heterostructure Zn-BTC/IRMOF-3 (denoted as ZBI) asynchronous response fluorescence sensor was developed for the qualitative and quantitative detection of tetracyclines in foods. The ZBI solution exhibited blue fluorescence under UV excitation; upon the introduction of tetracyclines, ZBI selectively recognized the tetracycline molecules through electron transfer, π-π stacking, and chelation, resulting in blue fluorescence quenching and green fluorescence enhancement. The ZBI sensor for tetracycline detection achieved recovery rates ranging from 93.91 to 111.91% in food samples, with a detection limit of as low as 0.086 μmol/L. Lastly, a portable sensing device using support vector classifier was constructed for detecting tetracyclines in real-life scenarios. Our findings introduce a new approach for fabricating fluorescence sensors and offer a novel method for detecting tetracyclines.
Collapse
Affiliation(s)
- Zhehang Tian
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Xieyang Zhang
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Yuting Zhang
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Zimeng Wu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Guanqun Luan
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Luqian Bao
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Yixin Ji
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Mengyao Cui
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Chunhua Li
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Li XY, Long QH, Pan Z, Ma XH, Xia C, Mai X, Li N. Integrated Eu 3+ loaded covalent organic framework with smartphone for ratiometric fluorescence detection of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124610. [PMID: 38852306 DOI: 10.1016/j.saa.2024.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Developing rapid tetracycline sensing system is of great significance to monitor the illegal addition to drugs and pollution to food and ecosystem. By loading covalent organic frameworks (COFs) with Eu3+, a new hybridized material (COF@Eu3+) was prepared for tetracycline determination. Based on the Schiff base reaction, the COFs were by synthesized through solvent evaporation in 30 min at room temperature. Thereafter, Eu3+ was modified into COFs to develop the COF@Eu3+ sensing platform by adsorption and coordination. In presence of tetracycline, tetracycline can displace water molecules and coordinate with Eu3+ through the antenna effect. As a result, the red fluorescence of Eu3+ was enhanced by tetracycline with green fluorescence of COF as a reference. The developed ratiometric fluorescence sensor exhibits a linear range of 0.1-20 μM for detecting tetracycline with a detection limit of 30 nM. Integrated with a smartphone, the rapid tetracycline detection can be realized in situ, which is potential for high-throughput screening of tetracycline contaminated samples. Furthermore, the COF@Eu3+ fluorescence sensor has been successfully applied to the detection of tetracycline in traditional Chinese medicine compound preparation with satisfied recoveries. Therefore, a smartphone-assisted device was successfully developed based on Eu3+-functionalized COF, which is an attractive candidate for further applications of fluorescence sensing and visual detection.
Collapse
Affiliation(s)
- Xin Yuan Li
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Qing Hong Long
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Zhoujian Pan
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Xiao Han Ma
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China; Jiangxi Key Laboratory of Clinical Pharmacokinetics, Nanchang 330031, PR China
| | - Xi Mai
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China.
| | - Na Li
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Wu N, Bo C, Guo S. Luminescent Ln-MOFs for Chemical Sensing Application on Biomolecules. ACS Sens 2024; 9:4402-4424. [PMID: 39193912 DOI: 10.1021/acssensors.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
At present, the application of rare-earth organic frameworks (Ln-MOFs) in fluorescence sensing has entered rapid development and shown great potential in various analytical fields, such as environmental analysis, food analysis, drug analysis, and biological and clinical analysis by utilizing their internal porosity, tunable structural size, and energy transfer between rare-earth ions, ligands, and photosensitizer molecules. In addition, because the luminescence properties of rare-earth ions are highly dependent on the structural details of the coordination environment surrounding the rare-earth ions, and although their excitation lifetimes are long, they are usually not burst by oxygen and can provide an effective platform for chemical sensing. In order to further promote the development of fluorescence sensing technology based on Ln-MOFs, we summarize and review in detail the latest progress of the construction of Ln-MOF materials for fluorescence sensing applications and related sensor components, including design strategies, preparation methods, and modification considerations and initially propose the future development prospects and prospects.
Collapse
Affiliation(s)
- Ning Wu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
4
|
Fan YJ, Dong JX, Liu T, Chang YQ, Zhao YS, Li YL, Zhang SM, Cao SY, Su M, Shen SG, Gao ZF. Heterometallic Eu/Zn-MOF-based ratiometric sensing platform: Highly sensitive fluorescence / second-order scattering identification of tetracycline analogs and its molecular informatization applications. Anal Chim Acta 2024; 1319:342980. [PMID: 39122289 DOI: 10.1016/j.aca.2024.342980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
The traditional preparation method of ratiometric probes faces challenges such as cumbersome preparation and low sensitivity. Thus, there is an urgent need to provide a simple method of preparing a highly sensitive ratiometric probe. Here, Eu3+-doped zinc-based organic framework (Eu/Zn-MOF) was prepared through hydrothermal method for the detection of tetracycline analogs (TCs). Under the same excitation conditions, the probe can simultaneously display valuable fluorescence and second-order scattering signals. The developed probe enabled specific identification and fast detection (1 min) of TCs, including tetracycline, oxytetracycline, doxycycline, and chlortetracycline. The linear detection ranges of tetracycline, oxytetracycline, doxycycline and chlortetracycline were respectively 100 nM - 200 μM, 100 nM - 200 μM, 98 nM - 195 μM, and 97 nM - 291 μM, and the corresponding detection limits were respectively 15.79 nM, 20.83 nM, 15.31 nM, and 28.30 nM. The developed sensor was successfully applied to detect TCs in real samples, and the recovery rate was from 92.54 % to 109.69 % and the relative standard deviation was from 0.04 % to 2.97 %. Moreover, the heterometallic Eu/Zn-MOF was designed as a ratiometric neuron for Boolean logic computing and information encryption based on the specific identification of TCs. As a proof of concept, molecular steganography was successfully employed to encode, store, and conceal information by transforming the specific identification patterns of Eu/Zn-MOF into binary strings. This study is anticipated to advance the application of metal-organic frameworks in logic detection and information security, and bridging the gap between molecular sensors and the realm of information.
