1
|
Tang T, Wang Z, Chen L, Wu S, Liu Y. Opportunities, challenges and modification methods of coal gangue as a sustainable soil conditioner-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58231-58251. [PMID: 39287737 DOI: 10.1007/s11356-024-34895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The persistent reliance on coal has resulted in the accumulation of substantial coal gangue, a globally recognized problematic solid waste with environmental risks. Given the coal gangue properties and global land degradation severity, the resourceful utilization of coal gangue as soil conditioners is believed to be a universally applicable, cost-effective, high-demand and environment-friendly model with broad application prospect. The direct application of raw coal gangue faces challenges of low active beneficial ingredients, inadequate water and fertilizer retention, presence of potentially toxic elements, resulting in limited efficacy and environmental contamination. This paper provided a comprehensive review of various modification methods (including mechanical, chemical, microbiological, thermal, hydrothermal and composite modifications) employed to enhance the soil improvement performance and reduce the environmental pollution of coal gangue. Furthermore, an analysis was conducted on the potential application of modified coal gangue as a muti-function soil conditioner based on its altered properties. The modified coal gangue is anticipated to effectively enhance soil quality, exhibiting significant potential in mitigating carbon emissions and facilitating soil carbon sequestration. This paper provided innovative ideas for future research on the comprehensive treatment of coal gangue and restoration of degraded soil in order to achieve the dual goals of zero-coal gangue waste and sustainable agriculture.
Collapse
Affiliation(s)
- Tian Tang
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Shu Wu
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Yao X, Ren J, Fang L, Sun K, He W. The role and mechanism of Bacillus megaterium strain A14 in inhibiting the cadmium uptake by peanut plants in acidic red soil. J Appl Microbiol 2024; 135:lxae120. [PMID: 38794879 DOI: 10.1093/jambio/lxae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
AIMS This study explores the potential of cadmium (Cd)-resistant bacteria, specifically Bacillus megaterium A14, to decrease Cd accumulation in peanuts, a crop susceptible to metal uptake from contaminated soils, by understanding the bacterium's impact on plant Cd absorption mechanisms. METHODS AND RESULTS Through pot experiments, we observed that A14 inoculation significantly increased peanut biomass under Cd stress conditions, primarily by immobilizing the metal and reducing its bioavailability. The bacterium effectively changed the distribution of Cd, with a notable 46.53% reduction in the exchangeable fraction, which in turn limited the expression of genes related to Cd transport in peanuts. Additionally, A14 enhanced the plant's antioxidant response, improving its tolerance to stress. Microbial analysis through 16S sequencing demonstrated that A14 inoculation altered the peanut rhizosphere, particularly by increasing populations of Firmicutes and Proteobacteria, which play crucial roles in soil remediation from heavy metals. CONCLUSION The A14 strain effectively counters Cd toxicity in peanuts, promoting growth through soil Cd sequestration, root barrier biofilm formation, antioxidant system enhancement, suppression of Cd transport genes, and facilitation of Cd-remediating microorganisms.
Collapse
Affiliation(s)
- Xiangzhi Yao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingyu Ren
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lirong Fang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kai Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei He
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
He CT, Wang XS, Hu XX, Yuan J, Zhang QH, Tan XT, Wang YF, Tan X, Yang ZY. Phytochelatin-Mediated Cultivar-Dependent Cd Accumulations of Lactuca sativa and Implication for Cd Pollution-Safe Cultivars Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:715-725. [PMID: 38123485 DOI: 10.1021/acs.jafc.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.
