1
|
Qiu S, Liu X, Wu Y, Chao Y, Jiang Z, Luo Y, Lin B, Liu R, Xiao Z, Li C, Wu Z. Catalytic depolymerization of Camellia oleifera shell lignin to phenolic monomers: Insights into the effects of solvent, catalyst and atmosphere. BIORESOURCE TECHNOLOGY 2024; 412:131365. [PMID: 39209230 DOI: 10.1016/j.biortech.2024.131365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Camellia oleifera shell (COS) is a renewable biomass resource abundant in lignin with significant potential for producing phenolic monomers. However, the dearth of research has led to considerable resource wastage and environmental pollution. Herein, reductive catalytic fractionation (RCF) of COS was performed using noble metal catalysts in different solvents. An 11.1 wt% yield of phenolic monomers was achieved with 91% selectivity toward propylene-substituted monomers in H2O/EtOH (3:7, v/v) cosolvent under N2 atmosphere. Notably, the highest phenolic monomer yield of 17.0 wt% was obtained with impressive selectivity (86.9%) toward propanol-substituted monomers in the presence of H2. The GPC analysis and 2D HSQC NMR spectra indicated the effective depolymerization of lignin oligomers with catalysts. Phenolic monomers with ethyl, propyl, or propanol side chain could be produced from lignin-derived oligomers through hydrogenolysis, hydrogenation, and decarboxylation reactions. Overall, this study has paved the way for the valorization of COS lignin through the RCF strategy.
Collapse
Affiliation(s)
- Shukun Qiu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xudong Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China.
| | - Yiying Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yan Chao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yiping Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610213, PR China
| | - Baining Lin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhiping Wu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
2
|
Zheng W, Feng S, Hu C. Production of Oximes Directly from Sustainable Lignocellulose-Derived Aldehydes and Ammonia over HTS-1 Catalyst. CHEMSUSCHEM 2024; 17:e202301364. [PMID: 37889199 DOI: 10.1002/cssc.202301364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Oxime chemicals are the building blocks of many anticancer drugs and widely used in industry and laboratory. A simple but robust hierarchically porous zeolite (HTS-1) catalyst was prepared by hydrothermal methods and used for the preparation of vanillin oxime from vanillin in NH3 ⋅ H2 O/DIO (v/v 1/10) system. The results of the catalyst characterization showed that the larger pore size and more framework Ti were conducive to promote the transformation of the substrates. The conversion of vanillin and the yield of vanillin oxime were both higher than 99 % under optimized reaction conditions. It was found that the reaction proceeded by oxidation of NH3 to hydroxylamine (NH2 OH), and oximation of hydroxylamine with vanillin to obtain vanillin oxime, where the rate-controlling step was the hydroxylamine formation, and the apparent activation energy was 26.22 kJ/mol. The corresponding oximation products could also be obtained by extending this method to other compounds derived from lignin. Furthermore, the catalytic system was used directly to the conversion of birch biomass to obtain oxime products such as vanillin oxime, syringaldehyde oxime, and furfural oxime etc. This work might give insights into the sustainable production of N-containing high-value products from lignocellulose.
Collapse
Affiliation(s)
- Wanping Zheng
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Shanshan Feng
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Changwei Hu
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
3
|
Shen Z, Shi C, Liu F, Wang W, Ai M, Huang Z, Zhang X, Pan L, Zou J. Advances in Heterogeneous Catalysts for Lignin Hydrogenolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306693. [PMID: 37964410 PMCID: PMC10767463 DOI: 10.1002/advs.202306693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.