Collapse
Affiliation(s)
- Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Tan Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yan Qing Chang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yong Sen Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Sai Mei Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Song Yun Cao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Shi Gang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
5
|
Nguyen TCT, Huynh TKC, Truong HB, Nguyen THA, Nguyen HP, Ton AK, Nguyen VT, Nguyen THN, Hoang TKD. Rapid and Efficient Dual Detection Of Zn 2+ Ions and Oxytetracycline Hydrochloride Using a Responsive Fluorescent "On-Off" Sensor Based on Simple Salen-Type Schiff Base Ligand. Chem Asian J 2024:e202400636. [PMID: 39171792 DOI: 10.1002/asia.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
This research has progressed to an effective detection chemosensor of zinc, aluminum ions and oxytetracycline hydrochloride antibiotic based on the fluorescence technique. A straightforward method utilizing microwave irradiation was employed to synthesize the salen-type Schiff base ligand N,N'-bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2I), providing a good 70 % yield. In ethanol, the H2I sensor demonstrated remarkable rapidity, selectivity, and sensitivity in detecting zinc ions. The fluorescence spectrum exhibited a 44-fold substantial enhancement at 522 nm and achieved a low limit of detection (LOD) of 1.47 μM. Furthermore, the H2I probe's emission intensity increased by 124 times when compared to the ligand's ability to detect Al3+ ions at 494 nm with a LOD value of 7.4 μM. Additional research was done using the H2I probe's effective Zn2+ detection capability. The ability to recognize zinc ions in different real water samples demonstrated a recovery rate of 98.67 % to 103.31 %. Interestingly, a naked-eye visible fluorescence color of H2I solution impregnated filter papers turned colorless into yell ow under UV irradiation by adding Zn2+ ions, renders it suitable for developing a practical zinc ion detection kit test. In particular, the I-Zn2+ complex effectively quenched the fluorescence toward oxytetracycline hydrochloride (OTC) with a LOD value of 1.49×10-2 μM in DMSO:H2O (6 : 4, v/v). This is a novel and effective procedure for sensing OTC antibiotic by the I-Zn2+ complex. These findings hold immense potential for the development of dual fluorescent probes, thereby enhancing sensitivity and specificity in identifying metal ions and antibiotics in a wide range of applications.
Collapse
Affiliation(s)
- Thi-Cam-Thu Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Thi-Kim-Chi Huynh
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, 100000, Vietnam
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thi-Hong-An Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Hoang-Phuc Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Anh-Khoa Ton
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Van-Thanh Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Thi-Hong-No Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Thi-Kim-Dung Hoang
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, 100000, Vietnam
| |
Collapse
|
6
|
Huang Y, Zhang J, Sui B, Chai G, Yu A, Chen S, Zhang M, Zhang S, Zhang Y, Zhao W. Development of an angle-adjustable photonic crystal fluorescence platform for sensitive detection of oxytetracycline. Chem Commun (Camb) 2024; 60:8115-8118. [PMID: 38994726 DOI: 10.1039/d4cc02363c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We pioneered an angle-adjustable photonic crystal fluorescence platform (APC-Fluor) that integrates PCs, an angular resolution spectrometer and a strategically aligned laser source. This configuration, featuring a coaxial rotating swing arm, allows for precise control over the angles of incidence and emission. The presence of photonic crystal microcavities facilitates the dispersion of fluorescent materials and promotes the transition of electrons from the excited state to the lowest vibrational energy level. The optical resonance effect triggered by modulating the alignment of the reflection peaks of the photonic crystals with the emission peaks of the fluorescent materials can significantly enhance the fluorescence intensity. Compared with the single BSA-AuNCs, the optimized fluorescence intensity can be significantly increased by 11.9-fold. The APC-Fluor system showcases rapid and highly sensitive detection capabilities for oxytetracycline (OTC), exhibiting a response across a concentration range from 2 to 1 × 104 nM and achieving a notably low detection limit of 1.03 nM.
Collapse
Affiliation(s)
- Yunhuan Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiaheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Food Laboratory of Zhongyuan - Zhengzhou University, Luohe 462300, P. R. China
| | - Bo Sui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guobi Chai
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miaomiao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shusheng Zhang
- Food Laboratory of Zhongyuan - Zhengzhou University, Luohe 462300, P. R. China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
7
|
Li C, Tian Z, Bao L, Shi Y, Ji Y, Cui M, Xing J, Zhao Z. An asynchronous response fluorescence sensor combines machine learning theory to qualitatively and quantitatively detect tetracyclines. Food Chem 2024; 446:138854. [PMID: 38430764 DOI: 10.1016/j.foodchem.2024.138854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Excess use of tetracyclines poses significant health risks arising from animal-derived foods, meaning simple and sensitive methods to detect tetracyclines would be beneficial given current laboratory methods are complex and expensive. Herein, we describe an asynchronous response fluorescence sensor constructed based on Zn-based metal-organic framework and Ru(bpy)32+ (denoted as Ru@Zn-BTEC) for the qualitative and quantitative detection of tetracyclines in foods. Under excitation at 365 nm, the sensor emitted red fluorescence at 609 nm. When tetracyclines were present, these molecules aggregated in the Ru@Zn-BTEC framework, causing green fluorescence emission at 528 nm. The developed sensing system accurately distinguished the different categories of tetracyclines with a classifier accuracy of 94 %. The Ru@Zn-BTEC sensor demonstrated a detection limit of 0.012 μM and satisfactory recovery (87.81 %-113.84 %) for tetracyclines in food samples. This work provides a pathway for constructing asynchronous response fluorescence sensors for food analysis.
Collapse
Affiliation(s)
- Chunhua Li
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China.
| | - Zhehang Tian
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Luqian Bao
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Yubo Shi
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Yixin Ji
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Mengyao Cui
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Jiayu Xing
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| | - Zhilei Zhao
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
| |
Collapse
|
8
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
9
|
Song Y, Meng Y, Chen K, Huang G, Li S, Hu L. Novel electrochemical sensing strategy for ultrasensitive detection of tetracycline based on porphyrin/metal phthalocyanine-covalent organic framework. Bioelectrochemistry 2024; 156:108630. [PMID: 38147788 DOI: 10.1016/j.bioelechem.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
In this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex. An ultralow detection limit of 59.6 fM is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.1-100000 pM for TC. The CuTAPc-TFPP-COF-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and excellent applicability for real river water, milk, and pork samples. Therefore, the CuTAPc-TFPP-COF-based aptasensor will be promising for detecting trace harmful antibiotics residues in environmental water and food samples.
Collapse
Affiliation(s)
- Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| | - Yubo Meng
- School of Mechanical Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Gailing Huang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Sizhuan Li
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Lijun Hu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| |
Collapse
|
10
|
Song J, Zhao B, Wang Y, Liu X, Cheng Z, Zhang X, Feng X. A portable smartphone-assisted Tb-MOF-based agar-slice probe for the rapid and on-site fluorescence assay of malachite green in aquatic products. Food Chem 2024; 437:137883. [PMID: 37918152 DOI: 10.1016/j.foodchem.2023.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
In this study, a new Tb-MOF fluorescence probe was developed for the detection of malachite green (MG) in real aquatic products. Fluorescence sensing experiments revealed that MG can effectively quench the green fluorescence of Tb-MOF suspensions, and the detection process exhibits the advantages of high sensitivity, a wide linear range (0-80 μM), a low detection limit (10.8 nM) and a rapid response time. Selective detection of MG is achieved primarily through fluorescence resonance energy transfer (FRET) and photoinduced electron transfer (PET) mechanisms. Furthermore, a smartphone-assisted Tb-MOF-based agar slice detection platform was constructed for the visual and quantitative detection of MG. Additionally, the on-site detection of MG in crucian and shrimp samples was accomplished with high recoveries (99.8 %-107.99 %) and low relative standard deviations (RSD < 2.2 %). This developed detection platform introduced a low-cost, portable and user-friendly approach for MG detection.
