1
|
Zhang F, Li T, Zhang Z, Qin X, Xu C. Enhanced in situ H 2O 2 electrosynthesis and leachate concentrate degradation through side-aeration and modified cathode in an electro-Fenton system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:35-45. [PMID: 38852375 DOI: 10.1016/j.wasman.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
The active graphite felt (GF) catalytic layer was effectively synthesized through a wet ultrasonic impregnation-calcination method, modified with CB and PTFE, and implemented in a pioneering side-aeration electrochemical in-situ H2O2 reactor. The optimal mass ratio (CB: PTFE 1:4) for the modified cathode catalytic layer was determined using a single-factor method. Operating under optimum conditions of initial pH 5, 0.5 L/min air flow, and a current density of 9 mA/cm2, the system achieved a remarkable maximum H2O2 accumulation of 560 mg/L, with the H2O2 production capacity consistently exceeding 95 % over 6 usage cycles. The refined mesoporous structure and improved three-phase interface notably amplified oxygen transfer, utilization, and H2O2 yield. Side aeration led to an oxygen concentration near the cathode reaching 20 mg/L, representing a five-fold increase compared to the 3.95 mg/L achieved with conventional bottom aeration. In the final application, the reaction system exhibited efficacy in the degradation of landfill leachate concentrate. After a 60-minute reaction, complete removal of chroma was attained, and the TOC degradation rate surpassed 60 %, marking a sixfold improvement over the conventional system. These results underscore the substantial potential of the system in H2O2 synthesis and environmental remediation.
Collapse
Affiliation(s)
- Fanbin Zhang
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Tinghui Li
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Zilong Zhang
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xia Qin
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Cuicui Xu
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
2
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
3
|
You N, Deng SH, He H, Hu J. Ferromanganese oxide-functionalized TiO 2 for rapid catalytic ozonation of PPCPs through a coordinated oxidation process with adjusted composition and strengthened generation of reactive oxygen species. WATER RESEARCH 2024; 258:121813. [PMID: 38820991 DOI: 10.1016/j.watres.2024.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Ferromanganese oxide (MFOx) was first utilized to functionalize TiO2 and an MFOx@TiO2 catalyst was developed for catalytic ozonation for rapid attack of pharmaceutical and personal care products (PPCPs) with adjusted reactive oxygen species (ROSs) composition and strengthened ROSs generation. Unlike Al2O3, which strongly relied on adsorption and was significantly influenced by MFOx loading, synergistic catalytical effects of MFOx and TiO2 were observed, and optimal MFOx doping of 2 wt% and MFOx@TiO2 dosage of 500 ppm were obtained for catalyzing ozonation. In ibuprofen (IBP) degradation, MFOx@TiO2-catalyzed ozonation (MFOx@TiO2/O3) obtained 2.0-, 4.7- and 6.9-folds the kobs of TiO2/O3, MFOx/O3 and bare ozonation (B/O3). Stronger O3 decomposition was observed by MFOx@TiO2 over bare TiO2 with the participation of redox pairs Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) and increased surface oxygen vacancies (SOVs) from 9.8 % to 33.7 % was detected. The results revealed that Fe(II), Mn(II) and Mn(III) with low valance accelerated Ti(III) generation from Ti(VI), obtaining an unprecedented high Ti(III) composition occupying 35.3 % of the total Ti atoms. Ti(III) catalyzed the direct reduction of SOVs-O2 to •O2-, and it accelerated the formation of Ti(VI)-OH and Ti(VI)-O which catalyzed O3 decomposition into •O2-. •O2- was found to primarily initiate IBP degradation with nucleophilic addition and dominated over 66 % IBP removal. The enhanced •O2- generation further strengthened •OH and 1O2 production. MFOx@TiO2/O3 obtained 17 %, 21 % and 30 % higher TOC removal over TiO2/O3, MFOx/O3 and B/O3, respectively. Acute toxicity tests confirmed the effective toxicity control of organics by MFOx@TiO2/O3 process (inhibition rate: 10.9 %). Degradation test of atenolol and sulfamethoxazole confirmed the catalytic effects of MFOx@TiO2. MFOx@TiO2 performed strong resistance to water matrix in application test and showed good stability and reusability. The study proposed an effective catalyst for strengthening the ozonation process on PPCPs degradation and provided an in-depth understanding of the mechanisms and characteristics of the MFOx@TiO2 catalyst and MFOx@TiO2/O3 process.
