1
|
Wang Z, Chang Y, Jia S, Liu F. Preparation and Properties of Polyimide/Polysulfonamide/Polyethylene Glycol (PI/PSA/PEG) Hydrophobic Nanofibrous Membranes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4135. [PMID: 39203312 PMCID: PMC11356302 DOI: 10.3390/ma17164135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024]
Abstract
In this study, polyimide (PI) and polysulfonamide (PSA) were used as base materials, and polyethylene glycol (PEG) was added to successfully prepare PI/PSA/PEG nanofiber membranes through electrospinning technology. Subsequently, water etching was performed on the membranes, utilizing the water solubility of PEG to form the rough wrinkled structure, further enhancing the surface hydrophobicity. The experimental results showed that under the conditions of a spinning voltage of 10 kV, PI/PSA mass fraction of 15 wt.%, and PEG-to-PI/PSA mass ratio of 1/3, the obtained fiber membranes exhibit a uniform morphology (an average diameter of 0.73 µm) and excellent hydrophobicity (the initial water contact angle (WCA) reaching 130.4°). After PEG water etching, the surface of the PI/PSA/PEG hydrophobic membranes formed the rough wrinkled structure, which not only improved their mechanical properties but also further enhanced their hydrophobicity (the initial WCA increasing to 137.9°). Hence, fiber membranes are expected to have broad application prospects in fields such as waterproofing and moisture permeability.
Collapse
Affiliation(s)
| | | | | | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (Z.W.); (Y.C.); (S.J.)
| |
Collapse
|
2
|
Zhu G, Wang C, Yang T, Gao N, Zhang Y, Zhu J, He X, Shao J, Li S, Zhang M, Zhang S, Gao J, Xu H. Bio-inspired gradient poly(lactic acid) nanofibers for active capturing of PM 0.3 and real-time respiratory monitoring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134781. [PMID: 38824775 DOI: 10.1016/j.jhazmat.2024.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The concept of bio-inspired gradient hierarchies, in which the well-defined MOF nanocrystals serve as active nanodielectrics to create electroactive shell at poly(lactic acid) (PLA) nanofibers, is introduced to promote the surface activity and electroactivity of PLA nanofibrous membranes (NFMs). The strategy enabled significant refinement of PLA nanofibers during coaxial electrospinning (∼40 % decline of fiber diameter), accompanied by remarkable increase of specific surface area (nearly 1.5 m2/g), porosity (approximately 85 %) and dielectric constants for the bio-inspired gradient PLA (BG-PLA) NFMs. It largely boosted initial electret properties and electrostatic adsorption capability of BG-PLA NFMs, as well as charge regeneration by TENG mechanisms even under high-humidity environment. The BG-PLA NFMs thus featured exceptionally high PM0.3 filtration efficiencies with well-controlled air resistance (94.3 %, 163.4 Pa, 85 L/min), in contrast to the relatively low efficiency of only 80.0 % for normal PLA. During the application evaluation of outdoor air purification, excellent long-term filtering performance was demonstrated for the BG-PLA for up to 4 h (nearly 98.0 %, 53 Pa), whereas normal PLA exhibited a gradually declined filtration efficiency and an increased pressure drop. Moreover, the BG-PLA NFMs of increased electroactivity were ready to generate tribo-output currents as driven by respiratory vibrations, which enabled real-time monitoring of electrophysiological signals. This bio-inspired gradient strategy opens up promising pathways to engender biodegradable nanofibers of high surface activity and electroactivity, which has significant implications for intelligent protective membranes.
Collapse
Affiliation(s)
- Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Na Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, 100012 Beijing, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China.
| |
Collapse
|
3
|
Zhu G, Li X, Li XP, Wang A, Li T, Zhu X, Tang D, Zhu J, He X, Li H, Li S, Zhang Y, Wang B, Zhang S, Xu H. Nanopatterned Electroactive Polylactic Acid Nanofibrous MOFilters for Efficient PM 0.3 Filtration and Bacterial Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47145-47157. [PMID: 37783451 DOI: 10.1021/acsami.3c11941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Biodegradable polylactic acid (PLA) nanofibrous membranes (NFMs) hold great potential to address the increasing airborne particulate matter (PM) and dramatic accumulation of plastic/microplastic pollution. However, the field of PLA NFM-based filters is still in its infancy, frequently dwarfed by the bottlenecks regarding relatively low surface activity, poor electroactivity, and insufficient PM capturing mechanisms. This effort discloses a microwave-assisted approach to minute-level synthesis of dielectric ZIF-8 nanocrystals with high specific surface area (over 1012 m2/g) and ultrasmall size (∼240 nm), which were intimately anchored onto PLA nanofibers (PLA@ZIF-8) by a combined "electrospinning-electrospray" strategy. This endowed the PLA@ZIF-8 NFMs with largely increased electroactivity in terms of elevated dielectric coefficient (an increase of 202%), surface potential (up to 5.8 kV), and triboelectric properties (output voltage of 30.8 V at 10 N, 0.5 Hz). Given the profound control over morphology and electroactivity, the PLA@ZIF-8 NFMs exhibited efficient filtration of PM0.3 (97.1%, 85 L/min) with a decreased air resistance (592.5 Pa), surpassing that of the pure PLA counterpart (88.4%, 650.9 Pa). This was essentially ascribed to realization of multiple filtration mechanisms for PLA@ZIF-8 NFMs, including enhanced physical interception, polar interactions, and electrostatic adsorption, and the unique self-charging function triggered by airflow vibrations. Moreover, perfect antibacterial performance was achieved for PLA@ZIF-8, showing ultrahigh inhibition rates of 99.9 and 100% against E. coli and S. aureus, respectively. The proposed hierarchical structuring strategy, offering the multifunction integration unattainable with conventional methods, may facilitate the development of biodegradable long-term air filters.