Collapse
Affiliation(s)
- Junya Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Beibei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Yiren Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Zheng Cheng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
11
|
Yuan HQ, Li W, Xia YF, Liu SY, Zhong YF, Dou ZC, Wei X, Wang R, Chen P, Li YX, Bao GM. A recyclable Eu 3+-functionalized dual-emissive metal-organic framework for portable, rapid detection and efficient removal of malachite green. Analyst 2024; 149:395-402. [PMID: 38051224 DOI: 10.1039/d3an01655b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A europium-functionalized, dual-emissive, metal-organic framework-based fluorescence sensor (EuUCNDA) was constructed via post-synthetic modification of an UiO-66-type precursor through coordination interactions. EuUCNDA exhibited extremely high selectivity and sensitivity for malachite green (MG) with a low detection limit of 13.01 nM, a wide linear concentration range (0.05-50 μM), excellent anti-interference properties, a rapid response (<1 min), and the possibility of recycling. The good sensing performance of EuUCNDA enables the practical detection of MG in fish pond water and grass carp with good recoveries. Moreover, EuUCNDA can be reused for sensing MG and over 90% of fluorescence intensity can be restored after 7 cycles. Furthermore, EuUCNDA-embedded paper-based sensors combined with smartphone imaging afford portable and visual monitoring of MG in real samples. Notably, besides good sensing performance, EuUCNDA could efficiently remove MG from water. Hence, this work provides a recyclable and sensitive fluorescence sensor for portable, visual, rapid detection and efficient removal of MG.
Collapse
Affiliation(s)
- Hou-Qun Yuan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Wei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi-Fan Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Si-Yi Liu
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu-Fei Zhong
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhen-Chong Dou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xia Wei
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Ran Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Yan-Xia Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guang-Ming Bao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
12
|
Yu X, Chang W, Cai Z, Yu C, Lai L, Zhou Z, Li P, Yang Y, Zeng C. Hg 2+ detection and information encryption of new [1+1] lanthanide cluster. Talanta 2024; 266:125105. [PMID: 37639872 DOI: 10.1016/j.talanta.2023.125105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
The sensing of heavy metal ion and information encryption are two very important research areas. Therefore, developing multi-functional materials capable of sensing heavy metal ions and encrypting information is highly important. In this work, three [1 + 1] lanthanide clusters [Ln(TFBA)3(dmp) (H2O)2]2 (Ln = Tb3+Tb1+1, Eu3+Eu1+1, Gd3+Gd1+1, HTFBA = 2,3,4,5-tetrafluorobenzoic acid, dmp = 4,7-dimethyl-1,10-phenanthroline) were designed and synthesized. Among them, Tb1+1 shows excellent luminescence sensing towards Hg2+ (Ex = 350 nm, Em = 545 nm). Results demonstrates the sensing with high selectivity, strong anti-interference, 20-s response time, high accuracy, excellent linear relationship in 0-20.0 μM, and a very low limit of detection (0.02 ppb). Furthermore, paper strips based on Tb1+1 is fabricated for visual detection of Hg2+ in real samples of tap water, lake water, human urine, and human serum. More interestingly, a new method for confidentiality of information is realized through multi-color anti-counterfeiting patterns with the [1 + 1] lanthanide cluster ink, based on the luminescence "on-off" sensing towards Hg2+.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Wenting Chang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Ziyan Cai
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Cilin Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Lin Lai
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Ziyin Zhou
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Ping Li
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chenghui Zeng
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China; School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
13
|
Zhang Y, Sun M, Lu Y, Peng M, Du E, Xu X. Nitrogen-Doped Carbon Dots Encapsulated a Polyoxomolybdate-Based Coordination Polymer as a Sensitive Platform for Trace Tetracycline Determination in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2676. [PMID: 37836317 PMCID: PMC10574045 DOI: 10.3390/nano13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal-organic coordination polymers (MOCPs, (4-Hap)4(Mo8O26)) coated with nitrogen-doped carbon dots (NCDs). These NCDs@(4-Hap)4(Mo8O26) composites showed excellent luminescence features of NCDs with stable bright-blue emission under UV light. The results of the sensing experiment showed that the fluorescence of NCDs@(4-Hap)4(Mo8O26) can be quenched by TC (166 µM) with 94.1% quenching efficiency via the inner filter effect (IFE) in a short time (10 s), with a detection limit (LOD) of 33.9 nM in a linear range of 8-107 µM. More significantly, NCDs@(4-Hap)4(Mo8O26) showed a high selectivity for TC sensing in the presence of anions and metal cations commonly found in water environments and can be reused in at least six cycles after washing with alcohol. The potential practicality of NCDs@(4-Hap)4(Mo8O26) was verified by sensing TC in real water samples with the standard addition method, and satisfactory recoveries from 91.95% to 104.72% were obtained.
Collapse
Affiliation(s)
- Yanqiu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Minrui Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Xia Xu
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| |
Collapse
|
14
|
Che H, Tian X, Guo F, Nie Y, Dai C, Li Y, Lu L. Enhancement of the Peroxidase Activity of g-C 3N 4 with Different Morphologies for Simultaneous Detection of Multiple Antibiotics. Anal Chem 2023; 95:12550-12556. [PMID: 37550863 DOI: 10.1021/acs.analchem.3c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The classes and forms of antibiotics directly determine their ecotoxicity and environmental chemical behavior, and developing a sensor array for simultaneous and in situ detection of antibiotics is highly anticipated. In this study, different morphologies of g-C3N4 with different fluorescence properties and peroxidase activity were prepared by regulating the degree of interlayer stacking and planar connectivity. Subsequently, in order to enhance its enzyme activity and amplify the differences in response signals to different antibiotics, three morphologies of g-C3N4/MIL-101(Fe) were prepared by in situ growth of equivalent amounts of MIL-101(Fe) on g-C3N4, respectively. The sensor array constructed based on the cross-response signals between g-C3N4/MIL-101(Fe) and antibiotics not only realized the simultaneous detection of quinolones, furans, tetracyclines, and lincomamides but also could efficiently identify their seven different forms. In the range of 0.2-0.8 ppm, the minimum detection limit for antibiotics was 12 ppb. In addition, the recovery experiments of multicomponent-mixed antibiotics in environmental samples show that the recovery rate remained at 91.42-107.59%, confirming the reliability and practicality of the sensor array. This study not only revealed the influence of crystal morphology regulation on the optical properties and enzyme activities of nanozymes, but also provided support for tracing, ecological remediation, and in situ environmental chemical behavior research of antibiotics.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P.R. China
| | - Fei Guo
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P.R. China
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Liqiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
15
|
Goswami K, Sen Sarma N. "Click" Reaction-Mediated Silk Fibroin-Functionalized Thiol-Branched Graphene Oxide Quantum Dots for Smart Sensing of Tetracycline. ACS OMEGA 2023; 8:21914-21928. [PMID: 37360495 PMCID: PMC10286249 DOI: 10.1021/acsomega.3c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The abuse of tetracycline (TC) antibiotics causes the accumulation of their residue in the environment, which has an irreversible impact on food safety and human health. In light of this, it is vital to offer a portable, quick, efficient, and selective sensing platform to detect TC instantly. Herein, we have successfully developed a sensor using silk fibroin-decorated thiol-branched graphene oxide quantum dots through a well-known thiol-ene click reaction. It is applied to ratiometric fluorescence sensing of TC in real samples in the linear range of 0-90 nM, with the detection limit of 49.69, 47.76, 55.25, 47.90, and 45.78 nM for deionized water, chicken sample, fish sample, human blood serum, and honey sample, respectively. With the gradual addition of TC to the liquid media, the sensor develops a synergetic luminous effect in which the fluorescence intensity of the nanoprobe steadily declines at 413 nm, while the intensity of a newly emerging peak increases at 528 nm, maintaining a ratio that is dependent on the analyte concentration. The increase of luminescence properties in the liquid media is clearly visible by naked eyes in the presence of 365 nm UV light. The result helps us in building a filter paper strip-based portable smart sensor using an electric circuit comprising a 365 nm LED (light-emitting diode) powered by a mobile phone battery which is attached just below the rear camera of a smartphone. The camera of the smartphone captures the color changes that occur throughout the sensing process and translates into readable RGB data. The dependency of color intensity with respect to the concentration of TC was evaluated by deducing a calibration curve from where the limit of detection was calculated and found to be 0.125 μM. These kinds of gadgets are important for the possible real-time, on-the-spot, quick detection of analytes in situations where high-end approaches are not easily accessible.
