1
|
Wong LC, Rodenburg U, Leite RR, Korthals GW, Pover J, Koerten H, Kuramae EE, Bodelier PLE. Exploring microbial diversity and interactions for asbestos modifying properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175577. [PMID: 39155010 DOI: 10.1016/j.scitotenv.2024.175577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Asbestos poses a substantial environmental health risk, and biological treatment offers a promising approach to mitigate its impact by altering its chemical composition. However, the dynamics of microbial co-inoculation in asbestos bioremediation remain poorly understood. This study investigates the effect of microbial single cultures and co-cultures on modifying crocidolite and chrysotile fibers, focusing on the extraction of iron and magnesium. Seventy bacterial and eighty-three fungal strains were isolated from five diverse sites, characterized phylogenetically using the 16S rRNA gene and ITS region, respectively, and assessed for siderophore and organic acid production. Most bacterial strains were identified as Pseudomonas, while Penicillium predominated among fungal strains. Ten bacterial and 25 fungal strains were found to produce both organic compounds. Four microbial co-cultures (one bacterium-bacterium, two fungus-bacterium, and one fungus-fungus) exhibiting synergistic effects in plate assays, alongside their respective single cultures, were incubated with crocidolite and chrysotile. ICP-OES analysis revealed that in crocidolite, the co-culture HRF19-HRB12 removed more iron than their single cultures, while Penicillium TPF36 showed the highest iron removal. The co-culture of two Pseudomonas strains (HRB12-RB5) exhibited the highest magnesium concentration in the supernatant. In chrysotile, the co-culture HRB12-RB5 removed more iron than their individual cultures, with Penicillium TFSF27 exhibiting the highest iron concentration in the solution. Penicillium TFSF27 and the co-culture TFSF27-TPF36 demonstrated the highest magnesium removal. SEM-XRMA analysis showed a significant reduction in iron and magnesium content, confirming elemental extraction from the fibers' structure. This study significantly broadens the range of microbial strains capable of modifying asbestos fibers and underscores the potential of microbial co-cultures in asbestos remediation.
Collapse
Affiliation(s)
- Lina C Wong
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Umi Rodenburg
- Wageningen University and Research, Wageningen, the Netherlands
| | - Raycenne R Leite
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | | | - Judith Pover
- SGI Compliance, Hongkongstraat 5, 3047 BR Rotterdam, the Netherlands
| | - Henk Koerten
- SGI Compliance, Hongkongstraat 5, 3047 BR Rotterdam, the Netherlands
| | - Eiko E Kuramae
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Paul L E Bodelier
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Xie B, Wei X, Wan C, Zhao W, Song R, Xin S, Song K. Exploring the Biological Pathways of Siderophores and Their Multidisciplinary Applications: A Comprehensive Review. Molecules 2024; 29:2318. [PMID: 38792179 PMCID: PMC11123847 DOI: 10.3390/molecules29102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Siderophores are a class of small molecules renowned for their high iron binding capacity, essential for all life forms requiring iron. This article provides a detailed review of the diverse classifications, and biosynthetic pathways of siderophores, with a particular emphasis on siderophores synthesized via nonribosomal peptide synthetase (NRPS) and non-NRPS pathways. We further explore the secretion mechanisms of siderophores in microbes and plants, and their role in regulating bioavailable iron levels. Beyond biological functions, the applications of siderophores in medicine, agriculture, and environmental sciences are extensively discussed. These applications include biological pest control, disease treatment, ecological pollution remediation, and heavy metal ion removal. Through a comprehensive analysis of the chemical properties and biological activities of siderophores, this paper demonstrates their wide prospects in scientific research and practical applications, while also highlighting current research gaps and potential future directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuquan Xin
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| |
Collapse
|
3
|
Łuniewski S, Rogowska W, Łozowicka B, Iwaniuk P. Plants, Microorganisms and Their Metabolites in Supporting Asbestos Detoxification-A Biological Perspective in Asbestos Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1644. [PMID: 38612157 PMCID: PMC11012542 DOI: 10.3390/ma17071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Many countries banned asbestos due to its toxicity, but considering its colossal use, especially in the 1960s and 1970s, disposing of waste containing asbestos is the current problem. Today, many asbestos disposal technologies are known, but they usually involve colossal investment and operating expenses, and the end- and by-products of these methods negatively impact the environment. This paper identifies a unique modern direction in detoxifying asbestos minerals, which involves using microorganisms and plants and their metabolites. The work comprehensively focuses on the interactions between asbestos and plants, bacteria and fungi, including lichens and, for the first time, yeast. Biological treatment is a prospect for in situ land reclamation and under industrial conditions, which can be a viable alternative to landfilling and an environmentally friendly substitute or supplement to thermal, mechanical, and chemical methods, often characterized by high cost intensity. Plant and microbial metabolism products are part of the green chemistry trend, a central strategic pillar of global industrial and environmental development.
