1
|
Li P, Xia Y, Song K, Liu D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:984. [PMID: 38611512 PMCID: PMC11013062 DOI: 10.3390/plants13070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
As global food security faces challenges, enhancing crop yield and stress resistance becomes imperative. This study comprehensively explores the impact of nanomaterials (NMs) on Gramineae plants, with a focus on the effects of various types of nanoparticles, such as iron-based, titanium-containing, zinc, and copper nanoparticles, on plant photosynthesis, chlorophyll content, and antioxidant enzyme activity. We found that the effects of nanoparticles largely depend on their chemical properties, particle size, concentration, and the species and developmental stage of the plant. Under appropriate conditions, specific NMs can promote the root development of Gramineae plants, enhance photosynthesis, and increase chlorophyll content. Notably, iron-based and titanium-containing nanoparticles show significant effects in promoting chlorophyll synthesis and plant growth. However, the impact of nanoparticles on oxidative stress is complex. Under certain conditions, nanoparticles can enhance plants' antioxidant enzyme activity, improving their ability to withstand environmental stresses; excessive or inappropriate NMs may cause oxidative stress, affecting plant growth and development. Copper nanoparticles, in particular, exhibit this dual nature, being beneficial at low concentrations but potentially harmful at high concentrations. This study provides a theoretical basis for the future development of nanofertilizers aimed at precisely targeting Gramineae plants to enhance their antioxidant stress capacity and improve photosynthesis efficiency. We emphasize the importance of balancing the agricultural advantages of nanotechnology with environmental safety in practical applications. Future research should focus on a deeper understanding of the interaction mechanisms between more NMs and plants and explore strategies to reduce potential environmental impacts to ensure the health and sustainability of the ecosystem while enhancing the yield and quality of Gramineae crops.
Collapse
Affiliation(s)
| | | | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| | - Duo Liu
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| |
Collapse
|
2
|
Li M, Zhang P, Guo Z, Zhao W, Li Y, Yi T, Cao W, Gao L, Tian CF, Chen Q, Ren F, Rui Y, White JC, Lynch I. Dynamic Transformation of Nano-MoS 2 in a Soil-Plant System Empowers Its Multifunctionality on Soybean Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1211-1222. [PMID: 38173352 PMCID: PMC10795185 DOI: 10.1021/acs.est.3c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Molybdenum disulfide (nano-MoS2) nanomaterials have shown great potential for biomedical and catalytic applications due to their unique enzyme-mimicking properties. However, their potential agricultural applications have been largely unexplored. A key factor prior to the application of nano-MoS2 in agriculture is understanding its behavior in a complex soil-plant system, particularly in terms of its transformation. Here, we investigate the distribution and transformation of two types of nano-MoS2 (MoS2 nanoparticles and MoS2 nanosheets) in a soil-soybean system through a combination of synchrotron radiation-based X-ray absorption near-edge spectroscopy (XANES) and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). We found that MoS2 nanoparticles (NPs) transform dynamically in soil and plant tissues, releasing molybdenum (Mo) and sulfur (S) that can be incorporated gradually into the key enzymes involved in nitrogen metabolism and the antioxidant system, while the rest remain intact and act as nanozymes. Notably, there is 247.9 mg/kg of organic Mo in the nodule, while there is only 49.9 mg/kg of MoS2 NPs. This study demonstrates that it is the transformation that leads to the multifunctionality of MoS2, which can improve the biological nitrogen fixation (BNF) and growth. Therefore, MoS2 NPs enable a 30% increase in yield compared to the traditional molybdenum fertilizer (Na2MoO4). Excessive transformation of MoS2 nanosheets (NS) leads to the overaccumulation of Mo and sulfate in the plant, which damages the nodule function and yield. The study highlights the importance of understanding the transformation of nanomaterials for agricultural applications in future studies.