Collapse
Affiliation(s)
- Kangkan
Jyoti Goswami
- Advanced
Materials Laboratory, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelotpal Sen Sarma
- Advanced
Materials Laboratory, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Zhang Y, Wang A, Huang B, Liu X, Englert U, Lu L. A Zn-coordination polymer for the quantitative and selective colorimetric detection of residual tetracycline in aqueous solution and urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122470. [PMID: 36870182 DOI: 10.1016/j.saa.2023.122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
A one-step solvothermal synthesis provides a functional crystalline one-dimensional Zn-coordination polymer (Zn-CP) with excellent stability in aqueous solution over a wide range of temperature and pH. Zn-CP is a rapid, highly sensitive and selective sensor for detecting tetracycline (TC). Quantitative TC detection is based on the ratio of fluorescence intensities I530/I420, with a limit of detection (LOD) of 5.51 nM in aqueous solution and 47.17 nM in human urine. The characteristics of colorimetric TC sensing by Zn-CP are highly favorable for application because the color of Zn-CP changes in the visible part of the spectrum from blue-purple to yellow-green upon addition of TC. Conversion of these colors into an RGB signal is simply achieved with an app for the smart phone and provides LODs of 8.04 nM and 0.13 μM TC in water and urine, respectively. Our suggested sensing mechanisms assume that the fluorescence intensity of Zn-CP@TC at 530 nm is enhanced by energy transfer of Zn-CP to TC, while the fluorescence of Zn-CP at 420 nm is quenched by photoinduced electron transfer (PET) from TC to the organic ligand in Zn-CP. These fluorescence properties make Zn-CP a convenient, low-cost, rapid and green detection device for monitoring TC under physiological conditions and in aqueous media.
Collapse
Affiliation(s)
- Yatong Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ai Wang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Bing Huang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaowei Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ulli Englert
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, China; Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
17
|
N P, Varshney R, Singh S, Kumar Naik TS, Ramamurthy PC. 3D rhombohedral microcrystals metal-organic frameworks for electrochemical and fluorescence sensing of tetracycline. CHEMOSPHERE 2023; 333:138977. [PMID: 37209853 DOI: 10.1016/j.chemosphere.2023.138977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Zirconium-based metal-organic frameworks (MOF) exhibiting 3D rhombohedral microcrystals were synthesized by the solvothermal method. The structure, morphology, composition, and optical properties of the synthesized MOF were carried out using different spectroscopic, microscopic, and diffraction techniques. Synthesized MOF was rhombohedral in shape and the cage structure of these crystalline molecules was the active binding site of the analyte, tetracycline (TET). The electronic property and size of the cages are chosen such that a specific interaction with TET was observed. Sensing of the analyte was demonstrated by both the electrochemical and fluorescent techniques. The MOF had significant luminescent properties and exhibited excellent electro-catalytic activity due to embedded zirconium metal ions. An electrochemical and fluorescence sensor was fabricated towards TET where TET binds via hydrogen bond to MOF, and causes fluorescence quenching due to the transfer of electrons. Both approaches exhibited high selectivity and good stability in the presence of interfering molecules such as antibiotics, biomolecules, and ions; and showed excellent reliability in tap water and wastewater sample analysis.
Collapse
Affiliation(s)
- Pavithra N
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India
| | - Ts Sunil Kumar Naik
- Department of Materials Engineering Indian Institute of Science, Bengaluru, 560012, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India; Department of Materials Engineering Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
18
|
Liu B, Zhu H, Liu J, Wang M, Pan J, Feng R, Hu P, Niu X. Alkali-Etched Imprinted Mn-Based Prussian Blue Analogues with Superior Oxidase-Mimetic Activity and Precise Recognition for Tetracycline Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24736-24746. [PMID: 37163688 DOI: 10.1021/acsami.3c02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a typical antibiotic pollutant, tetracycline (TC) is producing increasing threats to the ecosystem and human health, and exploring convenient means for monitoring of TC is needed. Here, we proposed alkali-etched imprinted Mn-based Prussian blue analogues featuring superior oxidase-mimetic activity and precise recognition for the colorimetric sensing of TC. Simply etching Mn-based Prussian blue analogues (Mn-PBAs) with NaOH could expose the sites and surfaces to significantly improve their catalytic activity. Density functional theory calculations were employed to screen the molecularly imprinted polymer (MIP) layer for target identification. Consequently, the designed Mn-PBANaOH@MIP possessed the rich channels for substrates to get in touch with the active Mn-PBANaOH core, showing an excellent catalytic capacity to trigger the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) without the use of H2O2. If TC was introduced, it would be recognized selectively by the MIP shell and masked the channels for TMB access, resulting in the obstruction of the chromogenic reaction. According to this mechanism, selective optical detection of TC was achieved, and performance stability, reusability, and reliability as well as practicability were also verified, promising potential for TC monitoring in complex matrices. Our work not only presents an effective way to enhance the enzyme-like activity of Prussian blue analogues but also provides a facile approach for TC sensing. Additionally, the work will inspire the exploration of molecularly imprinted nanozymes for various applications.
Collapse
Affiliation(s)
- Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rulin Feng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
19
|
Yu X, Chang W, Zhang H, Cai Z, Yang Y, Zeng C. Visual and Real-Time Monitoring of Cd 2+ in Water, Rice, and Rice Soil with Test Paper Based on [2 + 2] Lanthanide Clusters. Inorg Chem 2023; 62:6387-6396. [PMID: 37027515 DOI: 10.1021/acs.inorgchem.3c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Cadmium ions (Cd2+) are highly toxic to animal and human health, especially through the drinking of Cd2+-contaminated water and eating Cd2+-contaminated rice. Therefore, accurate detection of Cd2+ in water, rice, and rice soil is urgent. In this work, two [2 + 2] lanthanide clusters of Tb2Tb2 and Eu2Eu2 were synthesized and characterized in detail. Interestingly, Tb2Tb2 is a rapid sensor for Cd2+ through luminescence "turn-off". Further studies show that Tb2Tb2 is a highly sensitive and selective sensor toward Cd2+ in water, rice supernatants, and rice soil supernatants, with a very short response time of 20 s. The limit of detection (LOD) in the above three real samples is as low as 0.0112, 1.1240, and 0.1124 ppb, respectively, which is lower than the national standards for food safety in China (GB 2762-2022). More interestingly, a portable sensing device of test paper based on Tb2Tb2 is developed with a facile method, which shows visible, highly sensitive, and selective sensing toward Cd2+ in real samples of water, rice supernatants, and rice soil supernatants. Tb2Tb2 and its sensing device of test paper are an on-site analysis sensor for potentially non-expert users, especially for people in remote rural areas.