Collapse
Affiliation(s)
- Chun-Tao He
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| | - Xue-Song Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xia-Xin Hu
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ju Yuan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Qian-Hui Zhang
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan-Tong Tan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yun-Fan Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xiao Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong-Yi Yang
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| |
Collapse
|
4
|
Yuan J, Liu Q, Chen Z, Wen Z, Liu Y, Huang L, Yu C, Feng Y. Organic amendments perform better than inorganic amendments in reducing the absorption and accumulation of cadmium in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117277-117287. [PMID: 37864699 DOI: 10.1007/s11356-023-30449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
The main purpose of applying organic or inorganic amendments is to guarantee crop safe production in heavy metal contaminated soil. However, previous studies showed that the effects of organic or inorganic composite amendments on the cadmium (Cd) concentration of lettuce (Lactuca sativa var. ramosa Hort) were inconsistent. Accordingly, a sixty-day pot experiment was carried out to examine the impacts of the inorganic materials (lime, L and zeolite, Z), organic materials (biochar, B and compost, C), and their combination on the immobilization of Cd in soil and its uptake by lettuce. The objective was to identify the most suitable soil amendment combination that promotes safe lettuce production. The results revealed that the combined application of BC, LZC, and LBC significantly increased the plant height by 11.09-28.04% and fresh weight by 183.47-207.67%. This improvement can be attributed to enhanced soil quality, such as increased dissolved organic carbon (DOC) by 70.19-80.42%, soil respiration (SR) by 29.04-38.46%, and soil microbial carbon content (SMC) by 36.94-46.63%. Compared to inorganic fertilizers and their combination with organic amendments, organic amendments had a significant impact on reducing shoot Cd concentration by 33.93%-56.55%, while increasing the activity of catalase by 138.87-186.86%. And soil available Cd measured by diffusive gradients in thin-films (DGT-Cd) decreased 24.73-88.13% in all treatments. Correlation analysis showed that plant Cd concentration was significantly correlated with soil pH, SR, cation exchange capacity (CEC), DOC and SMC. These results demonstrated that organic amendments, especially the combination of biochar and compost, have greater potential than inorganic amendments and inorganic-organic combinations for realizing safe production of lettuce and improving soil quality in the Cd moderately contaminated acid farmland.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiqin Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheyu Wen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Yu
- Livestock industrial development Center of Shengzhou, Zhejiang, 312400, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Priya AK, Muruganandam M, Ali SS, Kornaros M. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. TOXICS 2023; 11:toxics11050422. [PMID: 37235237 DOI: 10.3390/toxics11050422] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Pollution from heavy metals is one of the significant environmental concerns facing the world today. Human activities, such as mining, farming, and manufacturing plant operations, can allow them access to the environment. Heavy metals polluting soil can harm crops, change the food chain, and endanger human health. Thus, the overarching goal for humans and the environment should be the avoidance of soil contamination by heavy metals. Heavy metals persistently present in the soil can be absorbed by plant tissues, enter the biosphere, and accumulate in the trophic levels of the food chain. The removal of heavy metals from contaminated soil can be accomplished using various physical, synthetic, and natural remediation techniques (both in situ and ex situ). The most controllable (affordable and eco-friendly) method among these is phytoremediation. The removal of heavy metal defilements can be accomplished using phytoremediation techniques, including phytoextraction, phytovolatilization, phytostabilization, and phytofiltration. The bioavailability of heavy metals in soil and the biomass of plants are the two main factors affecting how effectively phytoremediation works. The focus in phytoremediation and phytomining is on new metal hyperaccumulators with high efficiency. Subsequently, this study comprehensively examines different frameworks and biotechnological techniques available for eliminating heavy metals according to environmental guidelines, underscoring the difficulties and limitations of phytoremediation and its potential application in the clean-up of other harmful pollutants. Additionally, we share in-depth experience of safe removing the plants used in phytoremediation-a factor frequently overlooked when choosing plants to remove heavy metals in contaminated conditions.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Muthiah Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus-Rio, 26504 Patras, Greece