Collapse
Affiliation(s)
- Stanisław Łuniewski
- Faculty of Economics, L.N. Gumilyov Eurasian National University, Satpayev 2, Astana 010008, Kazakhstan; (S.Ł.); (B.Ł.)
- Faculty of Economic Sciences, The Eastern European University of Applied Sciences in Bialystok, Ciepła 40 St., 15-472 Białystok, Poland
| | - Weronika Rogowska
- Department of Environmental Engineering Technology and Systems, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E St., 15-351 Białystok, Poland
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| | - Bożena Łozowicka
- Faculty of Economics, L.N. Gumilyov Eurasian National University, Satpayev 2, Astana 010008, Kazakhstan; (S.Ł.); (B.Ł.)
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| |
Collapse
|
4
|
Park S, Bong YS, Kim G. Mineral extraction from asbestos-containing waste (ACW) and changes in its morphology during treatment with ammonium salts. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:285-294. [PMID: 36794358 DOI: 10.1080/10962247.2023.2178543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 05/18/2023]
Abstract
Asbestos is a known carcinogen and a banned hazardous material. However, the generation of asbestos-containing waste (ACW) is increasing because of the demolition of old constructions, buildings, and structures. Therefore, asbestos-containing wastes need to be effectively treated to render them harmless. This study aimed to stabilize asbestos wastes by using for the first time three different ammonium salts at low reaction temperatures. The treatment was performed with ammonium sulfate (AS), ammonium nitrate (AN), and ammonium chloride (AC) at concentrations of 0.1, 0.5, 1.0, and 2.0 M and reaction times of 10, 30, 60, 120, and 360 min intervals at 60 °C. Asbestos waste samples were treated in both plate and powder form during the experiment. The results demonstrated that the selected ammonium salts could extract the mineral ions from asbestos materials at a relatively low temperature. Concentrations of the minerals extracted from powdered samples were higher than those extracted from plate samples. AS treatment demonstrated better extractability compared to that of AN and AC, based on the concentrations of magnesium and silicon ions in the extract. The results implied that among the three ammonium salts, AS had better potential to stabilize the asbestos waste. This study demonstrated the potential of ammonium salts for treating and stabilizing asbestos waste at low temperatures by extracting the mineral ions from the asbestos fibers.Implications: This study aims to establish an effective treatment to stabilize the hazardous asbestos waste to harmless forms. We have attempted treatment of asbestos with three ammonium salts (ammonium sulfate, ammonium nitrate, ammonium chloride) at relatively lower temperature. The selected ammonium salts could extract the mineral ions from asbestos materials at a relatively low temperature. These results suppose that asbestos containing materials could change the harmless state by using simple method. Among the ammonium salts, especially, AS has better potential to stabilize the asbestos waste.
Collapse
Affiliation(s)
- Sangwon Park
- Mineral Processing & Metallurgy Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, Republic of Korea
| | - Yeon-Sik Bong
- Earth and Environmental Analysis Group, Korea Basic Science Institute (KBSI), Cheongju-si, Republic of Korea
| | - Gwangmok Kim
- Mineral Processing & Metallurgy Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1044896. [PMID: 36578344 PMCID: PMC9790997 DOI: 10.3389/fpls.2022.1044896] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global environment is dominated by various small exotic substances, known as secondary metabolites, produced by plants and microorganisms. Plants and fungi are particularly plentiful sources of these molecules, whose physiological functions, in many cases, remain a mystery. Fungal secondary metabolites (SM) are a diverse group of substances that exhibit a wide range of chemical properties and generally fall into one of four main family groups: Terpenoids, polyketides, non-ribosomal peptides, or a combination of the latter two. They are incredibly varied in their functions and are often related to the increased fitness of the respective fungus in its environment, often competing with other microbes or interacting with plant species. Several of these metabolites have essential roles in the biological control of plant diseases by various beneficial microorganisms used for crop protection and biofertilization worldwide. Besides direct toxic effects against phytopathogens, natural metabolites can promote root and shoot development and/or disease resistance by activating host systemic defenses. The ability of these microorganisms to synthesize and store biologically active metabolites that are a potent source of novel natural compounds beneficial for agriculture is becoming a top priority for SM fungi research. In this review, we will discuss fungal-plant secondary metabolites with antifungal properties and the role of signaling molecules in induced and acquired systemic resistance activities. Additionally, fungal secondary metabolites mimic plant promotion molecules such as auxins, gibberellins, and abscisic acid, which modulate plant growth under biotic stress. Moreover, we will present a new trend regarding phytoremediation applications using fungal secondary metabolites to achieve sustainable food production and microbial diversity in an eco-friendly environment.