Collapse
Affiliation(s)
- Na You
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shi-Hai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
4
|
Zhao Y, Wang A, Ren S, Zhang Y, Zhang N, Song Y, Zhang Z. Activated carbon fiber as an efficient co-catalyst toward accelerating Fe 2+/Fe 3+ cycling for improved removal of antibiotic cefaclor via electro-Fenton process using a gas diffusion electrode. ENVIRONMENTAL RESEARCH 2024; 249:118254. [PMID: 38301762 DOI: 10.1016/j.envres.2024.118254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Ni Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
5
|
Zhang M, Wang D, Ma H, Wei H, Wang G. Oxygen vacancy based WO 3/SnO 2-x promote electrochemical H 2O 2 accumulation by two-electron water oxidation reaction and toxic uniform dimethylhydrazine degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171383. [PMID: 38462003 DOI: 10.1016/j.scitotenv.2024.171383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
The key to constructing an anodic electro-Fenton system hinges on two pivotal criteria: enhancing the catalyst activity and selectivity in water oxidation reaction (WOR), while simultaneously inhibiting the decomposition of hydrogen peroxide (H2O2) which is on-site electrosynthesized at the anode. To address the issues, we synthesized novel WO3/SnO2-x electrocatalysts, enriched with oxygen vacancies, capitalize on the combined activity and selectivity advantages of both WO3 and SnO2-x for the two-electron pathway electrocatalytic production of H2O2. Moreover, the introduction of oxygen vacancies plays a critical role in impeding the decomposition of H2O2. This innovative design ensures that the Faraday efficiency and yield of H2O2 are maintained at over 80 %, with a noteworthy production rate of 0.2 mmol h-1 cm-2. We constructed a novel electro-Fenton system that operates using only H2O as its feedstock and applied it to treat highly toxic uniform dimethylhydrazine (UDMH) from rocket launch effluent. Our experiments revealed a substantial total organic carbon (TOC) removal, achieving approximately 90 % after 120 mins of treatment. Additionally, the toxicity of N-nitrosodimethylamine (NDMA), a byproduct of great concern, was shown to be effectively mitigated, as evidenced by acute toxicity evaluations using zebrafish embryos. The degradation mechanism of UDMH is predominantly characterized by the advanced oxidative action of H2O2 and hydroxyl radicals, as well as by complex electron transfer processes that warrant further investigation.
Collapse
Affiliation(s)
- Mengqiong Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China
| | - Dong Wang
- College of Marine Science-Technology and Environment, Dalian Ocean University, No. 52 Heishijiao, Shahekou District, Dalian 116023, PR China
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China.
| |
Collapse
|
6
|
Jiang S, Han Y, Sun B, Zeng L, Gong J. Reduced sulfur accelerates Fe(III)/Fe(II) recycling in FeS 2 surface for enhanced electro-Fenton reaction. CHEMOSPHERE 2024; 353:141588. [PMID: 38430939 DOI: 10.1016/j.chemosphere.2024.141588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
FeS2 is well-known for its role in redox reactions. However, the mechanism within heterogeneous electron-Fenton (Hetero-EF) systems remains unclear. In this study, a novel FeS2 based three-dimensional system (GF/Cu-FeS2) with self-generation of H2O2 was investigated for Hetero-EF degradation of sulfamethazine (SMZ). The results revealed that SMZ could be completely removed in 1.5 h, accompanying with the mineralization efficiency of 96% within 4 h. This system performed excellent stability, evidenced by consistently eliminated 100% of SMZ within 2 h over 4 cycles. The generated Reactive Oxygen Species (ROS) of •OH and •O2- in every degradation cycle were quantitatively measured to confirm the stability of the GF/Cu-FeS2 system. Additionally, the redox reaction mechanism on the surface of FeS2 was thoroughly analyzed in detail. The accelerated reduction of Fe(III) to Fe(II), triggered by S22- on the surface of FeS2, promoted the iron cycling, thereby quickening the Fenton process. Density Functional Theory (DFT) results illustrated the process of S22- to be oxidized to in detail. Therefore, this work provides deeper insight into the mechanistic role of S22- in FeS2 for environmental remediation.
Collapse
Affiliation(s)
- Shan Jiang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Yunuo Han
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Benjian Sun
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Lingyu Zeng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jianyu Gong
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|
7
|
Zhang J, Qiu S, Deng F. Oxygen-doped carbon nanotubes with dual active cites to enhance •OH formation through three electron oxygen reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133261. [PMID: 38150758 DOI: 10.1016/j.jhazmat.2023.133261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The electro-Fenton (EF) process generates H2O2 through the 2e- oxygen reduction reaction (ORR), which is subsequently activated to •OH by iron-based catalysts. To alleviate the potential risk of external Fe-based catalysts, along with metal dissolution in acidic or neutral environments, in this study we employed oxygen-doped carbon nanotubes (OCNT) as a bifunctional, metal-free cathode to establish a metal-free EF process for organic pollutant degradation. The results demonstrate that the metal-free electrode has excellent H2O2 accumulation (12 mg L-1 cm-1) and degrades sulfathiazole (STZ) with 97.05 % efficiency in 180 min with an explanation kinetic of 0.0189 min-1. For the first time, this enhancement came from the dual active site centers in OCNT: Ⅰ) -COOH and defects active sites were responsible for H2O2 production, Ⅱ) then -CO triggered H2O2 into •OH, avoiding the introduction of metal-based catalysts. These findings suggest that the EF system with in situ oxygen-doped cathodes have great potential for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
8
|
Yao Y, Yang J, Zhu C, Lu L, Fang Q, Xu C, He Z, Song S, Shen Y. Unveiling the metallic size effect on O2 adsorption and activation for enhanced electro-Fenton degradation of aromatic compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132739. [PMID: 37856960 DOI: 10.1016/j.jhazmat.2023.132739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Metal-atom-modified nitrogen-doped carbon materials (M-N-C) have emerged as promising candidates for electro-Fenton degradation of pollutants. Nonetheless, a comprehensive exploration of size-dependent M-N-C catalysts in the electro-Fenton process remains limited, posing challenges in designing surface-anchored metal species with precise sizes. Herein, a heterogeneous-homogeneous coupled electro-Fenton (HHC-EF) system was designed and various M-N-C catalysts anchored with Co single atoms (CoSA-N-C), Co clusters (CoAC-N-C), and Co nanoparticles (CoNP-N-C) were successfully synthesized and employed in an HHC-EF system. Intriguingly, CoAC-N-C achieved outstanding removal efficiencies of 99.9% for BPA and RhB within 10 and 15 min, respectively, with the fastest reaction kinetics (0.70 min-1 for BPA and 0.34 min-1 for RhB). Electron spin resonance and trapping experiments revealed that·OH played a crucial role in the HHC-EF process. Moreover, experiments and theoretical calculations revealed that the unique metallic size effect facilitate the in-situ electro-generation of H2O2. Specifically, the atomic interaction between neighboring Co atoms in clusters enhanced O2 adsorption and activation by strengthening the Co-N bond and transforming O2 adsorption configuration to the Yeager-type. This study provides valuable insights that could inspire the size-oriented metal-based catalyst design from the perspective of the potential atomic distance effect.