Collapse
Affiliation(s)
- Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyu Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - An Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuanjin Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Yong Zhang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Bin Wang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
4
|
Ji SH, Yun JS. Natural Cellulose-Based Multifunctional Nanofibers for the Effective Removal of Particulate Matter and Volatile Organic Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111720. [PMID: 37299623 DOI: 10.3390/nano13111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Multifunctional nanofibers for particulate matter (PM) and volatile organic compounds (VOCs) removal from the indoor atmospheric environment were manufactured from eco-friendly natural cellulose materials via electrospinning using an optimized solvent system containing 1-ethyl-3-methylimidazolium acetate (EmimAC) and dimethylformide (DMF) in a 3:7 volume ratio. EmimAC improved the cellulose stability, whereas DMF improved the electrospinnability of the material. Various cellulose nanofibers were manufactured using this mixed solvent system and characterized according to the cellulose type, such as hardwood pulp, softwood pulp, and cellulose powder, and cellulose content ranging from 6.0-6.5 wt%. The correlation between the precursor solution alignment and electrospinning properties indicated an optimal cellulose content of 6.3 wt% for all cellulose types. The hardwood pulp-based nanofibers possessed the highest specific surface area and exhibited high efficiency for eliminating both PM and VOCs, with a PM2.5 adsorption efficiency of 97.38%, PM2.5 quality factor of 0.28, and toluene adsorption of 18.4 mg/g. This study will contribute to the development of next-generation eco-friendly multifunctional air filters for indoor clean-air environments.
Collapse
Affiliation(s)
- Sang Hyun Ji
- New Growth Materials Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinju 52851, Republic of Korea
| | - Ji Sun Yun
- New Growth Materials Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinju 52851, Republic of Korea
| |
Collapse
|
5
|
Tang M, Jiang L, Wang C, Li X, He X, Li Y, Liu C, Wang Y, Gao J, Xu H. Bioelectrets in Electrospun Bimodal Poly(lactic acid) Fibers: Realization of Multiple Mechanisms for Efficient and Long-Term Filtration of Fine PMs. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37192220 DOI: 10.1021/acsami.3c02365] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the great potential in fabrication of biodegradable and eco-friendly air filters by electrospinning poly(lactic acid) (PLA) membranes, the filtering performance is frequently dwarfed by inadequate physical sieving or electrostatic adsorption mechanisms to capture airborne particulate matters (PMs). Here, using the parallel spinning approach, the unique micro/nanoscale architecture was established by conjugation of neighboring PLA nanofibers, creating bimodal fibers in electrospun PLA membranes for the enhanced slip effect to significantly reduce the air resistance. Moreover, the bone-like nanocrystalline hydroxyapatite bioelectret (HABE) was exploited to enhance the dielectric and polarization properties of electrospun PLA, accompanied by the controlled generation of junctions induced by the microaggregation of HABE (10-30 wt %). The incorporated HABE was supposed to orderly align in the applied E-field and largely promote the charging capability and surface potential, gradually increasing to 7.2 kV from the lowest level of 2.5 kV for pure PLA. This was mainly attributed to HABE-induced orientation of PLA backbone chains and C═O dipoles, as well as the interfacial charges trapped at the interphases of HABE-PLA and crystalline region-amorphous PLA. Given the multiple capturing mechanisms, the micro/nanostructured PLA/HABE membranes were characterized by excellent and sustainable filtering performance, e.g., the filtration efficiency of PM0.3 was promoted from 59.38% for pure PLA to 94.38% after addition of 30 wt % HABE at a moderate airflow capacity of 32 L/min and from 30.78 to 83.75% at the highest level of 85 L/min. It is of interest that the pressure drop was significantly decreased, mainly arising from the slip effect between the ultrafine nanofibers and conjugated microfibers. The proposed combination of the nanostructured electret and the multistructuring strategy offers the function integration of efficient filtration and low resistance that are highly useful to pursue fully biodegradable filters.
