1
|
Yu C, Riahi Y, Wang Q, Feng M, Mohamed A, Dai K, Cai P, Huang Q. Cr(VI) bioreduction enhanced by the electron transfer between flavin reductase and persistent free radicals. CHEMOSPHERE 2024; 368:143746. [PMID: 39542366 DOI: 10.1016/j.chemosphere.2024.143746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Persistent free radicals (PFRs) in biochar are an important electron shuttle for mediating electron transfer, which has significant impact on the biogeochemical redox reactions. Although the influence of biochar on the extracellular electron transfer (EET) for redox cycle has been extensively studied, the molecular mechanism for promoting the EET with PFRs remains poorly understood. This study investigated the oxygen-centered PFRs-mediated Cr(VI) reduction by Shewanella oneidensis MR-1 (MR-1) and exhibited the molecular mechanism of electron transfer between flavin substances and PFRs. Results showed that the Cr(VI) bioreduction rate by MR-1 increased from 31% to 70% with the addition of biochar. Electrochemical results illustrated that biochar increased biocurrent generation in the Cr(VI) bioreduction process. 3D-EEM and LC/MS spectra indicated that MR-1 secreted the flavin mononucleotide (FMN) reductase that relied on the [H] to provide the electrons. Electron paramagnetic resonance spectra illustrated that PFRs in biochar accepted the electrons from FMN reductase and stored those bioelectrons. Because of the oxidation of FMN, the electron transfer from FMN reductase to PFRs would increase the intracellular reactive oxygen species, which further produced the extracellular ·O2-. The reduced PFRs released the bioelectrons, accelerating the Cr(VI) reduction by ·O2-. Together with the results of the mutant strains experiment, it was found that the EET by c-cytochrome and free radicals contributed to the Cr(VI) bioreduction by 7.1% and 92.9%, respectively. These findings revealed that the PFRs could participate in the EET process and promote the redox reactions, providing a new approach for enhancing the remediation of heavy metal pollution by microorganisms and suggesting the important role of PFRs in the electron transfer process.
Collapse
Affiliation(s)
- Cheng Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yassine Riahi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qian Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mengyang Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Soil and Water Res. Department, Nuclear Research Center, Egyptian Atomic Energy Authority, 13759, Egypt
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Soil Remediation Technology (Central China), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, PR China.
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Soil Remediation Technology (Central China), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, PR China; National Key Laboratory of Agricultural Microbiology, Wuhan, 430070, PR China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Soil Remediation Technology (Central China), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, PR China; National Key Laboratory of Agricultural Microbiology, Wuhan, 430070, PR China
| |
Collapse
|
2
|
Wang T, Xu Y, Ling W, Mosa A, Liu S, Lin Z, Wang H, Hu X. Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation. ENVIRONMENT INTERNATIONAL 2024; 185:108499. [PMID: 38368718 DOI: 10.1016/j.envint.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Kubiak A, Voronkina A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Ereskovsky A, Heimler K, Rogoll A, Vogt C, Rahimi P, Falahi S, Galli R, Langer E, Förste M, Charitos A, Joseph Y, Ehrlich H, Jesionowski T. Creation of a 3D Goethite-Spongin Composite Using an Extreme Biomimetics Approach. Biomimetics (Basel) 2023; 8:533. [PMID: 37999174 PMCID: PMC10668986 DOI: 10.3390/biomimetics8070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge Hippospongia communis was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)]. For this purpose, an extreme biomimetic technique using iron powder, crystalline iodine, and fibrous spongin was applied under laboratory conditions for the first time. The product was characterized using SEM and digital light microscopy, infrared and Raman spectroscopy, XRD, thermogravimetry (TG/DTG), and confocal micro X-ray fluorescence spectroscopy (CMXRF). A potential application of the obtained goethite-spongin composite in the electrochemical sensing of dopamine (DA) in human urine samples was investigated, with satisfactory recoveries (96% to 116%) being obtained.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Alona Voronkina
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street 56, 21018 Vinnytsia, Ukraine
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Parvaneh Rahimi
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, 09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, 09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
4
|
Eskikaya O, Özdemir S, Gonca S, Dizge N, Balakrishnan D, Shaik F, Senthilkumar N. A comparative study of iron nanoflower and nanocube in terms of antibacterial properties. APPLIED NANOSCIENCE 2023; 13:1-13. [PMID: 37362150 PMCID: PMC10073798 DOI: 10.1007/s13204-023-02822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/05/2023] [Indexed: 06/28/2023]
Abstract
It is known that heavy metal containing nanomaterials can easily prevent the formation of microbial cultures. The emergence of new generation epidemic diseases in the last 2 years has increased the importance of both personal and environmental hygiene. For this reason, in addition to preventing the spread of diseases, studies on alternative disinfectant substances are also carried out. In this study, the antibacterial activity of nanoflower and nanocube, which are easily synthesized and nanoparticle species containing iron, were compared. The antioxidant abilities of new synthesized NF@FeO(OH) and NC@α-Fe2O3 were tested by DPPH scavenging activity assay. The highest DPPH inhibition was achieved with NC@α-Fe2O3 as 71.30% at 200 mg/L. NF@FeO(OH) and NC@α-Fe2O3 demonstrated excellent DNA cleavage ability. The antimicrobial capabilities of NF@FeO(OH) and NC@α-Fe2O3 were analyzed with micro dilution procedure. In 500 mg/L, the antimicrobial activity was 100%. In addition to these, the biofilm inhibition of NF@FeO(OH) and NC@α-Fe2O3 were investigated against S. aureus and P. aeruginosa and it was found that they showed significant antibiofilm inhibition. It is suggested that additional studies can be continued to be developed and used as an antibacterial according to the results of the nanoparticles after various toxicological test systems. Supplementary Information The online version contains supplementary material available at 10.1007/s13204-023-02822-5.