Collapse
Affiliation(s)
- Yanchi Yao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jingyi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Chao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
9
|
Yu X, Pu H, Sun DW. Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications. Crit Rev Food Sci Nutr 2023:1-19. [PMID: 38149655 DOI: 10.1080/10408398.2023.2290698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
Collapse
Affiliation(s)
- Xinru Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
11
|
Qin X, Wang K, Cao P, Su Y, Chen S, Yu H, Quan X. Highly efficient electro-Fenton process on hollow porous carbon spheres enabled by enhanced H 2O 2 production and Fe 2+ regeneration. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130664. [PMID: 36584650 DOI: 10.1016/j.jhazmat.2022.130664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Electro-Fenton (e-Fenton) is a promising method for wastewater treatment that relies on powerful ·OH generated via the decomposition of electro-generated H2O2 catalyzed by Fe2+. In this regard, developing a catalyst capable of simultaneously producing H2O2 and accelerating Fe2+ regeneration is of considerable importance; however, this remains a challenge because of the difficulty in modulating the electronic microenvironment. Herein, a hollow porous carbon sphere catalyst (HPCS) is developed to synchronously enhance H2O2 generation and accelerate Fe3+/Fe2+ cycling by constructing an electron-rich microenvironment via surface curvature regulation. The Fe2+ regeneration efficiency reaches 35.5% on HPCS featuring a larger curvature structure (HPCS-TPOS), which is 1.6 times higher than the smaller curvature HPCS-S catalyst (22.8%). Density functional theory reveals that the electron-rich microenvironment on the outer surface of high curvature structure promotes Fe2+ regeneration. The H2O2 production rate on HPCS-TPOS is 47.2 mmol L-1 h-1, exceeding the state-of-the-art e-Fenton catalysts reported. Benefiting from the concurrent high-efficiency of H2O2 production and Fe2+ regeneration, HPCS-TPOS e-Fenton is demonstrated to be efficient for sulfamethoxazole removal with the kinetic rate of 0.30-0.72 min-1 at pH 3-7. This work offers new insight into the design of efficient catalysts by rationally regulating curvature structures for wastewater treatment.
Collapse
Affiliation(s)
- Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
12
|
Deng F, Olvera-Vargas H, Zhou M, Qiu S, Sirés I, Brillas E. Critical Review on the Mechanisms of Fe 2+ Regeneration in the Electro-Fenton Process: Fundamentals and Boosting Strategies. Chem Rev 2023; 123:4635-4662. [PMID: 36917618 DOI: 10.1021/acs.chemrev.2c00684] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.,Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos CP 62580, México
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Recent advances in application of heterogeneous electro-Fenton catalysts for degrading organic contaminants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39431-39450. [PMID: 36763272 DOI: 10.1007/s11356-023-25726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.
Collapse
|
14
|
Wang Q, Qin H, Fan J, Xie H. New insight into the mechanism of ferric hydroxide-based heterogeneous Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130278. [PMID: 36327851 DOI: 10.1016/j.jhazmat.2022.130278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The heterogeneous Fenton-like reaction (HeFR) has always been a research focus for environmental applications. However, it has long been difficult to reach a consensus on the reaction mechanism because the process of metal ions dissolution and its role were not well understood. In this paper, we propose the courses of organics-mediated coordination or/and reduction dissolution of ferric hydroxide to initiate the autocatalytic kinetics of phenol degradation and illustrate it through density functional theory (DFT) and experiments. With the increase of hydrogen peroxide concentration, the degradation of phenol changes from autocatalytic kinetics to first-order kinetics. Furthermore, a novel "limit segmentation method" initiated by us indicates that homogeneous reaction plays a decisive role in the phenol degradation process. The dominant roles of the reactive organics in both iron dissolution and the iron cycle and of the homogeneous reaction in the whole degradation process in the ferric hydroxide-based HeFR system are brand-new insights that pave the pathway for future research.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hehe Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jinhong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, 310003 Zhejiang, China
| |
Collapse
|
15
|
Guo H, Zhao C, Xu H, Zhang Y, Jiao Y, Hao H, Li N, Xu W. New insights into the slow-drying modified hydrophilic graphite felt gas-diffusion cathode using acetylene black/PTFE for efficient electro-Fenton removal of norfloxacin. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