Collapse
Affiliation(s)
- Xiaobo Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Wenting Chang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hua Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ziyan Cai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chenghui Zeng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
20
|
Li Y, Wang M, Yang G, Wang YY. Fabrication of the Antibiotic Sensor by the Multifunctional Stable Adjustable Luminescent Lanthanide Metal-Organic Frameworks. Inorg Chem 2023; 62:4735-4744. [PMID: 36869870 DOI: 10.1021/acs.inorgchem.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In recent years, the irrational use of antibiotics has become very widespread. It is necessary to regulate this phenomenon through antibiotic detection. In this work, a series of isomorphic Ln-MOFs (Ln = Tb3+ and Eu3+) were synthesized from 1,3,5-tri(4-carboxyphenyl)benzene (H3L) and Ln3+ by the solvothermal method for the first time. A series of 1-EuxTb1-x with different luminescence were doped by changing the molar ratio of Tb3+ and Eu3+. Ln3+ forms a 4-connected 2D network structure through self-assembly with fully deprotonated L3-. It shows good chemical stability in water, and its luminescence is not affected by aqueous solutions with different pH values. 1-Eu demonstrates rapid and sensitive detection capabilities for MDZ and TET with good recyclability and low detection limits (10-5). In order to increase the practicability of 1-Eu, two portable sensors have been prepared, in which the fluorescent film (Film@1-Eu) has a detection limit of 10-4, and the sensitivity is only less than 10% of the titration results. A portable fluorescent test paper can reach the detection limit of 14.7 ppm. This study provides a new idea for the application of stable multifunctional materials in the field of fluorescence sensing.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Meng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
21
|
Chang W, Yu X, Xu Z, Sang X, Zhang H, Zeng C. Detection of heavy metal ion in real samples with fiber based paper based on new rare earth cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122097. [PMID: 36462321 DOI: 10.1016/j.saa.2022.122097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) is an important material, but also one of the most toxic heavy metal pollutants, showing great threat to human health and ecological environment, thus, accurate and rapid detection of Cr3+ has far-reaching significance. In this work, based on the ligand of 2,3,4,5,6-pentafluorobenzoic acid (HPFBA) that does not contains oscillation effect group such as "CH, OH, and NH bond", three rare earth dinuclear cluster of Ln2(PFBA)6(phen)2(H2O)2 (Ln = Tb3+1-Tb, Eu3+1-Eu, Gd3+1-Gd, phen = 1,10-phenanthroline) were obtained. 1-Tb shows excellent stability and luminescence properties. In depth investigation reveals that 1-Tb shows quick detection towards Cr3+ in water through luminescence "turn-off", with extremely short response time of 1.0 min, very low limit of detection (LOD) of 5.2 ppb and no interference from other ions. The LOD value is much lower than the total content of chromium for water in China (15 ppm, GB9078-1996). In the actual environment such as tap water, lake water, human, and serum, 1-Tb shows excellent detection and recovery rate for Cr3+. More interestingly, a fiber based paper of test paper that based on 1-Tb and ordinary filter paper was fabricated, which can probe Cr3+ by visible color changes to the naked eye under UV light.
Collapse
Affiliation(s)
- Wenting Chang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Xiaobo Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Zhaohui Xu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Xiaoyan Sang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Hua Zhang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Chenghui Zeng
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China.
| |
Collapse
|
22
|
Li J, Chen SL, Yan RP, Young DJ, Mi Y, Hu FL. Fabrication of ultrathin 2D MOF nanosheets for Folic Acid detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
23
|
Cheng J, Liu N, Wang L, Wang H, Lu J, Li Y, Dou J, Wang S. Detection Enhancement of One Multifunctional Cd-Metal-Organic Framework toward Tetracycline Antibiotics by Simply Mixing Eu 3+ in Suspension. Inorg Chem 2023; 62:3573-3584. [PMID: 36786546 DOI: 10.1021/acs.inorgchem.2c04246] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
It is necessary to find more simple methods to improve the detection selectivity and sensitivity of antibiotics. Herein, we constructed a novel three-dimensional (3D) Cd-MOF LCU-117 assembled from p-terphenyl-4,2″,5″,4'-tetracarboxylic acid, which showed a special 3D helical structure with carboxylic acid ligands and nitrogen-containing ligands crossing each other vertically. Luminescence measurements indicated that LCU-117 has high selectivity and sensitivity toward Eu3+ through the ratiometric effect. Meanwhile, this complex itself could detect antibiotics oxytetracycline (OTC) through the turn-off mechanism. When Eu3+ was added in suspensions of LCU-117 (noted as Eu3+@LCU-117), the detection toward OTC was enhanced significantly and visually. The sensing mechanism was investigated in detail by various measurements and theoretical calculations. LCU-117 has a good effect on the logic gate, potential fingerprint detection, and mixed-matrix membranes (MMMs). The practical application for monitoring OTC in water samples also provided a satisfactory result.