Collapse
Affiliation(s)
- Mengke Tang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Liang Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyu Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yichen Li
- Dulwich International High School Suzhou, Suzhou 215021, China
| | - Changhui Liu
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yanqing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
6
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
7
|
Shen R, Guo Y, Wang S, Tuerxun A, He J, Bian Y. Biodegradable Electrospun Nanofiber Membranes as Promising Candidates for the Development of Face Masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1306. [PMID: 36674061 PMCID: PMC9858797 DOI: 10.3390/ijerph20021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable filters are promising candidates to alleviate this problem. Degradable nanofiber filters, which are developed by the electrospinning technique, can achieve superior filtration performance. This review focuses on the basic introduction to air filtration, the general aspects of face masks, and nanofibers. Furthermore, the progress of the state of art degradable electrospun nanofiber filters have been summarized, such as silk fibroin (SF), polylactic acid (PLA), chitosan, cellulose, and zein. Finally, the challenges and future development are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Bian
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Zhu J, Zhu R, Hu Y, Wang Z. Low-cost and temperature-resistant mullite fiber sponges with superior thermal insulation and high-temperature PM filtration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Chen HW, Kuo YL, Chen CH, Chiou CS, Chen WT, Lai YH. Biocompatibile nanofiber based membranes for high-efficiency filtration of nano-aerosols with low air resistance. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 167:695-707. [PMID: 36185493 PMCID: PMC9510075 DOI: 10.1016/j.psep.2022.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Particulate matter (PMs) from combustion emissions (traffic, power plant, and industries) and the novel coronavirus (COVID-19) pandemic have recently enhanced the development of personal protective equipment against airborne pathogens to protect humans' respiratory system. However, most commercial face masks still cannot simultaneously achieve breathability and high filtration of PMs, bacteria, and viruses. This study used the electrospinning method with polyimide (PI) and polyethersulfone (PES) solutions to form a nanofiber membrane with low-pressure loss and high biocompatibility for high-efficiency bacteria, viruses, and nano-aerosol removal. Conclusively, the optimized nano-sized PI/PES membrane (0.1625 m2/g basis weight) exhibited conspicuous performance for the highest filtration efficiency towards PM from 50 to 500 nm (99.74 %), good filter quality of nano-aerosol (3.27 Pa-1), exceptional interception ratio against 100-nm airborne COVID-19 (over 99 %), and non-toxic effect on the human body (107 % cell viability). The PI/PES nanofiber membrane required potential advantage to form a medical face mask because of its averaged 97 % BEF on Staphylococcus aureus filiation and ultra-low pressure loss of 0.98 Pa by referring ASTM F2101-01. The non-toxic PI/PES filters provide a new perspective on designing excellent performance for nano-aerosols from air pollution and airborne COVID-19 with easy and comfortable breathing under ultra-low air flow resistance.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Yu-Lin Kuo
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Chien-Hua Chen
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Chyow-San Chiou
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan, ROC
| | - Wei-Ting Chen
- Department of Cosmetic Application & Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan, ROC
| | - Yi-Hung Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
10
|
Pan L, Yang J, Xu L. Preparation and Characterization of Simvastatin-Loaded PCL/PEG Nanofiber Membranes for Drug Sustained Release. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217158. [PMID: 36363985 PMCID: PMC9656846 DOI: 10.3390/molecules27217158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023]
Abstract
Simvastatin (SIM) particles are liposoluble drugs with large particle sizes, resulting in poor compatibility with electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) nanofibers, so that part of them will be exposed to the electrospun nanofiber surface, which is easy to cause the burst release of drugs. Therefore, in this paper, stearic acid (SA) with good biocompatibility was innovatively added to increase the dispersion uniformity of SIM in the spinning solution, thus improving the performances of SIM-loaded PCL/PEG nanofiber membranes (NFMs). Accordingly, the effects of SA addition on the morphologies, mechanical properties, wettability, and drug release properties of the SIM-loaded NFMs were studied. The results showed that after SIM was dissolved in SA solution, the particle size of SIM was significantly reduced and could be evenly dispersed in the polymer spinning solution, thus obtaining the SIM-loaded composite NFMs with the best morphology and performance.