He H, Liu Y, Wang L, Qiu W, Liu Z, Ma J. Novel activated system of ferrate oxidation on organic substances degradation: Fe(VI) regeneration or Fe(VI) reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Hejazi SA, Taghipour F. Polytetrafluoroethylene-based gas diffusion electrode for electrochemical generation of hydrogen peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Song X, Jo C, Zhou M. Enhanced tetracycline removal using membrane-like air-cathode with high flux and anti-fouling performance in flow-through electro-filtration system. WATER RESEARCH 2022; 224:119057. [PMID: 36096029 DOI: 10.1016/j.watres.2022.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The membrane-like air-cathodes modified with different polyaniline were prepared using phase inversion method, which possessed dual functions of interception and electrochemical degradation, and showed good conductivity (15.9 ± 0.4 to 25.7 ± 0.5 mS cm-1) and porosity (77.0 ± 0.1 to 87.8 ± 0.1%) compared to the unmodified control one (13.2 ± 0.5 mS cm-1, and 63.1 ± 0.7%). At tetracycline 50 mg L-1, the cathode with 25 wt% polyaniline exhibited the highest rejection rate and final removal (71.1% and 92.9%, 35.9% and 31.4% higher than the control), the highest water flux recovery (97.9%), and the lowest attenuation of porosity and conductivity. The modified cathode also showed an autocatalytic effect on H2O2, an obvious ·OH peak appeared on the electron paramagnetic resonance curves. It also had good anti-fouling performance because it exhibited a high durability (the final removal was decreased by 4.0% after 15 cycles) with a long service life of 124 periods (372 h, 15.5 d). The tetracycline (0.5 mg L-1) removal in the river background was near 100%, and the chemical oxygen demand removal was 91.9%, supporting that it was suitable for treating antibiotics in natural water without adding agents but only for electricity consumption.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People's Republic of Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Lu X, Zhou X, Qiu W, Wang Z, Wang Y, Zhang H, Yu J, Wang D, Gu J, Ma J. Kinetics and mechanism of the reaction of hydrogen peroxide with hypochlorous acid: Implication on electrochemical water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129420. [PMID: 35816805 DOI: 10.1016/j.jhazmat.2022.129420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Reduction of HOCl to Cl- by in-situ electrochemical synthesis or ex-situ addition of H2O2 is a feasible method to minimize Cl-DBPs and ClOx- (x = 2, 3, and 4) formation in electrochemical oxidative water treatment systems. This work has investigated the kinetics and mechanism of the reaction between H2O2 and HOCl. The kinetics study showed the species-specific second order rate constants for HOCl with H2O2 (k1), HOCl with HO2- (k2) and OCl- with H2O2 (k3) are 195.5 ± 3.3 M-1s-1, 4.0 × 107 M-1s-1 and 3.5 × 103 M-1s-1, respectively. The density functional theory calculation showed k2 is the most advantageous thermodynamically pathway because it does not need to overcome a high energy barrier. The yields of 1O2 generation from the reaction of H2O2 with HOCl were reinvestigated by using furfuryl alcohol (FFA) as a probe, and an average of 92.3% of 1O2 yields was obtained at pH 7-12. The second order rate constants of the reaction of 1O2 with 13 phenolates were determined by using the H2O2/HOCl system as a quantitative 1O2 production source. To establish a quantitative structure activity relationship, quantum chemical descriptors were more satisfactory than empirical Hammett constants. The potential implications in electrochemical oxidative water treatment were discussed at the end.
Collapse
Affiliation(s)
- Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoqun Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Yishi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Gao S, Feng D, Chen F, Shi H, Chen Z. Multi-functional well-dispersed pomegranate-like nanospheres organized by ultrafine ZnFe2O4 nanocrystals for high-efficiency visible-light-Fenton catalytic activities. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Facile preparation of iron-anchored graphite cloth through salt immersion and sintering approaches and its application to the electro-Fenton catalytic system as a cathode. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Zhi K, Yang C, Zheng Y, Zhang R, Toyosi E O, Wu H, Jiang Z. Enhanced Electro-Fenton Degradation of Ciprofloxacin by Membrane Aeration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keda Zhi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Omojayogbe Toyosi E
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
23
|
Li M, Qin X, Gao M, Li T, Lv Y. Enhanced in-situ electrosynthesis of hydrogen peroxide on a modified active carbon fiber prepared through response surface methodology. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Li D, Yu J, Jia J, He H, Shi W, Zheng T, Ma J. Coupling electrode aeration and hydroxylamine for the enhanced Electro-Fenton degradation of organic contaminant: Improving H 2O 2 generation, Fe 3+/Fe 2+ cycle and N 2 selectivity. WATER RESEARCH 2022; 214:118167. [PMID: 35196618 DOI: 10.1016/j.watres.2022.118167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
To improve H2O2 generation and Fe3+/Fe2+ cycle simultaneously for enhancing Electro-Fenton performance, the electrode aeration (EA) and hydroxylamine sulfate (HA) were coupled. With dimethyl phthalate (DMP) as main target contaminant, combination of HA and EA greatly accelerated the degradation of DMP and exhibited a synergy in the pH of 2.0-6.9 through promoting the key reactions, including electrochemical two-electron reduction of O2 into H2O2 and redox cycles of Fe3+/Fe2+, which then improved the generation of hydroxyl radicals (·OH). The coupling EA and HA reduced the use of HA and converted most of HA into environment-friendly N2 (60.1-62.1% of HA products), while HA/solution aeration(SA) system consumed HA rapidly and the generated N2 only accounted for 5.8-6.7% of HA products. Furthermore, compared with HA/SA and EA Electro-Fenton systems, enhancement degree of DMP degradation in HA/EA Electro-Fenton process was higher in actual waterbody than in ultrapure water. The coupling EA and HA in the Electro-Fenton process could solve the low Fe3+/Fe2+ cycle efficiency and low H2O2 production simultaneously, and improve the N2 selectivity of HA transformation, which advanced its application in practical environmental remediation.
