1
|
Qin J, Tong K, Chang Q, Xie Y, Wu X, Fan C, Chen H. Rapid determination of volatile benzene derivatives and chlorobenzenes in goat's milk by HS-SPME-GC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1480-1497. [PMID: 39236017 DOI: 10.1080/19440049.2024.2400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
A method for the determination of eight benzenes (BTEXs) and twelve chlorobenzenes (CBs) in goat's milk by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS/MS) was developed. The study investigated the impact of various factors such as extraction fiber type, salt amount, equilibrium conditions, and desorption conditions on the outcomes. Target analytes were separated on a DB-HeavyWAX column and quantified using the external standard method. The results showed that the target compounds had a good linear relationship in the range of 0.01 ∼ 50 μg/L (R2 > 0.997), the limit of detection (LOD) was 0.003 ∼ 0.150 μg/L, and the limit of quantification (LOQ) was 0.01 ∼ 0.50 μg/L. The average recoveries were 82%-116% and the relative standard deviation (RSD) was 0.8%-17.3% under the three addition levels of 1×, 2×, and 10 × LOQ. In a survey of twenty goat's milk samples, only ethylbenzene, xylenes, cumene, chlorobenzene, and 1,4-dichlorobenzene were detected at levels exceeding their respective limits of quantification. The method was evaluated using two ecological scales (Eco-Scale), GAPI and AGREEN, to verify its environmental friendliness and applicability. This method is simple, green, and efficient, which provides a certain theoretical basis for the production and quality safety evaluation of dairy products.
Collapse
Affiliation(s)
- Jingyin Qin
- Chinese Academy of Inspection and Quarantine, Beijing, China
- College of Chemistry and Materials Science, Hebei University, Baoding, China
| | - Kaixuan Tong
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Qiaoying Chang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Yujie Xie
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xingqiang Wu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chunlin Fan
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hui Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
2
|
Low RJY, He P, Junianto, Qiu N, Ong AJ, Choo HH, Manik YGO, Siburian R, Goei R, Burns SF, Tok AIY, Lipik V, Chang BP. Investigation of Far Infrared Emission and UV Protection Properties of Polypropylene Composites Embedded with Candlenut-Derived Biochar for Health Textiles. Molecules 2024; 29:4798. [PMID: 39459168 PMCID: PMC11509977 DOI: 10.3390/molecules29204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Far infrared radiation (FIR) within the wavelength range of 4-14 μm can offer human health benefits, such as improving blood flow. Therefore, additives that emit far infrared radiation have the potential to be incorporated into polymer/fabric matrices to develop textiles that could promote health. In this study, biochar derived from candlenuts and pyrolyzed with activated carbon (AC) was incorporated into polypropylene (PP) films and investigated for its potential as a health-promoting textile additive. The properties of biochar were compared with other far infrared (FIR) emitting additives such as hematite, Indian red ochre, and graphene. The addition of biochar increased FIR emissivity to 0.90, which is 9% higher than that of pristine PP. Additionally, biochar enhanced UV and near-infrared (NIR) blocking capabilities, achieving an ultra-protection factor (UPF) of 91.41 and NIR shielding of 95.85%. Incorporating 2 wt% biochar resulted in a 3.3-fold higher temperature increase compared to pristine PP after 30 s of exposure to an FIR source, demonstrating improved heat retention. Furthermore, the ability to achieve the lowest thermal effusivity among other additives supports the potential use of biochar-incorporated fabric as a warming material in cold climates. The tensile properties of PP films with biochar were superior to those with other additives, potentially contributing to a longer product lifespan. Additionally, samples with red ochre exhibited the highest FIR emissivity, while samples with hematite showed the highest capacity for UV shielding.
Collapse
Affiliation(s)
- Rayland Jun Yan Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Pengfei He
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Junianto
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Ningyu Qiu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Amanda Jiamin Ong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Hong Han Choo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Yosia Gopas Oetama Manik
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia; (Y.G.O.M.); (R.S.)
| | - Rikson Siburian
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia; (Y.G.O.M.); (R.S.)
| | - Ronn Goei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Stephen F. Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore;
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Vitali Lipik
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| | - Boon Peng Chang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (R.J.Y.L.); (P.H.); (J.); (N.Q.); (A.J.O.); (H.H.C.); (R.G.); (A.I.Y.T.)