Collapse
Affiliation(s)
- Jiawei Cheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Luyao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Huaiwei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
24
|
Wu H, Chen Y, Xu M, Ling Y, Ju S, Tang Y, Tong C. Dual-response fluorescent probe based on nitrogen-doped carbon dots and europium ions hybrid for ratiometric and on-site visual determination of oxytetracycline and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160533. [PMID: 36574552 DOI: 10.1016/j.scitotenv.2022.160533] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Tetracyclines residues, particularly oxytetracycline (OTC) and tetracycline (TC), have raised extensive concern because of their serious adverse effects on human health. Herein, a dual-response fluorescent probe based on nitrogen-doped carbon dots (N-CDs) and Eu3+ hybrid (N-CDs-Eu3+) was developed to selectively determine OTC and TC. The N-CDs act as ancillary ligands of Eu3+ and recognition units of OTC/TC, while the Eu3+ ions chelated with N-CDs can also specifically recognize OTC/TC. Upon inclusion of OTC/TC, an enhancement in Eu3+ emission occurs due to the energy transfer from OTC/TC to Eu3+ and the efficient elimination of quenching effect caused by H2O molecule, which is attributed to the incorporation of N-CDs; while the blue fluorescence emitted by the N-CDs decreases under the inner filter effect and static quenching effect caused by OTC/TC. Based on the double and reverse response signals, the ratiometric detection of OTC and TC in the range of 0.1-45 μΜ and 0.1-30 μΜ is achieved with a detection limit of 0.017 and 0.041 μM, respectively. In addition, the noticeable variation in fluorescence color of the probe is integrated with a smartphone-assisted analysis device for the rapid on-site quantitative assay of OTC, where the detection limit is 0.15 μΜ. The results show that this probe performs with excellent specificity and anti-interference for both OTC and TC, and satisfactory detection results are obtained in lake water, milk, and honey samples, thereby confirming that the probe exhibits promising application in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yubing Chen
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Mengqi Xu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuwei Ling
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shiying Ju
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Che H, Yan S, Xiong M, Nie Y, Tian X, Li Y. Ultra-trace detection and efficient adsorption removal of multiple water-soluble volatile organic compounds by fluorescent sensor array. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130182. [PMID: 36279650 DOI: 10.1016/j.jhazmat.2022.130182] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Due to the extremely low concentration, complex composition and easy to be converted into each other in water and air of water-soluble volatile organic compounds (VOCs), it is a great challenge to the traditional detection technology, pollution control and traceability, etc. Therefore, developing a convenient, swift and on-site detection method for simultaneous quantification of multiple VOCs is highly anticipated. In this paper, a multifunctional sensor array with adsorption and sensing of VOCs has been constructed by four fluorescence channels of small-sized Eu@Uio-66 and Tb@Uio-66. Due to the obvious cross-reactive characteristics between 4 fluorescence channels and VOCs, the sensor array could detect 8 VOCs simultaneously with all detection limits as low as ppb level. In addition, the detection results of sensor array for actual water samples coexisting with multiple VOCs confirmed that it has strong anti-interference performance and could be used for simultaneous detection of multiple VOCs in real water. The construction of sensor array with VOC adsorption function not only helps to reduce the detection limit of VOCs benefiting from the pre-concentration of materials, but also has significant value to reduce the harmfulness of pollutants. Predictably, this work is of great significance for VOC traceability, analysis of ecotoxicological effects and monitoring of pollution distribution characteristics.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Shulin Yan
- Wuxi Little Swan Electric Co., Ltd., National High-tech Development Zone, No. 18 South Changjiang RD, Wuxi, PR China
| | - Ming Xiong
- Wuxi Little Swan Electric Co., Ltd., National High-tech Development Zone, No. 18 South Changjiang RD, Wuxi, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
26
|
Zhang J, Jin Y, Zhang Y, Zhang J, Liu Z, Cai Y, Zhang S, Fang M, Kong M, Tan X. The effect of internal stress on the photocatalytic performance of the Zn doped BiOBr photocatalyst for tetracycline degradation. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Highly sensitive detection of tetracycline by electrochemical molecular imprinting. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Cheng Y, Cai Z, Xu Z, Sang X, Song C. Smart sensing device for formaldehyde that based on uniform lanthanide CPs microsphere. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
High sensitive fluorescent sensing and photocatalytic degradation performance of two-dimensional Tb-organic network. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Dye-encapsulated metal–organic framework composites for highly sensitive and selective sensing of oxytetracycline based on ratiometric fluorescence. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Cui X, Lei T, Zhang J, Chen Z, Luo H, Chen H, He Y, Song G. Smartphone-assisted miniature device based on nitrogen and sulfur co-doped carbon dots for point-of-care testing of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121727. [PMID: 35998426 DOI: 10.1016/j.saa.2022.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
A miniature device was design for the point-of-care testing (POCT) of tetracycline (TC) including a ratio fluorescence test strip, a sample slot, a UV lamp and a smartphone. The nitrogen and sulfur co-doped carbon dots (N, S-CDs) and Eu3+ were dropped onto the filter paper to construct the ratio fluorescence test strips for the specific detection of TC. Under the excitation at 390 nm, the fluorescence emission of N, S-CDs at 530 nm decreases through inner filter effect (IEF) after addition of Eu3+. When the further addition of TC, the emission of N, S-CDs at 530 nm kept unchanged while the emission of Eu3+ at 616 nm was obviously enhanced for the antenna effect (AE) between Eu3+ and TC. The ratio changes of the two-fluorescence emission realized the quantitative detection of TC. In addition, the test strips with different concentrations of TC showed different fluorescence color from green to red under a 365 nm UV lamp. The miniature device was designed as a fluorescence photo reader with the merits of the powerful functions of smartphones and the portability of test strips. The smartphone camera takes a fluorescent color image of the test strips and the photos are recognized by a color recognizer on the smartphone to obtain RGB (red-greenblue) values which reflect the concentrations of the analytes. Therefore, we established a fast, sensitive and efficient POCT of TC. In particular, the proposed nanomaterial-based POCT platform will open a new route towards the development of ratio fluorescence probe for TC analysis for environment samples.
Collapse
Affiliation(s)
- Xipeng Cui
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tiantian Lei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Juan Zhang
- Hubei Light Industry Institute of Research & Design Co., Ltd, No. 1 Yangsigang Road, Hanyang District 430052, Wuhan, Hubei, China
| | - Zifan Chen
- Hubei Light Industry Institute of Research & Design Co., Ltd, No. 1 Yangsigang Road, Hanyang District 430052, Wuhan, Hubei, China
| | - Hong Luo
- Hubei Light Industry Institute of Research & Design Co., Ltd, No. 1 Yangsigang Road, Hanyang District 430052, Wuhan, Hubei, China
| | - Hui Chen
- Hubei Light Industry Institute of Research & Design Co., Ltd, No. 1 Yangsigang Road, Hanyang District 430052, Wuhan, Hubei, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
33
|
Xu J, Wang J, Jia L, Zhu T. Integration of silicon nanodots and rare earth functionalized amino clay for intelligent colorful assessment of tetracycline. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Zhan YC, Tsai JJ, Chen YC. Zinc Ion-Based Switch-on Fluorescence-Sensing Probes for the Detection of Tetracycline. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238403. [PMID: 36500496 PMCID: PMC9739377 DOI: 10.3390/molecules27238403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Tetracycline (TC) is an antibiotic that has been widely used in the animal husbandry. Thus, TC residues may be found in animal products. Developing simple and sensitive methods for rapid screening of TC in complex samples is of great importance. Herein, we demonstrate a fluorescence-sensing method using Zn2+ as sensing probes for the detection of TC. Although TC can emit fluorescence under the excitation of ultraviolet light, its fluorescence is weak because of dynamic intramolecular rotations, leading to the dissipation of excitation energy. With the addition of Zn2+ prepared in tris(hydroxymethyl)amino-methane (Tris), TC can coordinate with Zn2+ in the Zn2+-Tris conjugates to form Tris-Zn2+-TC complexes. Therefore, the intramolecular motions of TC are restricted to reduce nonradiative decay, resulting in the enhancement of TC fluorescence. Aggregation-induced emission effects also play a role in the enhancement of TC fluorescence. Our results show that the linear dynamic range for the detection of TC is 15-300 nM. Moreover, the limit of detection was ~7 nM. The feasibility of using the developed method for determination of the concentration of TC in a complex chicken broth sample is also demonstrated in this work.