Collapse
Affiliation(s)
- Mingshu Li
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China
CDC Key Laboratory of Environment and Population Health, National
Institute of Environmental Health, Chinese
Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Zhang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Zhiling Guo
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Weichen Zhao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yuanbo Li
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tianjing Yi
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weidong Cao
- Institute
of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Gao
- State
Key Laboratory for Biology of Plant Disease and Insect Pests, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100193, China
| | - Chang Fu Tian
- State
Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Key
Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100083, China
| | - Yukui Rui
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jason C. White
- The
Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
3
|
He Y, Qian J, Li Y, Wang P, Lu B, Liu Y, Zhang Y, Liu F. Responses of Phragmites communis and its rhizosphere bacteria to different exposure sequences of molybdenum disulfide and levofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122273. [PMID: 37506800 DOI: 10.1016/j.envpol.2023.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The effect of the molybdenum disulfide (MoS2)/levofloxacin (LVF) co-exposure was explored on Phragmites communis and rhizosphere soil bacterial communities. The sequence of MoS2/LVF exposure and the different MoS2 dosages (10 mg/kg and 100 mg/kg) contributed to different degrees of effect on the plant after 42 days of exposure. The treatment with priority addition of low dosage MoS2 significantly ameliorated P. communis growth, with root length growing up to 532.22 ± 46.29 cm compared to the sole LVF stress (200.04 ± 29.13 cm). Besides, MoS2 served as an alleviator and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in P. communis under LVF stress, and activated bacteria in rhizosphere soil. These rhizosphere soil microbes assisted in mitigating toxic pollution in the soil and inducing plant resistance to external stress, such as bacteria genera Bacillus, Microbacterium, Flavihumibacter and altererythrobacter. Potential functional profiling of bacterial community indicated the addition of MoS2 contributed to relieve the reduction in functional genes associated with amino acid metabolism and the debilitation of gram_negative and aerobic phenotypic traits caused by LVF stress. This finding reveals the effect of different exposure sequences of MoS2 nanoparticles and antibiotic for plant-soil systems.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Yuanyuan Li
- China Machinery International Engineer Design&Research Institute Co.Ltd.(CMIE) East China Regional Center, 2 Zidong Road, Nanjing, 210046, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Feng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
4
|
Yu Y, Liu H, Xia H, Chu Z. Double- or Triple-Tiered Protection: Prospects for the Sustainable Application of Copper-Based Antimicrobial Compounds for Another Fourteen Decades. Int J Mol Sci 2023; 24:10893. [PMID: 37446071 DOI: 10.3390/ijms241310893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Copper (Cu)-based antimicrobial compounds (CBACs) have been widely used to control phytopathogens for nearly fourteen decades. Since the first commercialized Bordeaux mixture was introduced, CBACs have been gradually developed from highly to slightly soluble reagents and from inorganic to synthetic organic, with nanomaterials being a recent development. Traditionally, slightly soluble CBACs form a physical film on the surface of plant tissues, separating the micro-organisms from the host, then release divalent or monovalent copper ions (Cu2+ or Cu+) to construct a secondary layer of protection which inhibits the growth of pathogens. Recent progress has demonstrated that the release of a low concentration of Cu2+ may elicit immune responses in plants. This supports a triple-tiered protection role of CBACs: break contact, inhibit microorganisms, and stimulate host immunity. This spatial defense system, which is integrated both inside and outside the plant cell, provides long-lasting and broad-spectrum protection, even against emergent copper-resistant strains. Here, we review recent findings and highlight the perspectives underlying mitigation strategies for the sustainable utilization of CBACs.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Haoran Xia
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Qian C, Wu J, Wang H, Yang D, Cui J. Metabolomic profiles reveals the dose-dependent effects of rice grain yield and nutritional quality upon exposure zero-valent iron nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163089. [PMID: 37001268 DOI: 10.1016/j.scitotenv.2023.163089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Zero-valent iron nanoparticles (nZVI) were widely used material in environmental remediation, which has attracted increasing concern for their safety. Previous studies have shown that the addition of nZVI could inhibit rice seedling growth. However, the effect of nZVI on the soil-rice system during the entire life cycle was not reported. Furthermore, the effect of nZVI on the quality of rice grain has also not been studied. Therefore, we investigated the effects of rice grain yield and nutritional quality upon exposure nZVI. The results showed that the soil pH value, redox potential and Fe (II) content in the nZVI-treated group were decreased in a dose-dependent manner. Interestingly, 2500 mg/kg nZVI significantly decreased the relative abundance of several functional microbial communities (10.52-73.53 %) associated with carbon and nitrogen cycles in response to plants compared to the control. Meanwhile, the nZVI treatment clearly reduced grain yield (8.71-18.21 %). Furthermore, the content of protein (51.72-57.79 %) and several essential nutrients (Zn, Cu, Mn and Mo) in the nZVI-treated grains was also decreased in a dose-dependent manner. The results of grain metabolomics indicated that nZVI could interfere with the relative expression of lysine and glutathione by regulating the metabolic pathways of antioxidant and protein synthesis in rice.