Collapse
Affiliation(s)
- Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jialin Jia
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; China Everbright Water Limited, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Zhao M, Ma X, Li R, Mei J, Rao T, Ren G, Guo H, Wu Z. In-situ slow production of Fe2+ to motivate electro-Fenton oxidation of bisphenol A in a flow through dual-anode reactor using current distribution strategy: Advantages, CFD and toxicity assessment. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Gong Z, Wang H, Vayenas DV, Yan Q. Enhanced electrochemical removal of sulfadiazine using stainless steel electrode coated with activated algal biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114535. [PMID: 35051817 DOI: 10.1016/j.jenvman.2022.114535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
With the increasingly discharging and inappropriately disposing of antibiotics from human disease treatment and breeding industry, extensive development of antibiotic resistance in bacteria raised serious public health concern. In this work, algal biochar was coated onto the stainless steel mesh, and was employed as cathodic electrode for the degradation of sulfadiazine (SDZ) in an electro-Fenton (EF) system. It was found that algal biochar pyrolyzed at 600 °C with 1:1 KOH achieved best catalytic performance to generate H2O2 via oxygen reduction. Moreover, removal efficiency of SDZ reached 96.11% in 4 h with an initial concentration of 25 μg/mL, under the optimized condition as: initial pH at 3, 50 mM of Na2SO4 as electrolyte and an applied current of 20 mA/cm2. In addition, it was found that the SDZ removal kept at about 96.99% even after four repeated degradation process. Moreover, four possible SDZ degradative pathways during the EF process were proposed according to determined intermediates, model optimization and density functional theory calculation. Finally, acute and chronic biotoxicity of the degradative products against fish and green algae was evaluated, to further elaborate the environmental impact of SDZ after electrochemical degradation.
Collapse
Affiliation(s)
- Zhihao Gong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504, Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Stadiou Str., Platani, GR, 26504, Patras, Greece
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, PR China.
| |
Collapse
|
27
|
Song B, Zeng Z, Almatrafi E, Shen M, Xiong W, Zhou C, Wang W, Zeng G, Gong J. Pyrite-mediated advanced oxidation processes: Applications, mechanisms, and enhancing strategies. WATER RESEARCH 2022; 211:118048. [PMID: 35074575 DOI: 10.1016/j.watres.2022.118048] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Proper treatment of wastewater is one of the key issues to the sustainable development of human society, and people have been searching for high-efficiency and low-cost methods for wastewater treatment. This article reviews recent studies about pyrite-mediated advanced oxidation processes (AOPs) in removing refractory organics from wastewater. The basic information of pyrite and its characteristics for AOPs are first introduced. Then, the performance and mechanisms of pyrite-mediated Fenton oxidation, electro-Fenton oxidation, and persulfate oxidation processes are carefully reviewed and presented. Natural pyrite is an abundant low-cost heterogeneous catalyst for AOPs, and the slow release of Fe2+ and the self-regulation of solution pH are highlighted characteristics of pyrite-mediated AOPs. In AOPs, the interaction between Fe3+ and pyrite facilitates the Fe2+ regeneration and the Fe2+/Fe3+ cycle. Making pyrite into nanoparticles, assisting by ultrasound and light irradiation, and adding exogenous Fe3+, organic chelating agents, or biochar is effective to enhance the performance of pyrite-mediated AOPs. Based on the analyses of those pyrite-mediated AOPs and their enhancing strategies, the future development directions are proposed in the aspects of toxicity research, mechanism research, and technological coupling.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maocai Shen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wenjun Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Jilai Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
28
|
Chu Y, Su H, Liu C, Zheng X. Fabrication of sandwich-like super-hydrophobic cathode for the electro-Fenton degradation of cefepime: H 2O 2 electro-generation, degradation performance, pathway and biodegradability improvement. CHEMOSPHERE 2022; 286:131669. [PMID: 34340112 DOI: 10.1016/j.chemosphere.2021.131669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Several composite cathodes were prepared using graphite, carbon nanotube (CNT) and PTFE, and their elemental composition, surface morphology, physical and electrochemical properties were studied by various characterization techniques. It was found that the hydrophobic property of the prepared cathodes could be greatly enhanced by changing their surface morphologies using polyurethane sponge in cathode-shaping, which successfully allowed the preparation of super-hydrophobic carbon cathode, resulting in the enhanced reduction of O2 to H2O2. Based on the above finding, a sandwich-like super-hydrophobic carbon cathode was fabricated and used in the electro-Fenton process for the degradation of cefepime. The recommended cathode exhibited an ideal performance for H2O2 electro-generation and a favorable stability. The cathode submerged in air-aeration solution (pH 3.0) has produced 376 mg L-1 H2O2 with an observed current efficiency (CE) of 40 % via the electrolysis of 60 min at the optimum potential. The developed electro-Fenton process presented the degradation efficiency of nearly 100 % within 10 min for 60 mg L-1 cefepime, in which the degradation of cefepime mainly depended on the generation of hydroxyl radicals (∙OH). The organic intermediates formed during cefepime degradation were identified and the degradation pathway was proposed. More over, the electro-Fenton degradation of cefepime evidently reduced the solution toxicity and improved the biodegradability, suggesting the electro-Fenton oxidation may be adopted as a pretreatment alternative prior to the biological treatment of cefepime-containing wastewater.