| |
Collapse
|
6
|
Lou F, Fu T, He G, Tian W, Wen J, Yang M, Wei X, He Y, He T. Different composites inhibit Cd accumulation in grains under the rice-oilseed rape rotation mode of karst area: A field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114884. [PMID: 37054472 DOI: 10.1016/j.ecoenv.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ensuring the safe production of food and oil crops in soils with elevated cadmium (Cd) content in karst regions is crucial. We tested a field experiment to examine the long-term remediation effects of compound microorganisms (CM), strong anion exchange adsorbent (SAX), processed oyster shell (POS), and composite humic acids (CHA) on Cd contamination in paddy fields under a rice-oilseed rape rotation system. In comparison to the control group (CK), the application of amendments significantly increased soil pH, cation exchange capacity (CEC), and soil organic matter (SOM) content while markedly decreasing the content of available Cd (ACd). During the rice cultivation season, Cd was predominantly concentrated in the roots. Relative to the control (CK), the Cd content in each organ was significantly reduced. The Cd content in brown rice decreased by 19.18-85.45%. The Cd content in brown rice following different treatments exhibited the order of CM > POS > CHA > SAX, which was lower than the Chinese Food Safety Standard (GB 2762-2017) (0.20 mg/kg). Intriguingly, during the oilseed rape cultivation season, we discovered that oilseed rape possesses potential phytoremediation capabilities, with Cd mainly accumulating in roots and stems. Notably, CHA treatment alone significantly decreased the Cd content in oilseed rape grains to 0.156 mg/kg. CHA treatment also maintained soil pH and SOM content, consistently reduced soil ACd content, and stabilized Cd content in RSF within the rice-oilseed rape rotation system. Importantly, CHA treatment not only enhances crop production but also has a low total cost (1255.230 US$/hm2). Our research demonstrated that CHA provides a consistent and stable remediation effect on Cd-contaminated rice fields within the crop rotation system, as evidenced by the analysis of Cd reduction efficiency, crop yield, soil environmental change, and total cost. These findings offer valuable guidance for sustainable soil utilization and safe production of grain and oil crops in the context of high Cd concentrations in karst mountainous regions.
Collapse
Affiliation(s)
- Fei Lou
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Tianling Fu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Weijun Tian
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jichang Wen
- Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
7
|
Liu Q, Chen Z, Wu Y, Huang L, Munir MAM, Zhou Q, Wen Z, Jiang Y, Tao Y, Feng Y. Inconsistent effects of a composite soil amendment on cadmium accumulation and consumption risk of 14 vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71810-71825. [PMID: 35604595 DOI: 10.1007/s11356-022-20939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiyao Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yugen Jiang
- Hangzhou Fuyang Agricultural Technology Extension Center, Fuyang, 311400, People's Republic of China
| | - Yi Tao
- Huzhou Ruibosi Testing Technology Co., Ltb, Huzhou, 313000, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
8
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
9
|
Liu Q, Chen Z, Huang L, Mujtaba Munir MA, Wu Y, Wang Q, Ma L, Xu S, Wen Z, Feng Y. The effects of a combined amendment on growth, cadmium adsorption by five fruit vegetables, and soil fertility in contaminated greenhouse under rotation system. CHEMOSPHERE 2021; 285:131499. [PMID: 34265715 DOI: 10.1016/j.chemosphere.2021.131499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) exposure is related to a multitude of adverse health outcomes because food crops grown on Cd-polluted soil are widely consumed by the public. The present study investigates the different application techniques of a combined amendment (lime + zeolite + biochar + compost, LZBC) for soil Cd immobilization effect on growth performance, Cd uptake by the second season crops, and soil quality in greenhouse vegetable production (GVP) under a rotation system. Five fruit vegetables were cultivated as the second season crop in the same plots which have been used for pakchoi as the first season crop (with or without LZBC application). The results indicated that LZBC with the consecutive application (T3) promoted crops biomass and fruit yield the most, followed by LZBC with the second crop application (T2) and LZBC with the first crop application (T1). LZBC application showed increasing rhizosphere soil pH and improvement in soil fertility of all crops including available nitrogen, available phosphorus, available potassium, organic matter, and cation exchange capacity. LZBC had positive influences on soluble sugar, soluble protein, and vitamin C in edible parts of 5 vegetables. Cd contents in fruit, shoot, and root of eggplant, pimento, cowpea, and tomato except cucumber were reduced by adding LZBC. As for the economic performance, T3 had the highest output/input ratio in general. Overall, these results demonstrated that T3 was dramatically more effective for minimizing health risk, increasing production, and facilitating sustainable utilization of soil under the Cd-contaminated GVP system.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Luyao Ma