Collapse
Affiliation(s)
- Neveen Atta Elhamouly
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Angelica Miraples
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Omnia T. Elshorbagy
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzan Hussien
- Botany Department Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Wang Y, Zhang G, Huang Y, Guo M, Song J, Zhang T, Long Y, Wang B, Liu H. A Potential Biofertilizer—Siderophilic Bacteria Isolated From the Rhizosphere of Paris polyphylla var. yunnanensis. Front Microbiol 2022; 13:870413. [PMID: 35615507 PMCID: PMC9125218 DOI: 10.3389/fmicb.2022.870413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing demands for crop production have become a great challenge while people also realizing the significance of reductions in synthetic chemical fertilizer use. Plant growth-promoting rhizobacteria (PGPR) are proven biofertilizers for increasing crop yields by promoting plant growth via various direct or indirect mechanisms. Siderophilic bacteria, as an important type of PGPR, can secrete siderophores to chelate unusable Fe3+ in the soil for plant growth. Siderophilic bacteria have been shown to play vital roles in preventing diseases and enhancing the growth of plants. Paris polyphylla var. yunnanensis (PPVY) is an important traditional Chinese herb. However, reports about its siderophilic bacteria are still rare. This study firstly isolated siderophilic bacteria from the rhizosphere soil of PPVY, identified by morphological and physio-biochemical characteristics as well as 16S rRNA sequence analysis. The dominant genus in the rhizobacteria of PPVY was Bacillus. Among 22 isolates, 21 isolates produced siderophores. The relative amount of siderophores ranged from 4 to 41%. Most of the isolates produced hydroxamate siderophores and some produced catechol. Four isolates belonging to Enterobacter produced the catechol type, and none of them produced carboxylate siderophores. Intriguingly, 16 strains could produce substances that have inhibitory activity against Candida albicans only in an iron-limited medium (SA medium). The effects of different concentrations of Fe3+ and three types of synthetic chemical fertilizers on AS19 growth, siderophore production, and swimming motility were first evaluated from multiple aspects. The study also found that the cell-free supernatant (CFS) with high siderophore units (SUs) of AS19 strain could significantly promote the germination of pepper and maize seeds and the development of the shoots and leaves of Gynura divaricata (Linn.). The bacterial solution of AS19 strain could significantly promote the elongation of the roots of G. divaricata (Linn.). Due to its combined traits promoting plant growth and seed germination, the AS19 has the potential to become a bioinoculant. This study will broaden the application prospects of the siderophilic bacteria-AS19 as biofertilizers for future sustainable agriculture.
Collapse
Affiliation(s)
- Yihan Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Juhui Song
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Bing Wang,
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- School of Basic Medicine Science, Guizhou Medical University, Guiyang, China
- Hongmei Liu,
| |
Collapse
|
7
|
David SR, Geoffroy VA. A Review of Asbestos Bioweathering by Siderophore-Producing Pseudomonas: A Potential Strategy of Bioremediation. Microorganisms 2020; 8:microorganisms8121870. [PMID: 33256219 PMCID: PMC7761222 DOI: 10.3390/microorganisms8121870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Asbestos, silicate minerals present in soil and used for building constructions for many years, are highly toxic due primarily to the presence of high concentrations of the transition metal iron. Microbial weathering of asbestos occurs through various alteration mechanisms. Siderophores, complex agents specialized in metal chelation, are common mechanisms described in mineral alteration. Solubilized metals from the fiber can serve as micronutrients for telluric microorganisms. The review focuses on the bioweathering of asbestos fibers, found in soil or manufactured by humans with gypsum (asbestos flocking) or cement, by siderophore-producing Pseudomonas. A better understanding of the interactions between asbestos and bacteria will give a perspective of a detoxification process inhibiting asbestos toxicity.
Collapse
Affiliation(s)
| | - Valérie A. Geoffroy
- Department of Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, Illkirch, 67413 Strasbourg, France
- Correspondence:
| |
Collapse
|