Collapse
Affiliation(s)
- Yan-Cen Zhan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia-Jen Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +88-(63)-5131527; Fax: +88-(63)-5173764
| |
Collapse
|
35
|
Sun J, Xi Y, Gao L, Hu M, Liu W, Ma E, Huang R, Qin W, Wu G. Two isostructural Ln-MOFs containing triazole groups as Luminescent Probes for Efficient Sensing of NACs and Fe3+. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Xie HH, Han L, Tang SF. Functionalized Zirconium Organic Frameworks as Fluorescent Probes for the Detection of Tetracyclines in Water and Pork. Inorg Chem 2022; 61:17322-17329. [PMID: 36260292 DOI: 10.1021/acs.inorgchem.2c02940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The overuse of tetracyclines (TCs) in livestock breeding may cause a series of health and environmental problems. It is necessary to develop more accurate, convenient, and rapid sensing methods toward TCs, but it is still very challenging. In this work, three isostructural zirconium organic frameworks (Zr-MOFs) have been investigated as probes for the fluorescent sensing of TCs in water. By varying the functional group at the central benzene core, their sensing performances toward TCs can be modified. Under optimized conditions, the limit of detection can be as low as 0.08 nM in a wide detection range of 0-147 μM with high sensitivity and selectivity. These Zr-MOFs can also be applied in the detection of TCs in real pork samples with satisfying reliabilities and correctness. This work provides a new method for the design and optimization of fluorescent sensors toward TCs.
Collapse
Affiliation(s)
- Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| |
Collapse
|
38
|
Wang C, Huang G, Luo X, Tang W, Yue T, Li Z. Construction of ratiometric fluorescence sensor and test strip with smartphone based on dual-emission carbon dots for the specific detection of chlortetracycline. Anal Bioanal Chem 2022; 414:8143-8154. [PMID: 36194240 DOI: 10.1007/s00216-022-04349-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Concerns about environmental and food contamination caused by chlortetracycline (CTC) residues have prompted people to explore efficient and convenient CTC monitoring platforms. However, the reported fluorescent probes generally fail to selectively detect CTC due to the structural similarity of tetracycline antibiotics. Herein, an intrinsic dual-emission carbon dots (D-CDs) ratiometric fluorescence sensor was prepared for highly sensitive and selective determination of CTC over other tetracyclines by one-step synthesis. The sensor exhibited a significant fluorescence enhancement at 425 nm after introducing CTC. The fluorescence "turn on" of the sensing system is due to aggregation-induced emission (AIE) phenomenon formed by hydrogen bonds and π conjugation promoting the specific recognition of CTC by D-CDs. The linear detection varied from 0.98 to 143.67 ng mL-1 with a low limit of detection (LOD) of 1.29 ng mL-1 (R2 = 0.998), which was lower than most reported in the literature. The D-CDs sensor was applied to detect CTC in spiked milk, blocked normal human serum, and fish samples with recoveries of 95.5-104.2% and relative standard deviations (RSDs) of 2.6%. Particularly, D-CDs based test papers with a smartphone were prepared for portable and visual detection of CTC by analyzing the various color changes of RGB of fluorescence color, with an LOD of 7.18 ng mL-1 (R2 = 0.9909). The fluorescence sensor designed in this work could be used as a rapid tool with high performance and selectivity for monitoring control in foods.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Gengli Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling) Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
39
|
Yang H, Wei Y, Yan X, Nie C, Sun Z, Hao L, Su X. High-Efficiency Utilization of Waste Tobacco Stems to Synthesize Novel Biomass-Based Carbon Dots for Precise Detection of Tetracycline Antibiotic Residues. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183241. [PMID: 36145029 PMCID: PMC9503805 DOI: 10.3390/nano12183241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 05/27/2023]
Abstract
Recycling waste biomass into valuable products (e.g., nanomaterials) is of considerable theoretical and practical significance to achieve future sustainable development. Here, we propose a one-pot hydrothermal synthesis route to convert waste tobacco stems into biomass-based N, S-codoped carbon dots (C-dots) with the assistance of carbon black. Unlike most of the previously reported luminescent C-dots, these biomass-based C-dots showed a satisfactory stability, as well as an excitation-independent fluorescence emission at ~520 nm. Furthermore, they demonstrated a pH-dependent fluorescence emission ability, offering a scaffold to design pH-responsive assays. Moreover, these as-synthesized biomass-based C-dots exhibited a fluorescence response ability toward tetracycline antibiotics (TCs, e.g., TC, CTC, and OTC) through the inner filter effect (IFE), thereby allowing for the establishment a smart analytical platform to sensitively and selectively monitor residual TCs in real environmental water samples. In this study, we explored the conversion of waste tobacco stems into sustainable biomass-based C-dots to develop simple, efficient, label-free, reliable, low-cost, and eco-friendly analytical platforms for environmental pollution traceability analysis, which might provide a novel insight to resolve the ecological and environmental issues derived from waste tobacco stems.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xiufang Yan
- Key Laboratory of Tobacco Quality Research of Guizhou Province, College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Chao Nie
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zhenchun Sun
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiankun Su
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| |
Collapse
|
40
|
Dual-functional CDs@ZIF-8/chitosan luminescent film sensors for simultaneous detection and adsorption of tetracycline. Carbohydr Polym 2022; 291:119587. [DOI: 10.1016/j.carbpol.2022.119587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/02/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
41
|
Ratiometric fluorescence and visual determination of tetracycline antibiotics based on Y 3+ and copper nanoclusters-induced cascade signal amplification. Mikrochim Acta 2022; 189:352. [PMID: 36008501 DOI: 10.1007/s00604-022-05447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
A ratiometric fluorescence probe is proposed for sensitive and visual detection of tetracyclinee (TC) based on cascade fluorescence signal amplification induced by bovine serum albumin-stabilized copper nanoclusters (BSA-CuNCs) and yttrium ions (Y3+). TC can combine with Y3+ to form the complex (TC-Y3+) to enhance the fluorescence of TC at 515 nm. Then, positively charged TC-Y3+ and negatively charged BSA-CuNCs was bonded together by electrostatic interactions to achieve the fluorescence resonance energy transfer (FRET) process. With the increase of TC concentration, the fluorescence intensity of TC-Y3+ at 515 nm (F515) gradually increased; meanwhile, the fluorescence intensity of BSA-CuNCs at 405 nm (F405) decreased gradually. The ratio of F515 and F405 was used for the quantitative determination of TC. The linear range of the constructed fluorescent probe is 1.0 to 60.0 μM, and the limit of detection is 0.22 μM. The method was successfully applied to the determination of TC in spiked milk with recoveries ranging from 94.3 to 112%. Furthermore, the color of this platform can be observed from dark violet to bright green under the UV lamp. Since the response time of the reaction is less than 10 s, an intelligent sensing platform based on the use of the smartphone as image acquisition equipment was also established to realize rapid on-site and portable detection of TC through the colorimetric recognition application.