Collapse
|
11
|
Wu H, Hu Z, Geng Q, Chen Z, Song Y, Chu J, Ning X, Dong S, Yuan D. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Kang Y, Chen J, Feng S, Zhou H, Zhou F, Low ZX, Zhong Z, Xing W. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermally-oxidized PAN/PVP/SnO2 nanofiber membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Abd‐Elhamid AI, Nayl AA. Nanomaterials in Filtration. NANOTECHNOLOGY FOR ENVIRONMENTAL REMEDIATION 2022:77-101. [DOI: 10.1002/9783527834143.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Chowdhury MA, Hossain N, Shahid MA, Alam MJ, Hossain SM, Uddin MI, Rana MM. Development of SiC-TiO 2-Graphene neem extracted antimicrobial nano membrane for enhancement of multiphysical properties and future prospect in dental implant applications. Heliyon 2022; 8:e10603. [PMID: 36158080 PMCID: PMC9489977 DOI: 10.1016/j.heliyon.2022.e10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
This paper presents the coating technology on Nano membrane using SiC-TiO2-Graphene with varying percentages of Azadirachta indica (Neem) extract with an objective to develop new coating materials. The nanomembranes have been synthesized by electrospinning machine over aluminum foil paper using the raw materials PVA grain, SiC, TiO2, Graphene, and neem. The nanomembranes have been characterized by SEM, XRD, FTIR, Surface Roughness, antibacterial, and Cytotoxicity test. FTIR analysis established the presence of PVA and neem indicating the formation of different organic compounds. It also confirmed that no chemical reaction occurred during the synthesis process. The membrane's roughness analysis obtained average roughness values from 1.15 to 3.84. The formation of homogeneous and smooth membranes with the formation of micropores was confirmed by SEM analysis. Miller Indices identified different types of crystal structures in XRD analysis. Antibacterial activity increased with the increase of the percentage of neem confirmed by the antibacterial test. No toxic effects were observed from the membrane during the cytotoxicity test. The obtained data confirmed that the synthesized nanomembrane could be used in different biomedical applications.
Collapse
Affiliation(s)
- Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur, 1707, Bangladesh
| | - Md Jonaidul Alam
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Sheikh Monir Hossain
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md Ilias Uddin
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| | - Md Masud Rana
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| |
Collapse
|
15
|
Advances in particulate matter filtration: Materials, performance, and application. GREEN ENERGY & ENVIRONMENT 2022. [PMCID: PMC10119549 DOI: 10.1016/j.gee.2022.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Air-borne pollutants in particulate matter (PM) form, produced either physically during industrial processes or certain biological routes, have posed a great threat to human health. Particularly during the current COVID-19 pandemic, effective filtration of the virus is an urgent matter worldwide. In this review, we first introduce some fundamentals about PM, including its source and classification, filtration mechanisms, and evaluation parameters. Advanced filtration materials and their functions are then summarized, among which polymers and MOFs are discussed in detail together with their antibacterial performance. The discussion on the application is divided into end-of-pipe treatment and source control. Finally, we conclude this review with our prospective view on future research in this area.
Collapse
|
16
|
A novel high-performance and outstanding flame retardancy polysulfonamide nanofibrous filter for the high-efficiency PM2.5 filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Zhu X, Feng S, Rao Y, Ju S, Zhong Z, Xing W. A novel semi-dry method for rapidly synthesis ZnO nanorods on SiO2@PTFE nanofiber membrane for efficient air cleaning. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
High-Performance photoinduced antimicrobial membrane toward efficient PM2.5-0.3 capture and Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Highly Porous-Cellulose-Acetate-Nanofiber Filters Fabricated by Nonsolvent-Induced Phase Separation during Electrospinning for PM 2.5 Capture. NANOMATERIALS 2022; 12:nano12030404. [PMID: 35159748 PMCID: PMC8839121 DOI: 10.3390/nano12030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Highly porous-cellulose-acetate (CA) nanofibers were prepared by an electrospinning process based on a nonsolvent-induced phase separation (NIPS) mechanism, and their PM2.5 capture efficiencies were evaluated. The NIPS condition during the electrospinning process was achieved by selecting appropriate good and poor solvents based on the Hansen solubility parameters of CA. N,N-dimethylacetamide (DMAc) was used as the good solvent, while dichloromethane (DCM), tetrahydrofuran (THF), and acetone were used as poor solvents. Porous-CA nanofibers were observed upon using the binary solvent systems of DCM:DMAc = 1:9, DCM:DMAc = 2:8, and THF:DMAc = 1:9, and the CA nanofibers formed using the DCM/DMAc system with DCM:DMAc = 1:9 were found to have the highest specific surface area of 1839 m2/g. Based on the optimized binary solvent system with DCM:DMAc = 1:9, porous-CA nanofibers were prepared and characterized according to the CA content in the electrospinning mixture. The results confirmed that a porous structure was formed well from the surface to the core of the nanofibers. The composition range of the ternary mixture of CA and two solvents capable of producing porous-CA nanofibers was mapped on a ternary phase diagram, and highly efficient PM2.5 capture with 98.2% efficiency was realized using porous-CA nanofibers obtained using a 10 wt.% CA solution. This work provides a new strategy for improving the efficiency of porous-nanofiber filters for PM2.5 capture.