Collapse
Affiliation(s)
- Yanyang Chu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, China.
| | - Hongzhao Su
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, China
| | - Chang Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, China
| | - Xianglei Zheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, China
| |
Collapse
|
29
|
He J, Yu D, Zou X, Wang Z, Zheng Y, Liu X, Zeng Y. Degradation intermediates of Amitriptyline and fundamental importance of transition metal elements in LDH-based catalysts in Heterogeneous Electro-Fenton system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Ye J, Zhang Y, Wang J, Liu S, Chang Y, Xu X, Feng C, Xu J, Guo L, Xu J, Fu Y. Photo-Fenton and oxygen vacancies' synergy for enhancing catalytic activity with S-scheme FeS 2/Bi 2WO 6 heterostructure. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00610c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of FeS2/Bi2WO6 S-scheme photo-Fenton catalysts with efficient catalytic performances were successfully prepared by coupling FeS2 into the surface oxygen vacancy enriched Bi2WO6 using calcination and solvothermal methods.
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yuanyuan Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Juan Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yuanhang Chang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiuping Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunte Feng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Qiqihaer Branch of Heilongjiang Academy of Agricultural Sciences, 10060, China
| | - Li Guo
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
31
|
Efficient hydrogen peroxide production at high current density by air diffusion cathode based on pristine carbon black. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Xu H, Guo H, Chai C, Li N, Lin X, Xu W. Anodized graphite felt as an efficient cathode for in-situ hydrogen peroxide production and Electro-Fenton degradation of rhodamine B. CHEMOSPHERE 2022; 286:131936. [PMID: 34426276 DOI: 10.1016/j.chemosphere.2021.131936] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This work investigated that the graphite felt anodized by NaOH, NH4HCO3, or H2SO4 aqueous, and then as the cathode materials for in-situ hydrogen peroxide (H2O2) production and its employed for rhodamine B (RhB) degradation via Electro-Fenton (EF) process. At -0.60 V (vs. SCE), after 120 min electrolysis, the H2O2 yield by graphite felt which anodized by 0.2 M H2SO4 achieved up 110.5 mg L-1 in 0.05 M Na2SO4 electrolyte. Compared with the raw graphite felt used for cathode, the H2O2 yield increased by 15.85 times under the same conditions. The results of Raman spectroscopy demonstrated that graphite felt anodized by H2SO4 solution can be achieved the highest defect degree. For the degradation of RhB, the cathode which anodized by H2SO4 solution has the highest removal rate. For the degradation rate of RhB, the effect of applied current density, Fe2+ ions concentration, pH value were investigated. In addition, suggested that the efficient Fe3+ reduction reaction on the cathode surface was an important reason of the high efficiency of RhB degradation. 5-times continuous runs indicated that the modified cathode has remarkable stability and reusability during the EF process.
Collapse
Affiliation(s)
- Hu Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Hongkai Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Changsheng Chai
- School of Bailie Mechanical Engineering, Lanzhou City University, Lanzhou, 730070, Gansu, China
| | - Na Li
- Gansu HaoShi Carbon Fiber Co., LTD, Baiying, 730900, Gansu, China
| | - Xueyong Lin
- Gansu HaoShi Carbon Fiber Co., LTD, Baiying, 730900, Gansu, China
| | - Weijun Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
33
|
Gu Y, Wu S, Cao Y, Liu M, Chen S, Quan X, Yu H. Construction of a Microchannel Aeration Cathode for Producing H 2O 2 via Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56045-56053. [PMID: 34787395 DOI: 10.1021/acsami.1c14969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical oxygen reduction is a promising method for in situ H2O2 production. Its important precondition is that dissolved oxygen molecules have to diffuse to and arrive at the cathode surface for reacting with electrons. Obviously, shortening the diffusion distance is beneficial to improve the reaction efficiency. In this study, a novel microchannel aeration mode was proposed to confine the diffusion distance of O2 to the micrometer level. For this mode, an aeration cathode was fabricated from a carbon block with microchannel arrays. The diameter of each channel was only 10-40 μm. Oxygen will be pumped into every microchannel from the top entry, while an aqueous solution will permeate into microchannels through the bottom entry and pores in the channel wall. This microchannel aeration cathode exhibited a H2O2 yield of up to 4.34 mg h-1 cm-2, about eight times higher than that of the common bubbling aeration mode. The corresponding energy consumption was only 7.35 kWh kg-1, which was superior to most reported results. In addition to H2O2, this aeration cathode may also produce •OH via a one-electron reduction of H2O2. In combination with H2O2 and •OH, phenol, sulfamethoxazole, and atrazine were degraded effectively. We expect that this microchannel aeration cathode may inspire researchers focused on H2O2 production, water pollutant control, and other multiphase interfacial reactions.
Collapse
Affiliation(s)
- Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuai Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yujia Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Zhu Y, Fan W, Feng W, Wang Y, Liu S, Dong Z, Li X. A critical review on metal complexes removal from water using methods based on Fenton-like reactions: Analysis and comparison of methods and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125517. [PMID: 33684817 DOI: 10.1016/j.jhazmat.2021.125517] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Metals mainly exist in the form of complexes in urban wastewater, fresh water and even drinking water, which are difficult to remove and further harm human health. Fenton-like reaction has been used for the removal of metal complexes. Effective removal of metal complexes using Fenton-like reaction requires the removal of both metals and organic ligands, meanwhile, the fate of metals and organic pollutions must be clearly understood. Thus, this review summarizes the relevant research on metal complex removal from using Fenton-like reactions in the past ten years, with the detailed removal approaches and mechanisms analyzed. Electro-, photo-, microwave/ultrasound-Fenton reactions or the synergistic Fenton reaction have been shown to exhibit excellent metal complex treatment capabilities. Furthermore, various catalysts, such as transition metals, bimetals and metal-free catalytic systems can expand the potential applications of Fenton-like reactions. Novel Fenton reaction methods without the addition of metals or H2O2, with construction of a dual active center catalyst, or with the introduction of other free radicals, are all worthy of further investigation. Due to increasing levels of environmental metal and organic pollutions remediation requirements, more research is required for the development of economical and efficient novel Fenton-like processes.