Collapse
Affiliation(s)
- Cancan Qian
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian Wu
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haodong Wang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
6
|
Li Y, Zhang P, Li M, Shakoor N, Adeel M, Zhou P, Guo M, Jiang Y, Zhao W, Lou B, Rui Y. Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. PEST MANAGEMENT SCIENCE 2023; 79:21-36. [PMID: 36196678 DOI: 10.1002/ps.7218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is a young branch of the discipline generated by nanomaterials. Its development has greatly contributed to technological progress and product innovation in the field of agriculture. The antimicrobial properties of nanoparticles (NPs) can be used to develop nanopesticides for plant protection. Plant diseases caused by bacterial and fungal infestations are the main types of crop diseases. Once infected, they will seriously threaten crop growth, reduce yield and quality, and affect food safety, posing a health risk to humans. We reviewed the application of metal-based nanoparticles in inhibiting plant pathogenic bacteria and fungi, and discuss the antibacterial mechanisms of metal-based nanoparticles from two aspects: the direct interaction between nanoparticles and pathogens, and the indirect effects of inducing plant resilience to disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - BenZhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Singhal J, Verma S, Kumar S. The physio-chemical properties and applications of 2D nanomaterials in agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155669. [PMID: 35523341 DOI: 10.1016/j.scitotenv.2022.155669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 05/27/2023]
Abstract
Global hunger and nutritional deficiency demand the advancement of existing and conventional approaches to food production. The application of nanoenabled strategies in agriculture has opened up new avenues for enhancing crop yield and productivity. Recently, two-dimensional (2D) nanomaterials (NMs) have manifested new possibilities for increasing food production and nutrition. Graphene nanosheets, the 2D form of graphene has been exemplary in enhancing the loading capacity of agro-active ingredients, their target-specific delivery, bioavailability, and controlled release with slow degradation, resulting in the increased shelf-life/active time of the agro-active components. Also, the development of novel formulations/composites of MXenes and Transition Metal Dichalcogenides (TMDs) can foster plant growth, metabolism, crop production, protection and improvement of soil quality. Additionally, the 2D NM-based biosensors can monitor the nutrient levels and other parameters affecting agronomical traits in plants. This review provides an insight into the details of 2D NM synthesis and functionalization methods. Notably, the review highlights the broad-range of 2D NM applications and their suitability in the development of nanotechnology-based agriformulations. The 2D NM-based derivatives have shown immense potential in enhancing the pedologic parameters, crop productivity, pest-protection and nutritional value. Thus, assisting in achieving food and environmental sustainability goals.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Saurabh Verma
- Department of Health Research-Multi-Disciplinary Research Unit, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh 226003, India.