Collapse
Affiliation(s)
- Zhensheng Shen
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Fan Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Wei Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Minhua Ai
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhenfeng Huang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
4
|
Xiao LP, Lv YH, Yang YQ, Zou SL, Shi ZJ, Sun RC. Unraveling the Lignin Structural Variation in Different Bamboo Species. Int J Mol Sci 2023; 24:10304. [PMID: 37373449 DOI: 10.3390/ijms241210304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The structure of cellulolytic enzyme lignin (CEL) prepared from three bamboo species (Neosinocalamus affinis, Bambusa lapidea, and Dendrocalamus brandisii) has been characterized by different analytical methods. The chemical composition analysis revealed a higher lignin content, up to 32.6% of B. lapidea as compared to that of N. affinis (20.7%) and D. brandisii (23.8%). The results indicated that bamboo lignin was a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin associated with p-coumarates and ferulates. Advanced NMR analyses displayed that the isolated CELs were extensively acylated at the γ-carbon of the lignin side chain (with either acetate and/or p-coumarate groups). Moreover, a predominance of S over G lignin moieties was found in CELs of N. affinis and B. lapidea, with the lowest S/G ratio observed in D. brandisii lignin. Catalytic hydrogenolysis of lignin demonstrated that 4-propyl-substituted syringol/guaiacol and propanol guaiacol/syringol derived from β-O-4' moieties, and methyl coumarate/ferulate derived from hydroxycinnamic units were identified as the six major monomeric products. We anticipate that the insights of this work could shed light on the sufficient understanding of lignin, which could open a new avenue to facilitate the efficient utilization of bamboo.
Collapse
Affiliation(s)
- Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue-Qin Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang-Lin Zou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng-Jun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Wang Q, Xiao LP, Lv YH, Yin WZ, Hou CJ, Sun RC. Metal–Organic-Framework-Derived Copper Catalysts for the Hydrogenolysis of Lignin into Monomeric Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan-Jin Hou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Kumar A, Jindal M, Rawat S, Kumar J, Sripadi P, Yang B, Thallada B. Upgradation of sugarcane bagasse lignin: Fractionation to cyclic alcohols production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Kim H, Yang S, Lim YH, Ha JM, Kim DH. Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: Complete hydrodeoxygenation of vanillin. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126525. [PMID: 34246521 DOI: 10.1016/j.jhazmat.2021.126525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
A complete hydrodeoxygenation(HDO) of vanillin to yield cycloalkanes was performed using bifunctional Ru loaded HZSM-5 catalysts with different metal loadings (0.1, 0.5, 1, 3, and 5 wt%) and Si/Al2 ratios (Si/Al2 = 23,300) in n-octane/water biphasic system. Both the reaction pathway and product distribution were influenced by the metal/acid balance of the catalysts. Higher metal/acid ratio promoted Caryl-C cleavage reaction, resulting in the increased yield of cyclohexane. Synergetic effect of metal and acid sites was observed in the bifunctional catalyst, attaining as high as 40-fold increase of metal efficiency in the ring hydrogenation reaction, compared to lone metal site catalyst. The effect of solvent composition was evaluated, revealing that the presence of water promoted the overall HDO reaction. By balancing metal/acid and introducing appropriate solvent system, efficient catalytic system that minimized carbon loss and improved metal efficiency for vanillin HDO was obtained.
Collapse
Affiliation(s)
- Hyungjoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seungdo Yang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong Hyun Lim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeong-Myeong Ha
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Zhu Z, Xu L, Han Z, Liu J, Zhang L, Yang C, Xu Z, Liu P. Defluorination study of spent carbon cathode by microwave high-temperature roasting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114028. [PMID: 34731716 DOI: 10.1016/j.jenvman.2021.114028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Spent carbon cathode (SCC) produced in the process of aluminum electrolysis is a typical toxic and hazardous solid waste. Therefore, the harmless treatment of SCC is extremely important for the green development of aluminum electrolysis industry. In this paper, the microwave-assisted high-temperature roasting technology was developed to remove fluorides in SCC for recycling of this cathode. The melting point, dielectric parameter, crystalline structure, surface chemical property, elemental composition, morphological structure, carbon graphitization and surface area were characterized using thermogravimetric analysis and differential scanning calorimetry, high-temperature composite conductivity analyzer, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy, scanning electronic microscopy, transmission electron microscopy, Raman spectroscopy and isothermal N2 adsorption-desorption method. The content of fluorides in raw and treated SCC was measured by ion activity meter. The results showed that the phase of sodium fluoride and cryolite would transform from solid to liquid when the temperature was higher than 1098.5 °C, and the SCC exhibited good performance on wave absorption with the action depth of 1 cm. The SCC was mainly composed of 57.94 wt% C, 14.23 wt% NaF, 1.80 wt%, CaF2, 15.06 wt% Na3AlF6, and 10.97 wt% Other. After treatment under microwave, the graphite carbon exhibited pitting structure and the fluorides could be effectively removed. In addition, the average layer spacing of graphite was increased from 0.34 to 0.36 nm. The defluorination of SCC could be enhanced with the increase of roasting temperature, which would attain 95.4% at 1500 °C. Compared with the traditional roasting method, the process under microwave showed more defects, which would provide a new guidance for the treatment and recycling of spent SCC.