Collapse
Affiliation(s)
- Ying Zhu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - WenHong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| | - WeiYing Feng
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Ying Wang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Shu Liu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - ZhaoMin Dong
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - XiaoMin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| |
Collapse
|
35
|
Lai W, Chen Z, Ye S, Xu Y, Xie G, Kuang C, Li Y, Zheng L, Wei L. BiVO 4 prepared by the sol-gel doped on graphite felt cathode for ciprofloxacin degradation and mechanism in solar-photo-electro-Fenton. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124621. [PMID: 33383458 DOI: 10.1016/j.jhazmat.2020.124621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In this research, bismuth vanadate-doped graphite felt (GF-BiVO4) was successfully prepared by sol-gel method, in which BiVO4 owned superior electro-Fenton (EF) and solar-photo-electro-Fenton (SPEF) performance. Combined with the analysis by X-ray diffractometer (XRD), field emission transmission electron microscopy (FE-TEM), nitrogen adsorption-desorption isotherms and cyclic voltammetry (CV), the changes of electrodes were reflected in structure and physicochemical properties. The doping of monoclinic BiVO4 endued GF with a higher surface area and more electro-active sites and better electrode activity in comparison to Raw-GF. Then, the GFs were used as cathodes to detect •OH concentration with coumarin (COU) as probe molecule and to evaluate photoelectric performance with ciprofloxacin (CIP) in photocatalysis, EF and SPEF processes. The results demonstrated that the concentration of •OH followed an order of SPEF> EF> photocatalysis, which was consistent with the removal rate of CIP (99.8%, 99.4% and 21.2%, respectively) on GF-BiVO4 at 5 min. Further, five degradation pathways of CIP in SPEF system were proposed including the attack on piperazine ring, oxidation on cyclopropyl group, decarboxylation and hydroxyl radical addition, oxidation on benzene group and defluorination. The study provides insights into the enhancement of EF and SPEF performance and the degradation pathway of CIP in SPEF.
Collapse
Affiliation(s)
- Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhuoyao Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengjun Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longmeng Wei
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Zhu M, Zhao Z, Liu X, Chen P, Fan F, Wu X, Hua R, Wang Y. A novel near-infrared fluorimetric method for point-of-care monitoring of Fe 2+ and its application in bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124767. [PMID: 33310335 DOI: 10.1016/j.jhazmat.2020.124767] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Iron is one of the essential trace elements in the human body, which is involved in many important physiological processes of life. The abnormal amount of iron in the body will bring many diseases. Therefore, a novel near-infrared fluorimetric method was developed. The method is based on a fluorescent probe (E)-4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)-N, N-diethylaniline oxide (DDED) which uses N-oxide as a recognition group to real-time monitoring and imaging of Fe2+ in vivo and in vitro. The method exhibits excellent selectivity and high sensitivity (LOD = 27 nM) for Fe2+, fast reaction rate (< 4 min), extremely large Stokes shift (> 275 nm), low cytotoxicity. The strip test strongly illustrates the potential application of DDED in real environment. In particular, DDED has been successfully applied to real-time monitoring and imaging of Fe2+ in HepG2 cells and zebrafish. That is, the method has great potential for the detection of Fe2+ in living systems.
Collapse
Affiliation(s)
- Meiqing Zhu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Zongyuan Zhao
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xina Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Panpan Chen
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Fugang Fan
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Wang J, Li C, Rauf M, Luo H, Sun X, Jiang Y. Gas diffusion electrodes for H 2O 2 production and their applications for electrochemical degradation of organic pollutants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143459. [PMID: 33223172 DOI: 10.1016/j.scitotenv.2020.143459] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, it is a great challenge to minimize the negative impact of hazardous organic compounds in the environment. Highly efficient hydrogen peroxide (H2O2) production through electrochemical methods with gas diffusion electrodes (GDEs) is greatly demand for degradation of organic pollutants that present in drinking water and industrial wastewater. The GDEs as cathodic electrocatalyst manifest more cost-effective, lower energy consumption and higher oxygen utilization efficiency for H2O2 production as compared to other carbonaceous cathodes due to its worthy chemical and physical characteristics. In recent years, the crucial research and practical application of GDE for degradation of organic pollutants have been well developed. In this review, we focus on the novel design, fundamental aspects, influence factors, and electrochemical properties of GDEs. Furthermore, we investigate the generation of H2O2 through electrocatalytic processes and degradation mechanisms of refractory organic pollutants on GDEs. We describe the advanced methodologies towards electrochemical kinetics, which include the enhancement of GDEs electrochemical catalytic activity and mass transfer process. More importantly, we also highlight the other technologies assisted electrochemical process with GDEs to enlarge the practical application for water treatment. In addition, the developmental prospective and the existing research challenges of GDE-based electrocatalytic materials for real applications in H2O2 production and wastewater treatment are forecasted. According to our best knowledge, only few review articles have discussed GDEs in detail for H2O2 production and their applications for degradation of organic pollutants in water.