Collapse
|
20
|
Geng Q, Pu Y, Li Y, Yang X, Wu H, Dong S, Yuan D, Ning X. Multi-Component Nanofiber Composite Membrane Enabled High PM 0.3 Removal Efficiency and Oil/Water Separation Performance in Complex Environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126835. [PMID: 34391969 DOI: 10.1016/j.jhazmat.2021.126835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Currently, industrial waste gas and oily wastewater are usually at high temperature and contain corrosive components (e.g., acid, alkali, oxidant, or high salt, etc.), presenting great challenges on filtration/separation materials. Here, a multi-purpose Poly(m-phenylene isophthalamide)/polyacrylonitrile/silica (PMIA/PAN/SiO2) nanofiber composite membrane with a high yield was prepared simply via electrospinning to satisfy the demands of air filtration and oil/water separation in complex environments. Under the synergy of PMIA, PAN and SiO2, the composite membrane possesses high PM0.3 removal capacity of 99.69%, robust purification ability against real smoke PM2.5, effective oil/water separation performance of > 99.6%, superior high temperature stability (about 250 °C) and excellent chemical resistance, showing the potential application in filtration/separation process under complex conditions. Moreover, the influence mechanism of SiO2 NPs on mechanical properties and filtration performance was systematically investigated through experiments and simulations, paving the way for future intensive research. This study provides an option for the facile and effective preparation of high-performance filtration/separation membranes applied in the field of dust filtration and oily wastewater separation, even in harsh environments.
Collapse
Affiliation(s)
- Qian Geng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Yi Pu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Yajian Li
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Xue Yang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Huizhi Wu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| |
Collapse
|
21
|
Maccaferri E, Mazzocchetti L, Benelli T, Brugo TM, Zucchelli A, Giorgini L. Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1885-1899. [PMID: 34939406 PMCID: PMC8763375 DOI: 10.1021/acsami.1c17643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 05/31/2023]
Abstract
Still today, concerns regarding delamination limit the widespread use of high-performance composite laminates, such as carbon fiber-reinforced polymers (CFRPs), to replace metals. Nanofibrous mat interleaving is a well-established approach to reduce delamination. However, nanomodifications may strongly affect other laminate thermomechanical properties, especially if achieved by integrating soft materials. Here, this limitation is entirely avoided by using rubbery nitrile butadiene rubber (NBR)/Nomex mixed nanofibers: neither laminate stiffness nor glass-transition temperature (Tg) lowering occurs upon CFRP nanomodification. Stable noncrosslinked nanofibers with up to 60% wt of NBR were produced via single-needle electrospinning, which were then morphologically, thermally, spectroscopically, and mechanically characterized. NBR and Nomex disposition in the nanofiber was investigated via selective removal of the sole rubber fraction, revealing the formation of particular self-assembled structures resembling quasi-core-shell nanofibers or fibril-like hierarchical structures, depending on the applied electrospinning conditions (1.10 and 0.20 mL/h, respectively). Mode I and Mode II loading tests show a significant improvement of the interlaminar fracture toughness of rubbery nanofiber-modified CFRPs, especially GI (up to +180%), while GII enhancement is less pronounced but still significant (+40% in the best case). The two nanofibrous morphologies (quasi-core-shell and fibril-like ones) improve the delamination resistance differently, also suggesting that the way the rubber is located in the nanofibers plays a role in the toughening action. The quasi-core-shell nanofiber morphology provides the best reinforcing action, besides the highest productivity. By contrast, pure Nomex nanofibers dramatically worsen the interlaminar fracture toughness (up to -70% in GI), acting as a release film. The achieved delamination resistance improvements, combined with the retention of both the original laminate stiffness and Tg, pave the way to the extensive and reliable application of NBR/Nomex rubbery nanofibrous mats in composite laminates.
Collapse
Affiliation(s)
- Emanuele Maccaferri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Laura Mazzocchetti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Tiziana Benelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Tommaso Maria Brugo
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Department
of Industrial Engineering, University of
Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Andrea Zucchelli
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Department
of Industrial Engineering, University of
Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Loris Giorgini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
22
|
Babaahmadi V, Amid H, Naeimirad M, Ramakrishna S. Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149233. [PMID: 34329934 PMCID: PMC8302485 DOI: 10.1016/j.scitotenv.2021.149233] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 05/14/2023]
Abstract
Providing the greater public with the current coronavirus (SARS-CoV-2) vaccines is time-consuming and research-intensive; intermediately, some essential ways to reduce the transmission include social distancing, personal hygiene, testing, contact tracing, and universal masking. The data suggests that universal masking, especially using multilayer surgical face masks, offers a powerful efficacy for indoor places. These layers have different functions including antiviral/antibacterial, fluid barrier, particulate and bacterial filtration, and fit and comfort. However, universal masking poses a serious environmental threat since billions of them are disposed on a daily basis; the current coronavirus disease (COVID-19) has put such demands and consequences in perspective. This review focuses on surgical face mask structures and classifications, their impact on our environment, some of their desirable functionalities, and the recent developments around their biodegradability. The authors believe that this review provides an insight into the fabrication and deployment of effective surgical face masks, and it discusses the utilization of multifunctional structures along with biodegradable materials to deal with future demands in a more eco-friendly fashion.