| |
Collapse
|
3
|
Bin Mobarak M, Pinky NS, Mustafi S, Chowdhury F, Nahar A, Akhtar US, Quddus MS, Yasmin S, Alam MA. Unveiling the reactor effect: a comprehensive characterization of biochar derived from rubber seed shell via pyrolysis and in-house reactor. RSC Adv 2024; 14:29848-29859. [PMID: 39301242 PMCID: PMC11411254 DOI: 10.1039/d4ra05562d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Utilization of agricultural waste to produce biochar has already proven to be an efficient method for transforming waste into valuable resources. In this study, rubber seed shell (RSS) was utilized to prepare two biochar samples via an in-house built reactor (RSSBC-1) and a pyrolysis reactor (RSSBC-2) under identical conditions (600 °C for 3 h at a heating rate of 10 °C per min). A comprehensive characterization of the prepared biochar samples was carried out to reveal the reactor effect on the biochar properties. For this, proximate and ultimate analyses were carried out which estimated the carbon stability, polarity, and aromaticity of the biochar samples. For RSSBC-1, C and N content were higher, whereas H and O content were higher for RSSBC-2, as found from elemental, EDX, and XPS analyses. Point of zero charge (PZC) values of 7.65 and 6.14 for RSSBC-1 and RSSBC-2, respectively, emphasized the importance of pH in the removal of ionic contaminants. Furthermore, the superiority of RSSBC-1 in terms of specific surface area of 336.02 m2 g-1 compared to 299.09 m2 g-1 of RSSBC-2 was articulated by BET analysis. XPS and FESEM analyses revealed the chemical state of surface elements and surface morphology, respectively of the biochar samples. XRD patterns assured the amorphous nature of biochar samples, and functional groups were well depicted by FTIR analysis. DLS showed a larger average hydrodynamic diameter for RSSBC-2 (248.68 nm) with a zeta potential of -14.91 mV compared to RSSBC-1 (115.23 nm) with a heterogeneous charge distribution (-16.72 mV and +37.61 mV). TGA analysis revealed the thermal stability of both biochar samples. Overall, the results explicitly depict a distinction in the properties of biochar samples prepared in two different reactors, where RSSBC-1, with its superior properties suggests the in-house built reactor as a promising alternative to expensive pyrolytic reactors for waste valorization.
Collapse
Affiliation(s)
- Mashrafi Bin Mobarak
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Nigar Sultana Pinky
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Sonjida Mustafi
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Aynun Nahar
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Umme Sarmeen Akhtar
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Md Saiful Quddus
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Sabina Yasmin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Md Ashraful Alam
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| |
Collapse
|
4
|
Zhao T, Sun A, Xu R, Chen R. Enhancing solid-phase extraction of tetracyclines with a hybrid biochar sorbent: A comparative study of chlorella and bamboo biochars. J Chromatogr A 2024; 1730:465092. [PMID: 38914029 DOI: 10.1016/j.chroma.2024.465092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Biochar, a sustainable sorbent derived from pyrolyzed biomass, has garnered attention for its efficacy in solid-phase extraction (SPE) of antibiotics, with a particular focus on tetracyclines (TCs). Despite its recognized potential, the intricate separation mechanisms operative in biochar-based SPE systems have not been fully deciphered. This investigation contrasts chlorella biochar against commercial bamboo biochar, harnessing an array of analytical methodologies-microstructure characterization, adsorption thermodynamics, competitive adsorption kinetics, H+ back titration, and selectivity adsorption studies-complemented by a Box-Behnken design for the optimization of chlorella/bamboo-SPE and subsequent application in the analysis of animal-derived foodstuffs. The study unveils that a hybrid sorbent, integrating nitrogen-doped microporous chlorella biochar with mesoporous bamboo biochar in a 95/5 mass ratio, markedly diminishes irreversible adsorption while enhancing selectivity, surpassing the performance of single biochar SPE systems. The elucidated separation mechanisms implicate a partition model, propelled by oxygen-rich functional groups on chlorella biochar and the rapid adsorption kinetics of bamboo biochar, all orchestrated by electrostatic interactions within the mixed biochar framework. Moreover, the synergy of mixed biochar-SPE with high-performance liquid chromatography (HPLC) demonstrates exceptional proficiency in detecting TCs in animal viscera, evidenced by recovery rates spanning 80.80 % to 106.98 % and RSDs ranging from 0.24 % to 14.69 %. In essence, this research not only sheds light on the multifaceted factors influencing SPE efficiency but also propels the use of biochar towards new horizons in environmental monitoring and food safety assurance.
Collapse
Affiliation(s)
- Tao Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Aonan Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China
| | - Ruoxuan Xu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China
| | - Rongqi Chen
- School of Agriculture Science and Technology, Shandong Agriculture and Engineering University, Ji'nan 250100, China.
| |
Collapse
|
5
|
Cao Z, Yang C, Zhang W, Shao H. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1149-1163. [PMID: 39215729 DOI: 10.2166/wst.2024.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.