Collapse
Affiliation(s)
- Jingwen Wang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Chaolin Li
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Muhammad Rauf
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Haijian Luo
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xue Sun
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yiqi Jiang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
38
|
Su H, Chu Y, Miao B. Degreasing cotton used as pore-creating agent to prepare hydrophobic and porous carbon cathode for the electro-Fenton system: enhanced H 2O 2 generation and RhB degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12965-z. [PMID: 33641103 DOI: 10.1007/s11356-021-12965-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
A porous carbon cathode was prepared using graphite, polytetrafluoroethylene (PTFE), and degreasing cotton (DC) through sintering treatment. The carbonization of DC by heat treatment played an ideal role in pore-creating, which weakened the mass transfer resistance of O2, and as a result, the adoption of degreasing cotton significantly improved the performance of H2O2 electro-generation. The optimized cathode was able to generate 567 mg L-1 H2O2 with a current efficiency (CE) of 86.7% by the electrochemical reaction of 60 min in a divided reactor. Furthermore, the degradation of rhodamine B (RhB) was carried out by an electro-Fenton system using the optimal cathode selected. The developed electro-Fenton system exhibited an excellent RhB degradation performance. The RhB solution of 50 mg L-1 was decolorized completely by the treatment of 10 min. Moreover, the degradation of 50~90 mg L-1 RhB solution presented over 90% TOC removal by the treatment of 120 min, indicating the ideal mineralization of organic pollutants. In addition, it was found that •OH was the major oxidizing specie responsible for the organics degradation. Finally, the possible pathway of RhB degradation in the electro-Fenton system was proposed by GC-MS analysis. The adoption of natural fibers for pore-creating provides an innovative and low-cost method to prepare porous cathode, which may promote the application of electro-Fenton oxidation in wastewater treatment.
Collapse
Affiliation(s)
- Hongzhao Su
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yanyang Chu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| | - Baoyu Miao
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
39
|
Lu J, Ayele BA, Liu X, Chen Q. Electrochemical removal of RRX-3B in residual dyeing liquid with typical engineered carbonaceous cathodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111669. [PMID: 33234317 DOI: 10.1016/j.jenvman.2020.111669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Electro-catalytic activities of carbonaceous cathodes including graphite plate, graphite felt, carbon felt, activated carbon felt (ACF) and carbon fiber felt (CFF) for degradation of Reactive Red X-3B (RRX-3B) in residual dyeing liquid were compared. The best electrochemical performance was obtained using dimensional stable anode (DSA) and CFF cathode due to the higher capacity for electro-generation of H2O2 by selective two-electron oxygen reduction. The CFF/DSA electrolysis system realized 78.2% COD removal and complete decolorization over a wide pH range. The efficacy of RRX-3B degradation was found to be dependent on the nature of carbonaceous materials. Electrochemical measurements showed that CFF possessed higher electrochemical surface area and hydrogen evolution reaction over-potential. Furthermore, the intrinsic graphitic N in CFF was proved to be catalytic active site by DFT calculations. Reactive Red X-3B degradation intermediates with benzene structures and carboxylic acids via hydroxylation in RRX-3B oxidation were identified by GC-MS. It was found that S/Cl/N-containing groups in RRX-3B molecule were mineralized to SO42-, NO3- and Cl- ions in the electrolysis.
Collapse
Affiliation(s)
- Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Befkadu A Ayele
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
40
|
Wu L, Zhou M, Liu C, Chen X, Chen Y. Double-enzymes-mediated Fe 2+/Fe 3+ conversion as magnetic relaxation switch for pesticide residues sensing. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123619. [PMID: 32827859 DOI: 10.1016/j.jhazmat.2020.123619] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
It is a great challenge to develop a newly rapid and accurate detection method for pesticide residues. In this work, based on acetylcholinesterase (AChE) and choline oxidase (CHO), a double-enzymes-mediated Fe2+/Fe3+ conversion as magnetic relaxation switch was explored for the measurement of acetamiprid residue. In the double-enzymes reactions, acetylcholine chloride (ACh) can be catalyzed to produce choline by AChE, which is successively hydrolyzed to betaine and hydrogen peroxide (H2O2) by CHO. According to the enzyme inhibition principle, AChE activity will be inactivated in the presence of acetamiprid, thus leading to the less production of H2O2. Wherein, Fe2+, ACh, AChE and CHO were optimized as the reaction substrates. In the reaction system, acetamiprid can be reflected by the transverse relaxation time (T2) that related with H2O2 mediated Fe2+ variations, which was further developed as an enzyme cascade amplification method. The detection linear range is 0.01∼1000 μg mL-1 (R2 = 0.99), and the limit of detection (LOD) is 2.66 ng mL-1 (S/N = 3, n = 3), behaving a 335-fold improvement in LOD than that of traditional enzyme inhibition method (0.89 μg mL-1). This method can realize "one-step mixing" detection of acetamiprid, which makes it a promising analytical tool for monitoring pesticide residue in complicated samples.
Collapse
Affiliation(s)
- Long Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Min Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Chen Liu
- Leibniz Institute of Photonic Technology, Jena-Member of the research alliance Leibniz Health Technologies, Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Street 9, 07745, Jena, Germany; Leibniz Institute of Photonic Technology Jena - Member of the research alliance, Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
41
|
Wang Z, Pi L, Cui J, Zhang X, Liu Y, Tang D, Zhu H, Mao X. Heterogeneous Electro-Fenton system for efficient degradation of 2,4-DCP: Dual activation of O2 for H2O2 generation and oxygen-defect cobalt ferrite catalysts. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|