Collapse
Affiliation(s)
- Ozan Eskikaya
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey
| | - Sadin Özdemir
- Technical Science Vocational School, Mersin University, Yenisehir, 33343 Mersin, Turkey
| | - Serpil Gonca
- Faculty of Pharmacy, University of Mersin, Turkey, Yenisehir, 33343 Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952 Saudi Arabia
| | - Feroz Shaik
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952 Saudi Arabia
| | - Natarajan Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105 India
| |
Collapse
|
5
|
Dhanya C, Paul W, Rekha M, Joseph R. Solid Lipid Nanoparticles of Lauric Acid: A Prospective Drug Carrier for Oral Drug Delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
6
|
Zhang R, Xu X, Lyu Y, Zhou Y, Chen Q, Sun W. Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113787. [PMID: 35738104 DOI: 10.1016/j.ecoenv.2022.113787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The wide presence of antibiotics and minerals warrants their combined effects on the denitrification in natural aquatic environment. Herein, we investigated the effects of two antibiotics, sulfamethazine (SMZ) and chlortetracycline (CTC), on the reduction of NO3--N and accumulation of NO2--N in the absence and presence of engineered nanoparticles (NPs) (Al2O3, SiO2, and geothite) using 16 S rRNA sequencing and high-throughput quantitative PCR. The results showed that the addition of antibiotics inhibited the reduction of NO3--N by changing the bacterial community structure and reducing the abundance of denitrification genes, while engineered NPs promoted the denitrification by increasing the abundance of denitrification genes. In the binary systems, engineered NPs alleviated the inhibitory effect of antibiotics through enriching the denitrification genes and adsorbing antibiotics. Antibiotics and its combination with engineered NPs changed the composition of functional genes related to C, N, P, S metabolisms (p < 0.01). The addition of antibiotics and/or engineered NPs altered the bacterial community structure, which is dominated by the genera of Enterobacter (40.7-90.5%), Bacillus (4.9-58.5%), and Pseudomonas (0.21-12.7%). The significant relationship between denitrification, carbon metabolism genes, and antibiotic resistance genes revealed that the heterotrophic denitrifying bacteria may host the antibiotic resistance genes and denitrification genes simultaneously. The findings underscore the significance of engineered NPs in the toxicity assessment of pollutants, and provide a more realistic insight into the toxicity of antibiotics in the natural aquatic environment.
Collapse
Affiliation(s)
- Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Ying Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
7
|
Wu S, Ren P, Wu Y, Liu J, Huang Q, Cai P. Effects of hematite on the dissemination of antibiotic resistance in pathogens and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128537. [PMID: 35278942 DOI: 10.1016/j.jhazmat.2022.128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in pathogens is becoming a pervasive global health threat, to which the importance of the environment attracts more and more attention. However, how natural minerals affect ARGs transfer in pathogens is still unclear. In this study, the concentration and size effects of hematite on the ARGs conjugative transfer to a common zoonotic pathogen Escherichia coli O157:H7 and underlying mechanisms were explored. Results revealed that bulk hematite reduced the conjugation of resistant plasmids by inhibiting cell growth at any concentration (1-100 mg/L), different from nano-hematite. Low concentrations of nano-hematite (≤ 25 mg/L) induced significant increases in conjugative transfer frequency of 1.83-4.49 folds, while its high concentrations (50 and 100 mg/L) showed no impact, compared with the control group. This low-concentration effect was likely attributed to the increased intracellular ROS level, the reduced intercellular repulsion by increasing the extracellular polymeric substances production and cell surface hydrophobicity, the formation of transfer channels and the increased membrane permeability evidenced by significant changes in gene expression level, and the increased proton motive force by increasing the transmembrane potential of recipients. These findings shed light on potential health risks caused by nano minerals-mediated ARGs dissemination in pathogens in the environment.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Ren
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Zeng N, Wu Y, Chen W, Huang Q, Cai P. Whole-Cell Microbial Bioreporter for Soil Contaminants Detection. Front Bioeng Biotechnol 2021; 9:622994. [PMID: 33708764 PMCID: PMC7940511 DOI: 10.3389/fbioe.2021.622994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Anthropogenic activities have released various contaminants into soil that pose a serious threat to the ecosystem and human well-being. Compared to conventional analytical methodologies, microbial cell-based bioreporters are offering a flexible, rapid, and cost-effective strategy to assess the environmental risks. This review aims to summarize the recent progress in the application of bioreporters in soil contamination detection and provide insight into the challenges and current strategies. The biosensing principles and genetic circuit engineering are introduced. Developments of bioreporters to detect and quantify heavy metal and organic contaminants in soil are reviewed. Moreover, future opportunities of whole-cell bioreporters for soil contamination monitoring are discussed.
Collapse
Affiliation(s)
- Ni Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|