Collapse
Affiliation(s)
- Zhi Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Lei Xu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, PR China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China.
| | - Zhaohui Han
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, PR China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Jianhua Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, PR China.
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, PR China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming, 650093, PR China.
| | - Chuxuan Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Zhangbiao Xu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| | - Peng Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
| |
Collapse
|
9
|
Zhong L, Wang C, Yang G, Chen J, Xu F, Geun Yoo C, Lyu G. Rapid and efficient microwave-assisted guanidine hydrochloride deep eutectic solvent pretreatment for biological conversion of castor stalk. BIORESOURCE TECHNOLOGY 2022; 343:126022. [PMID: 34600092 DOI: 10.1016/j.biortech.2021.126022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microwave-assisted guanidine hydrochloride deep eutectic solvents (DESs) was developed for rapid and efficient pretreatment of castor stalk. The DES synthesized with guanidine hydrochloride and lactic acid showed a better delignification (92.02%) and enzymatic saccharification yield (96.3%) than choline chloride and lactic acid DES resulted. In addition, high-purity (up to 98%) lignin was recovered from the pretreatment liquor. The good recyclability of the guanidine hydrochloride-based DES was also proven with up to 90% cellulose hydrolysis with third-time recycled DES without post purification. The proposed microwave-assisted guanidine hydrochloride/lactic acid DES showed its great potentials as a highly effective and recyclable pretreatment solvent for future biorefinery strategies.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Feng Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
10
|
Panyadee R, Saengsrichan A, Posoknistakul P, Laosiripojana N, Ratchahat S, Matsagar BM, Wu KCW, Sakdaronnarong C. Lignin-Derived Syringol and Acetosyringone from Palm Bunch Using Heterogeneous Oxidative Depolymerization over Mixed Metal Oxide Catalysts under Microwave Heating. Molecules 2021; 26:7444. [PMID: 34946525 PMCID: PMC8707958 DOI: 10.3390/molecules26247444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included 27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity of two products) from the NaOH extracted lignin. The findings suggested a promising method for syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization under low power intensity microwave heating within a short reaction time of 30 min.
Collapse
Affiliation(s)
- Rangsalid Panyadee
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Aphinan Saengsrichan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Tungkru, Bangkok 10140, Thailand;
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| | - Babasaheb M. Matsagar
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei City 10617, Taiwan; (B.M.M.); (K.C.-W.W.)
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4 Roosevelt Road, Taipei City 10617, Taiwan; (B.M.M.); (K.C.-W.W.)
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei City 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU), Taipei City 10617, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 999 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakorn Pathom 73170, Thailand; (R.P.); (A.S.); (P.P.); (S.R.)
| |
Collapse
|
11
|
Liu X, Feng S, Jiang Z, Fang Q, Hu C. Aqueous Phase Selective Hydrogenation of Lignin-Derived Phenols to Cyclohexanols Over Pd/γ-Al2O3. Top Catal 2021. [DOI: 10.1007/s11244-021-01459-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Zhang H, Fu S, Du X, Deng Y. Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. CHEMSUSCHEM 2021; 14:2268-2294. [PMID: 33811470 DOI: 10.1002/cssc.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In the past five years, biomass-derived biofuels and biochemicals were widely studied both in academia and industry as promising alternatives to petroleum. In this Review, the latest progress of the synthesis and fabrication of porous nanocatalysts that are used in catalytic transformations involving hydrogenolysis of lignin is reviewed in terms of their textural properties, catalytic activities, and stabilities. A particular emphasis is made with regard to the catalyst design for the hydrogenolysis of lignin and/or lignin model compounds. Furthermore, the effects of different supports on the lignin hydrogenolysis/hydrogenation are discussed in detail. Finally, the challenges and future opportunities of lignin hydrogenolysis over nanomaterial-supported catalysts are also presented.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|