| |
Collapse
|
8
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
9
|
Jiang H, Li Y, Jin Q, Yang D, Wu C, Cui J. Physiological and biochemical effects of Ti 3AlC 2 nanosheets on rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145340. [PMID: 33736383 DOI: 10.1016/j.scitotenv.2021.145340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
MAX phase materials are a new type of nanomaterial with wide applications, but the potential effects of MAX phase materials on plants have not been reported. Herein, we selected Ti3AlC2 nanosheets as a typical MAX phase material to investigate its potential impacts on rice (Oryza sativa L.) at 0-1000 μg·mL-1. The foliar application of Ti3AlC2 at 100 and 1000 μg·mL-1 inhibited the growth of rice seedlings by producing excess reactive oxygen species (ROS). Furthermore, foliar spraying of Ti3AlC2 at 100 μg·mL-1 decreased the stomatal aperture (78.6%) and increased the number of trichomes (100%). These responses demonstrated that the application of Ti3AlC2 could interfere with the immune system of plants by changing the structure and function of leaves, disturbing the activities of antioxidant enzymes. According to the above results, we concluded that the toxicity of Ti3AlC2 nanosheets on plants was mainly caused by the release of titanium ions. This study provides a valuable reference for understanding the impact of MAX phase materials on plants.
Collapse
Affiliation(s)
- Hao Jiang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yadong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qian Jin
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Desong Yang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cailan Wu
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jianghu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|
10
|
Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:213-239. [PMID: 33447834 DOI: 10.1039/d0em00404a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern agricultural practices have triggered the process of agricultural pollution. This process can cause the degradation of eco-systems, land, and environment owing to the modern-day by-products of agriculture. The substantial use of chemical fertilizers, pesticides, and, contaminated water for irrigation cause further damage to agriculture. The current scenario of the agriculture and food sector has therefore become unsustainable. Nanotechnology has provided innovative and resourceful frontiers to the agriculture sector by contributing practical applications in conventional agricultural ways and practices. There is a large possibility that agri-nanotechnology can have a significant impact on the sustainable agriculture and crop growth. Recent research has shown the potential of nanotechnology in improving the agriculture sector by enhancing the efficiency of agricultural inputs and providing solutions to agricultural problems for improving food productivity and security. The prospective use of nanoscale agrochemicals such as nanofertilizers, nanopesticides, nanosensors, and nanoformulations in agriculture has transformed traditional agro-practices, making them more sustainable and efficient. However, the application of these nano-products in real field situations raises concern about nanomaterial safety, exposure levels, and toxicological repercussions to the environment and human health. The present review gives an insight into recent advancements in nanotechnology-based agrochemicals that have revolutionized the agriculture sector. Further, the implementation barriers related to the nanomaterial use in agriculture, their commercialization potential, and the need for policy regulations to assess possible nano-agricultural risks are also discussed.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Archita Sharma
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sanjeev K Bhardwaj
- Amesys India, Cross Road No. 4, Near Geeta Gopal Bhawan, Ambala Cantt-133001, Haryana, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Sun Q, Liu Y, Liu Z, Huang G, Yuan S, Yang G, Wang K, Zhang P, Li N. Symbiotic composite composed of MoS 2 and pelagic clay with enhanced disinfection efficiency. RSC Adv 2021; 11:9621-9627. [PMID: 35423425 PMCID: PMC8695455 DOI: 10.1039/d1ra00008j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Abstract
Molybdenum disulfide (MoS2) has attracted increasing attention as a promising photocatalyst. In addition to its application in photocatalytic hydrogen production and pollutant degradation, MoS2 is also used in water disinfection. However, its poor disinfection performance limits its practical utility. Herein, we prepared a symbiotic composite composed of MoS2 and pelagic clay (MoS2/PC) as a photocatalyst for water disinfection. The composite achieved a high disinfection rate of 99.95% to Escherichia coli (E. coli) under visible light illumination, which is significantly higher than that of bulk MoS2 (61.87%). Characterization shows that abundant hydroxyl groups in illite/montmorillonite (I/M) formed during hydrothermal synthesis of MoS2, which contributed to the enhanced disinfection activity. Those hydroxyl groups can attract photogenerated holes through electrostatic attraction, and facilitate the separation of photogenerated charge carriers, thereby enhancing the disinfection activity. Moreover, the good hydrophilicity of pelagic clay improves the dispersity of MoS2 in water, which is beneficial for its utility in aqueous solutions. In addition, the symbiotic structure restricts the growth and aggregation of MoS2 nanosheets and shortens the diffusion distance of charge carriers to the material surface, further reducing the recombination of electrons and holes. This study provides a way to improve the disinfection activity of MoS2 and also sheds light on high value-added utilization of pelagic clay.