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shunan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
10
|
Effect of a Passivator Synthesized by Wastes of Iron Tailings and Biomass on the Leachability of Cd/Pb and Safety of Pak Choi (Brassica chinensis L.) in Contaminated Soil. Processes (Basel) 2021. [DOI: 10.3390/pr9111866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium (Cd) and lead (Pb) carry a high heavy-metal-toxic risk for both animals and plants in soil. In this study, iron-based biochar (T-BC) was prepared by co-pyrolysis using wastes of iron tailings and biomass with urea as the functioning agents. Field-emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and toxicity-characteristic leaching procedure (TCLP) methods were employed to analyze the physicochemical characteristics of T-BC. Additionally, a pot trial was conducted to examine the effects of T-BC on the physiological characteristics of pak choi (Brassica campestris L.), the availability of heavy metals, and enzyme activities in the soils. The results show that toxic metals have been volatilized by the roasting process and immobilized within T-BC via the formation of stable metal-compounds during the co-pyrolysis process, which satisfies the requirements of a soil passivator. Incubation experiments showed that the DTPA-extractable Cd and Pb in contaminated soils decreased with an increasing amendment rate. Moreover, in the pot experiments, by adding 1% (w/w) T-BC into soils, the soils benefited from its large adsorption, complex precipitation, and immobilization capacity. Approximately 36% Cd and 29% Pb concentrations of edible parts in pak choi were reduced. The amendment proved promising for the stabilization of Cd and Pb in contaminated soils, while providing a strategy for solving the residual waste of tailings and biomass.
Collapse
|
11
|
Xu ZM, Wang JF, Li WL, Wang YF, He T, Wang FP, Lu ZY, Li QS. Nitrogen fertilizer affects rhizosphere Cd re-mobilization by mediating gene AmALM2 and AmALMT7 expression in edible amaranth roots. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126310. [PMID: 34130167 DOI: 10.1016/j.jhazmat.2021.126310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
In-situ stabilization of Cd-contaminated farmland is a commonly used remediation technology. Yet, rhizosphere metabolites (e.g., organic acids) during crop cultivation may cause Cd re-mobilization and over-accumulation. Here, we identified four pivotal cytomembrane-localized genes underlying Cd accumulation difference between two contrasting edible amaranth cultivars based on root gene expression profile, studied their subcellular localization and functional characteristics, and then investigated effects of nitrogen fertilizer on their expression and rhizosphere Cd re-mobilization. Results showed that more Cd accumulated by edible amaranth was due to rhizosphere Cd mobilization by mediating high expression of AmALMT2 and AmALMT7 genes, not Cd transporters in roots. This was confirmed by heterologous expression of AmALMT2 and AmALMT7 genes in Arabidopsis thaliana, since they mediated malic, fumaric, succinic, and aspartic acids efflux. Furthermore, nitrogen influencing rhizosphere acidification might be closely associated with organic acids efflux genes. Compared with N-NO3- application, N-NH4+ was massively assimilated into glutamates and oxaloacetates through up-regulating glutamine synthetase and alanine-aspartate-glutamate metabolic pathways, thereby enhancing TCA cycle and organic acids efflux dominated by binary carboxylic acids via up-regulating AmALMT2 and AmALMT7 genes, which finally caused Cd re-mobilization. Therefore, N-NO3--dominated nitrogen retarded rhizosphere Cd re-mobilization via inhibiting organic acids efflux function of AmALMT2 and AmALMT7 proteins.
Collapse
Affiliation(s)
- Zhi-Min Xu
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jun-Feng Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wan-Li Li
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi-Fan Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China; Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tao He
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Fo-Peng Wang
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zi-Yan Lu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qu-Sheng Li
- Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Chemical Modification of Combusted Coal Gangue for U(VI) Adsorption: Towards a Waste Control by Waste Strategy. SUSTAINABILITY 2021. [DOI: 10.3390/su13158421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.
Collapse
|