Collapse
Affiliation(s)
- Vahid Babaahmadi
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran.
| | - Hooman Amid
- Saint-Gobain Inc., Research and Development Supervisor, Nonwoven Abrasives, McAllen, TX 78503, United States of America
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
23
|
Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for heavy metals removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Lin S, Fu X, Luo M, Wang C, Zhong WH. Interface-tailored forces fluffing protein fiber membranes for high-performance filtration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Kakoria A, Chandel SS, Sinha-Ray S. Novel supersonically solution blown nanofibers from waste PET bottle for PM0.1-2 filtration: From waste to pollution mitigation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Bicomponent PLA Nanofiber Nonwovens as Highly Efficient Filtration Media for Particulate Pollutants and Pathogens. MEMBRANES 2021; 11:membranes11110819. [PMID: 34832049 PMCID: PMC8622781 DOI: 10.3390/membranes11110819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Herein, a novel form of bicomponent nanofiber membrane containing stereo-complex polylactic acid (SC-PLA) was successfully produced by the side-by-side electrospinning of Poly (L-lactic acid) (PLLA) and Poly (D-lactic acid) (PDLA). We demonstrate that through these environmentally sustainable materials, highly efficient nanofiber assemblies for filtration can be constructed at very low basis weight. The physical and morphological structure, crystalline structure, hydrophobicity, porous structure, and filtration performance of the fibrous membranes were thoroughly characterized. It was shown that the fabricated polylactic acid (PLA) side-by-side fiber membrane had the advantages of excellent hydrophobicity, small average pore size, high porosity, high filtration efficiency, low pressure drop as well as superior air permeability. At the very low basis weight of 1.1 g/m2, the filtration efficiency and pressure drop of the prepared side-by-side membrane reached 96.2% and 30 Pa, respectively. Overall, this biomass-based, biodegradable filtration material has the potential to replace the fossil fuel-based polypropylene commercial meltblown materials for the design and development in filtration, separation, biomedical, personal protection and other fields.
Collapse
|
27
|
Wei Z, Su Q, Yang J, Zhang G, Long S, Wang X. High-performance filter membrane composed of oxidized Poly (arylene sulfide sulfone) nanofibers for the high-efficiency air filtration. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126033. [PMID: 33992920 DOI: 10.1016/j.jhazmat.2021.126033] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 05/29/2023]
Abstract
In this study, a novel, oxidized poly (arylene sulfide sulfone) (O-PASS) nanofibrous membrane filter was successfully fabricated for the effective removal of particulate matter. PASS was electrospun into a nanofibrous membrane with an average nanofiber diameter of 0.31 µm and basis weight of 3 g/m2. These specifications were chosen as they showed high particulate matter removal efficiency (99.98%), low pressure drop (68 Pa), and high quality factor QF (0.125 Pa-1). In addition, the filtration mechanism of the PASS nanofibrous membrane was intuitively revealed by simulating the intercepted particular distributions and motion paths of particles. After a simple oxidation treatment, the O-PASS nanofibrous membrane was successfully built up. The microstructure and morphology showed little change compared with the PASS nanofiber, but the oxidation treatment significantly improved the mechanical properties of the membrane from 1.51 MPa to 4.92 MPa. More importantly, the O-PASS nanofibrous membrane still exhibited high removal efficiency after high temperature, acid, alkali, or organic solvent treatments. Overall, O-PASS nanofibrous membranes are promising high-performance filter materials with high temperature and corrosion resistance.
Collapse
Affiliation(s)
- Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Qing Su
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), 610065, China
| | - Gang Zhang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Shen C, Cao Y, Rao J, Zou Y, Zhang H, Wu D, Chen K. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Li Y, Yuan D, Geng Q, Yang X, Wu H, Xie Y, Wang L, Ning X, Ming J. MOF-Embedded Bifunctional Composite Nanofiber Membranes with a Tunable Hierarchical Structure for High-Efficiency PM 0.3 Purification and Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39831-39843. [PMID: 34374511 DOI: 10.1021/acsami.1c09463] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a unique hierarchically structured composite nanofiber membrane, consisting of a zeolitic imidazolate framework-8-embedded polyethersulfone (PES@ZIF8) fiber layer and a polysulfonamide/polyethersulfone (PSA/PES) fiber layer, was successfully developed to cope with the complex environments during the actual filtration/separation process and overcome the conflict between high filtration efficiency and low air pressure resistance. Due to the advantages of the synergistic effect of multicomponents and the bi-layer hierarchical structure, the integrated PES@ZIF8-PSA/PES filter possesses an extremely high air filtration efficiency (up to 99.986%) under a very low pressure drop (only 15 Pa), superior PM0.3 purification capacity (close to 99.95%), long-term recycling ability for purifying real smoke PM2.5 from >800 to <10 μg/m3, extremely high temperature resistance (exceed 200 °C), flame retardancy, good chemical stability, satisfactory transmittance, and robust self-cleaning ability. Apart from these, it achieves effective separation of oil-water mixtures and oil-water emulsions as a result of selective wettability including hydrophobicity and superoleophilicity. In particular, the PES@ZIF8-PSA/PES nanofiber membranes maintain outstanding air filtration and oil/water separation properties under the high temperature or strong acid/alkali conditions. This special comprehensive performance gives the PES@ZIF8-PSA/PES-based filtration/separation membranes a wider application prospect ranging from environmental governance to individual protection and industrial security.