Collapse
Affiliation(s)
- Qiwei Sun
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Yuhua Liu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Zhipeng Liu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Guoqing Huang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Shisheng Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Guohua Yang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Kaiwen Wang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Peiping Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Nan Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
12
|
Luo SW, Alimujiang A, Balamurugan S, Zheng JW, Wang X, Yang WD, Cui J, Li HY. Physiological and molecular responses in halotolerant Dunaliella salina exposed to molybdenum disulfide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124014. [PMID: 33069998 DOI: 10.1016/j.jhazmat.2020.124014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide nanoparticles (MoS2 NPs) has emerged as the promising nanomaterial with a wide array of applications in the biomedical, industrial and environmental field. However, the potential effect of MoS2 NPs on marine organisms has yet to be reported. In this study, the effect of MoS2 NPs on the physiological index, subcellular morphology, transcriptomic profiles of the marine microalgae Dunaliella salina was investigated for the first time. exhibited "doping-like" effects on marine microalgae; Growth stimulation was 193.55%, and chlorophyll content increased 1.61-fold upon the addition of 50 μg/L MoS2 NPs. Additionally, exposure to MoS2 NPs significantly increased the protein and carbohydrate content by 2.03- and 1.56-fold, respectively. The antioxidant system was activated as well to eliminate the adverse influence of reactive oxygen species (ROS). Transcriptomic analysis revealed that genes involved in porphyrin synthesis, glycolysis/gluconeogenesis, tricarboxylic acid cycle and DNA replication were upregulated upon MoS2 NPs exposure, which supports the mechanistic role of MoS2 NPs in improving cellular growth and photosynthesis. The "doping-like" effects on marine algae suggest that the low concentration of MoS2 NPs might change the rudimentary ecological composition in the ocean.
Collapse
Affiliation(s)
- Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Luo SW, Alimujiang A, Cui J, Chen TT, Balamurugan S, Zheng JW, Wang X, Yang WD, Li HY. Molybdenum disulfide nanoparticles concurrently stimulated biomass and β-carotene accumulation in Dunaliella salina. BIORESOURCE TECHNOLOGY 2021; 320:124391. [PMID: 33220546 DOI: 10.1016/j.biortech.2020.124391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide nanoparticles (MoS2 NPs) hold tremendous properties in wide domain of applications. In this study, the impact of MoS2 NPs was investigated on algal physiological and metabolic properties and a two-stage strategy was acquired to enhance the commercial potential of Dunaliella salina. With 50 µg/L of MoS2 NPs exposure, cellular growth and biomass production were promoted by 1.47- and 1.33-fold than that in control, respectively. MoS2 NPs treated cells were subject to high light intensity for 7 days after 30 days of normal light cultivation, which showed that high light intensity gradually increased β-carotene content by 1.48-fold. Furthermore, analyses of primary metabolites showed that combinatorial approach significantly altered the biochemical composition of D. salina. Together, these findings demonstrated that MoS2 NPs at an optimum concentration combined with high light intensity could be a promising approach to concurrently enhance biomass and β-carotene production in microalgae.
Collapse
Affiliation(s)
- Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ting-Ting Chen
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|