Collapse
|
42
|
Che H, Yan S, Nie Y, Tian X, Li Y. Film-based fluorescent sensor for visual monitoring and efficient removal of aniline in solutions and gas phase. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129016. [PMID: 35500347 DOI: 10.1016/j.jhazmat.2022.129016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Aniline has attracted much concern for its long degradation half-life and huge toxicity to the environment and human beings. Therefore, the development of a multi-functional device for visual detection and efficient removal of aniline was highly anticipated. In our work, the small-size Eu@UiO-66(COOH) was obtained by post-synthesis modification (PSM), and then the film-based fluorescent sensor was prepared by crosslinking reaction. The films not only showed incredible mechanical stability and potential for large-scale preparation, but also have excellent fluorescence response to aniline in solutions and gas phase. As the concentration of aniline increased, the fluorescence of films gradually increased at 350 nm, while the fluorescence gradually quenching at 620 nm, and the detection limits (LOD) of aniline in water and air were 0.27 ppb and 0.086 ppb, respectively. In addition, the adsorption performance of the film for aniline has also been confirmed and the maximum adsorption capacity was 32.6 mg/g, which is a strong guarantee for the realization of ultra-trace detection and toxicity reduction of aniline. In summary, the multi-functional film sensor has been designed for ultra-trace detection and efficient removal of aniline in solutions and gas phase, and have significant value for pollutant treatment, ecological restoration and early prevention.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Shulin Yan
- Wuxi Little Swan Electric Co., Ltd., No. 18 South Changjiang RD, National High-tech Development Zone, Wuxi, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
43
|
An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem 2022; 400:133995. [DOI: 10.1016/j.foodchem.2022.133995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022]
|
44
|
Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, Rojas OJ, Arjmand M. Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Gomes HIAS, Sales MGF. Natural Materials Modified and Applied to the Detection of Drugs In Situ: Modification of Eggshell and Quantification of Oxytetracycline. SENSORS 2022; 22:s22155746. [PMID: 35957305 PMCID: PMC9371227 DOI: 10.3390/s22155746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
This work describes a novel sensing system using eggshells as substrate for the first time, targeting the detection and semiquantitative determination of antibiotics in waters from aquaculture, enabling simple, inexpensive, and in situ drug monitoring. Eggshell was ground and the resulting powder was modified by adsorption of suitable reagents, and it takes a typical colour after contact with the antibiotic. The colour intensity is correlated with the concentration of the antibiotic. This novel approach was applied to oxytetracycline, one of the antibiotics commonly used in aquaculture. The chemical changes on the eggshell powder were evaluated and optimised to produce an intense colour change as a function of the concentration of the antibiotic. The colour changes were evaluated by visual comparison with images taken with a digital camera, applying an appropriate mathematical treatment to the colour coordinates of the HSL system used by Windows. The selectivity of the response was tested against other antibiotic drugs. The materials were also used in the analysis of a spiked environmental water sample. Overall, this work presents a rapid, inexpensive, simple and equipment-free method for screening and discrimination of tetracycline drugs in aquaculture. The method is a green approach by reusing eggshells and decreasing the level of contamination correlated to analytical methods, thus being a promising tool for local, rapid, and cost-effective antibiotic monitoring.
Collapse
Affiliation(s)
- Helena I. A. S. Gomes
- BioMark@ISEP/CEB—Centre of Biological Engineering/LABBELS, School of Engineering, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal;
| | - M. Goreti F. Sales
- BioMark@ISEP/CEB—Centre of Biological Engineering/LABBELS, School of Engineering, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal;
- BioMark@UC/CEB—Centre of Biological Engineering/LABBELS, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239798733
| |
Collapse
|
46
|
Chen Y, Tang Y, Liu Y, Zhao F, Zeng B. Kill two birds with one stone: Selective and fast removal and sensitive determination of oxytetracycline using surface molecularly imprinted polymer based on ionic liquid and ATRP polymerization. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128907. [PMID: 35452985 DOI: 10.1016/j.jhazmat.2022.128907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Oxytetracycline (OTC) residue in food and environment has potential threats to ecosystem and human health, thus its sensitive monitoring and effective elimination are very important. In this work, a new molecularly imprinted polymer (MIP) composite was prepared through atom transfer radical polymerization by using OTC as template, gold nanoparticles modified carbon nanospheres (Au-CNS) as supporter, ionic liquids (IL) as functional monomer and cross-linking agent. The obtained MIP-IL@Au-CNS composite was characterized by Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. It displayed high imprinting factor (5.50) and adsorption capacity (56.7 mg g-1), and could achieved the adsorption equilibrium in short time (about 15 min). Results also illustrated that the adsorption process basically conformed to the quasi-second-order kinetic model and Freundlich model, and MIP-IL@Au-CNS could be recycled at least 5 times. Furthermore, a sensitive OTC electrochemical sensor was developed by combining MIP-IL@Au-CNS with IL-modified carbon nanocomposites (IL@N-rGO-MWCNT). The resulting sensor demonstrated a linear response to OTC in the wide range of 0.02-20 μM, and the detection limit was down to 5 nM. It also had the advantages of high selectivity, fast elution/regeneration and simple construction procedure. The sensor had been applied to the detection of real samples, and acceptable recovery (96.4%-106%) and RSD (3.2%-6.2%) were obtained. This work expands the application of IL-based MIP in pollutant monitoring and enriching.
Collapse
Affiliation(s)
- Yanran Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
47
|
Guo J, Han X, Wang S, Liu M, Liu L, Wang P. A cucurbit[6]uril based supramolecular assembly for the detection and removal of dyes and antibiotics from water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2642-2648. [PMID: 35748312 DOI: 10.1039/d2ay00658h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A cucurbit[6]uril (CB[6]) based supramolecular assembly CB[6]-[NDS]2- (1, NDS = 2,6-naphthalenedisulfonic acid anion) was used to detect dyes such as reactive blue 19 (RB19), rhodamine B (RB), methyl orange (MO), methyl red (MR), and methyl violet (MV), and isoquinoline antibiotics such as berberine (BER) and palmatine (PAL) with detection limits of 143, 128, 374, 193, 305, 27 and 34 ppb, respectively. Simultaneously, 1 also displayed high adsorption abilities towards these organic molecules. These results indicate that 1 is a favorable material for the simultaneous selective detection and removal of specific dyes and antibiotics from water, being potentially useful in monitoring water quality and treating wastewater. The possible mechanisms of the detection and adsorption are also proposed.
Collapse
Affiliation(s)
- Jing Guo
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Xiaodong Han
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Shuo Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Mei Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Lihui Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, PR China.
| | - Peng Wang
- Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, PR China
| |
Collapse
|
48
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|
49
|
Wu X, Xiong X, Li JL, Luo D, Wu K, Wei YB, Liu XY, Lu W, Li D, He J. An Adenine‐Based Biological Metal–Organic Framework as an Efficient Luminescent Sensor for Tetracycline Detection. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xia Wu
- The University of Hong Kong Chemistry HONG KONG
| | | | | | - Dong Luo
- Jinan University Chemistry CHINA
| | - Kun Wu
- Jinan University Chemistry CHINA
| | | | | | | | - Dan Li
- Jinan University Chemistry CHINA
| | - Jian He
- The University of Hong Kong Chemistry Room 103, Hui Oi Chow Science BuildingThe University of Hong KongPokfulam Road 999077 Hong Kong HONG KONG
| |
Collapse
|
50
|
Synthesis of a Dual Metal–Organic Framework Heterostructure as a Fluorescence Sensing Platform for Rapid and Sensitive Detection of Tetracycline in Milk and Beef Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|