Collapse
Affiliation(s)
- Yajian Li
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Qian Geng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xue Yang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Huizhi Wu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yuze Xie
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Liming Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
30
|
Ju Y, Han T, Yin J, Li Q, Chen Z, Wei Z, Zhang Y, Dong L. Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145768. [PMID: 33684755 PMCID: PMC7954306 DOI: 10.1016/j.scitotenv.2021.145768] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/06/2021] [Indexed: 05/05/2023]
Abstract
Recently, the pandemic infectious diseases caused by coronavirus have prompted the development of air filter membranes to against infectious agents and protect human health. This research focuses on air filter membrane with antibacterial and antiviral property for high-efficiency particulate matter (PM) removal. Herein, polyamide-6 electrospun nanofibers were anchored with silver nanoparticles through hydrogen-bond. Bumpy nanorough surface and multilevel structure contribute to improve capture capacity, and silver nanoparticles provide a strong ability to inactivate bacteria and virus. In conclusion, this membrane exhibits high PM2.5 filtration efficiency of 99.99% and low pressure drop of 31 Pa; simultaneous removal of multiple aerosol pollutants, e.g., SOx, NOx, methylbenzene, L-Nicotine; superior antibacterial performance against Escherichia coli (Gram negative bacteria) and Staphylococcus aureus (Gram positive bacteria), antiviral property against Porcine Deltacoronavirus and not significant cytotoxicity. Research of air filtration material is important to remove air pollutants and to prevent infection and spread of respiratory infectious diseases.
Collapse
Affiliation(s)
- Yanyun Ju
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ting Han
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiajun Yin
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qianqian Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuo Chen
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Zhang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Lijie Dong
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
31
|
Wei Z, Su Q, Wang X, Long S, Zhang G, Lin Q, Yang J. Nanofiber Air Filters with High-Temperature Stability and Superior Chemical Resistance for the High-Efficiency PM2.5 Removal. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Qing Su
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Gang Zhang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Qingyu Lin
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China
| |
Collapse
|
32
|
Lyu C, Zhao P, Xie J, Dong S, Liu J, Rao C, Fu J. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. NANOMATERIALS 2021; 11:nano11061501. [PMID: 34204161 PMCID: PMC8228272 DOI: 10.3390/nano11061501] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Air pollution caused by particulate matter and toxic gases is violating individual’s health and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been extensively studied and applied in the field of air purification. Among the different fabrication approaches of nanofibrous membrane, electrospinning is considered as the most favorable and effective due to its advantages of controllable process, high production efficiency, and low cost. The electrospun membranes, made of different materials and unique structures, exhibit good PM2.5 filtration performance and multi-functions, and are used as masks and filters against PM2.5. This review presents a brief overview of electrospinning techniques, different structures of electrospun nanofibrous membranes, unique characteristics and functions of the fabricated membranes, and summarization of the outdoor and indoor applications in PM filtration.
Collapse
Affiliation(s)
- Chenxin Lyu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| | - Jun Xie
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Shuyuan Dong
- School of Mathematics, Jilin University, Changchun 130012, China;
| | - Jiawei Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chengchen Rao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
33
|
Archer B, Shaumbwa VR, Liu D, Li M, Iimaa T, Surenjav U. Nanofibrous Mats for Particulate Matter Filtration. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bright Archer
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Veino Risto Shaumbwa
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Minyu Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tuyajargal Iimaa
- National Center for Public Health, Ministry of Health, Ulaanbaatar, 13381, Mongolia
| | - Unursaikhan Surenjav
- National Center for Public Health, Ministry of Health, Ulaanbaatar, 13381, Mongolia
| |
Collapse
|
34
|
Nakayama S. Improvement of low temperature carbon combustion catalyst characteristic caused by mixing Bi 2O 3 with Tl 2O 3. Sci Rep 2021; 11:9574. [PMID: 33953233 PMCID: PMC8100285 DOI: 10.1038/s41598-021-88776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the addition of various oxides to further improve the catalytic characteristics of Tl2O3, which offers a high carbon combustion catalytic capacity to lower the carbon combustion temperature of 660 °C by ~ 300 °C. Mixtures of carbon (2 wt%) with composite catalysts comprising 20 wt% Tl2O3–80wt% added oxide were analyzed using DSC. Bi2O3 offered the best improvement, where the exothermic peak temperatures for carbon combustion of carbon with various Tl2O3–x wt% Bi2O3 composites were lower than that of carbon with pure Tl2O3. Isothermal TG measurements were performed using a mixture of carbon and the Tl2O3‒95 wt% Bi2O3 composite catalyst, where a 2 wt% weight loss (i.e. removal of all carbon) was achieved above 230 °C. A porous alumina filter was coated with the composite catalyst and carbon was deposited on the filter surface. The filter was held at constant temperatures under air flow, which confirmed that carbon was completely removed at 230 °C. This study demonstrated the potential for using these composite catalysts in self-cleaning particulate filters to decompose and eliminate fine particulate matter and diesel particulate matter generated from steelworks, thermal power plants, and diesel vehicles simply using the heat of the exhaust gas in a factory flue-gas stack or vehicle muffler.
Collapse
Affiliation(s)
- Susumu Nakayama
- Department of Applied Chemistry and Biotechnology, National Institute of Technology (KOSEN), Niihama College, 7-1 Yagumo-cho, Niihama-shi, Ehime, 792-8580, Japan.
| |
Collapse
|
35
|
Jiang J, Shao Z, Wang X, Zhu P, Deng S, Li W, Zheng G. Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration. NANOTECHNOLOGY 2021; 32:245707. [PMID: 33657545 DOI: 10.1088/1361-6528/abeb9a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) composite polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN) electrospun nanofibrous membranes combining both thick and thin nanofibers have been fabricated by the method of multi-jet electrospinning with sheath gas to realize high-efficiency air filtration under a low pressure drop. The thin PAN nanofibers form a dense membrane, with a strong capturing ability on the ultra-fine particles, while the thick PVDF nanofibers play a 3D supporting effect on the thin PAN nanofibers. In this case, the combination results in a fluffy membrane with higher porosity, which could achieve the airflow passing through the membrane without the air pressure drop. The effects of the composite manner of thick nanofibers and thin nanofibers are investigated, in order to optimize the air filtration performance of the 3D composite nanofibrous membrane. As a result, the maximum quality factor for air filtration could reach up to 0.398 Pa-1. The particle-fiber interaction model was used to simulate the air filtration process as well, and the simulation results were fairly consistent with the experimental results, providing a guidance method for the optimization of composite nanofibrous membrane for high-efficiency air filtration. More interestingly, a cationic poly[2-(N,N-dimethyl amino) ethyl methacrylate] (PDMAEMA) was added in the PVDF solution to obtain a composite air filtration membrane with excellent antibiosis performance, which achieved the highest inhibition rate of approximately 90%. In short, this work provides an effective way to promote antibiosis air filtration performance by using an electrospun nanofibrous membrane, and might also effectively accelerate the biological protection application of current air filtration membranes.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Ping Zhu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Shiqing Deng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
36
|
Electrospinning for developing flame retardant polymer materials: Current status and future perspectives. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123466] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Tran PTM, Adam MG, Balasubramanian R. Mitigation of indoor human exposure to airborne particles of outdoor origin in an urban environment during haze and non-haze periods. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123555. [PMID: 33264848 DOI: 10.1016/j.jhazmat.2020.123555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
During the 2019 smoke haze episode in Singapore, elevated levels of fine particulate matter (PM2.5) were observed, deteriorating both ambient and indoor air quality (IAQ). We investigated the mitigation of indoor human exposure to PM2.5 of outdoor origin under diverse exposure scenarios with and without filtration of PM2.5 during both hazy and non-hazy days. The key objective of our study was to make a comparative evaluation of the effectiveness of portable air cleaners (PACs) and air conditioning (AC) systems equipped with particle filters in improving IAQ and to assess related long-term carcinogenic and non-carcinogenic health risks. We conducted real-time measurements of PM2.5, black carbon mass concentrations and particle number concentrations in both indoor and outdoor areas, quantified the relative concentrations of the water-soluble fraction of toxic trace elements in PM2.5 for health risk assessment, and estimated the levels of thermal comfort. In addition, we calculated the total estimated cost of indoor air pollution control. Our findings suggest that indoor air cleaners are more effective at mitigating human exposure to airborne particles and reducing health risk with less consumption of electricity and better cost-effectiveness compared to AC. This information would be beneficial for public health interventions during major air pollution events.
Collapse
Affiliation(s)
- Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
38
|
|
39
|
Preparation and modification of an embossed nanofibrous materials for robust filtration performance of PM0.2 removal. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Dai Z, Yan F, Qin M, Yan X. Fabrication of flexible SiO2 nanofibrous yarn via a conjugate electrospinning process. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractNowadays, different kinds of polymers, including ceramics, are electrospun into fibrous materials with different structures by electrospinning. Generally, the as-spun ceramic fibers are randomly oriented membranes and brittle without flexibility. Here, we report the fabrication of flexible SiO2 electrospun yarns using poly(vinyl alcohol) (PVA) as a template through a conjugate electrospinning process and calcination. It was found that the calcined as-spun fibers and yarns are obviously thinned with PVA component removal. Fourier transform infrared spectroscopy and energy-dispersive spectroscopy examinations suggested that the obtained yarn after calcination was SiO2 yarn. The SiO2 yarn showed good flexibility without cracking after 180° bending. The flexible ceramic yarn may have potential application in functional textiles.
Collapse
Affiliation(s)
- Zhang Dai
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Fangfang Yan
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Mei Qin
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Xu Yan
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
- Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
41
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|