Collapse
Affiliation(s)
- Zexian Cao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Changhe Yang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China E-mail:
| | - Wenqiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Huiliang Shao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
6
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
7
|
Melliti A, Touihri M, Kofroňová J, Hannachi C, Sellaoui L, Bonilla-Petriciolet A, Vurm R. Sustainable removal of caffeine and acetaminophen from water using biomass waste-derived activated carbon: Synthesis, characterization, and modelling. CHEMOSPHERE 2024; 355:141787. [PMID: 38527633 DOI: 10.1016/j.chemosphere.2024.141787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The removal of caffeine (CFN) and acetaminophen (ACT) from water using low-cost activated carbons prepared from artichoke leaves (AAC) and pomegranate peels (PAC) was reported in this paper. These activated carbons were characterized using various analytical techniques. The results showed that AAC and PAC had surface areas of 1203 and 1095 m2 g-1, respectively. The prepared adsorbents were tested for the adsorption of these pharmaceuticals in single and binary solutions. These experiments were performed under different operating conditions to evaluate the adsorption properties of these adsorbents to remove CFN and ACT. AAC and PAC showed maximum adsorption capacities of 290.86 and 258.98 mg g-1 for CFN removal, 281.18 and 154.99 mg g-1 for the ACT removal over a wide pH range. The experimental equilibrium adsorption data fitted to the Langmuir model and the kinetic data were correlated with the pseudo-second order model. AAC showed the best adsorption capacities for the removal of these pharmaceuticals in single systems and, consequently, it was tested for the simultaneous removal of these pollutants in binary solutions. The simultaneous adsorption of these compounds on AAC was improved using the central composite design and response surface methodology. The results indicated an antagonistic effect of CFN on the ACT adsorption. AAC regeneration was also analyzed and discussed. A statistical physics model was applied to describe the adsorption orientation of the tested pollutants on both activated carbon samples. It was concluded that AAC is a promising adsorbent for the removal of emerging pollutants due to its low cost and reusability properties.
Collapse
Affiliation(s)
- Abir Melliti
- Faculty of Environmental Technology, Department of Environmental Chemistry, UCT Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - Manel Touihri
- Research Laboratory of Desalination and Water Treatment, University of Tunis El Manar, Tunisia.
| | - Jana Kofroňová
- Faculty of Environmental Technology, Department of Environmental Chemistry, UCT Prague, Technická 5, 166 28, Prague, Czech Republic.
| | - Chiraz Hannachi
- Research Laboratory of Desalination and Water Treatment, University of Tunis El Manar, Tunisia.
| | - Lotfi Sellaoui
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal, 4054, Sousse, Tunisia; Laboratory of Quantum and Statistical Physics, LR18ES18, Monastir University, Faculty of Sciences of Monastir, Tunisia.
| | | | - Radek Vurm
- Faculty of Environmental Technology, Department of Environmental Chemistry, UCT Prague, Technická 5, 166 28, Prague, Czech Republic.
| |
Collapse
|
8
|
Sun Y, Sun W, Li J, Zhang T, Zhao W, Xiang G, Yang T, He L. Highly graphitized porous carbon/reduced graphene oxide for ultrahigh enrichment and ultrasensitive determination of polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132699. [PMID: 37827103 DOI: 10.1016/j.jhazmat.2023.132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
There is an urgent need to develop efficient and reliable coating materials for solid phase microextraction (SPME), in order to quantify and monitor pollutants in environmental waters. Herein, a highly graphitized porous carbon/reduced graphene oxide (PC/rGO) was successfully synthesized by pyrolysis of metal organic framework/graphene oxide precursors, and used as a SPME coating for ultrahigh enrichment of polycyclic aromatic hydrocarbons (PAHs) from water. The as-prepared PC/rGO exhibited high degree of graphitization, abundant number of micro/mesopores along with exceptional thermal stability, making it an ideal SPME coating material. The PC/rGO fiber offered an ultrahigh enrichment factor for PAHs (up to 126057), which could be attributed to the multiple interactions between the PC/rGO and PAHs, including hydrophobic and π-π interactions, partitioning, and mesopore filling effect. In the analysis of PAHs, the PC/rGO fiber showed a wide linearity (0.007-100 ng mL-1), low limits of detection (0.0005-0.005 ng mL-1), and good repeatability (RSDs <10.1%, n = 5) under optimized conditions. The established method was applicable for ultrasensitive determination of PAHs in different environmental waters and showed satisfactory recoveries. This study provides a novel way for constructing thermally stable SPME coating having efficient extraction performance.
Collapse
Affiliation(s)
- Yaming Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Wenjie Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Junnan Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Guoqiang Xiang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Tiantian Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China.
| |
Collapse
|
9
|
Kuang Y, Xie X, Zhou S, Chen L, Zheng J, Ouyang G. Customized oxygen-rich biochar with ultrahigh microporosity for ideal solid phase microextraction of substituted benzenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161840. [PMID: 36716883 DOI: 10.1016/j.scitotenv.2023.161840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The synergistic effect of high microporosity and abundant heteroatoms is important for improving the performance of biochar in various fields. However, it is still challenging to create enough micropores for biochar, while simultaneously retaining the heteroatoms from biomass. A series of biochar with variable microstructures was successfully prepared by carbonization and following ball milling on lotus pedicel (LP), watermelon rind (WR), and litchi rind (LR). The pore structures and heteroatoms of biochar were characterized in detail. Notably, high microporosity could be realized by the carbonization of LR, and further ball milling resulted in a higher microporous surface area (1323.4 m2·g-1) and richer oxygen. Furthermore, the obtained biochar was fabricated as solid phase microextraction (SPME) coatings with uniform morphologies and similar thicknesses to deeply investigate the relationships between the microstructures and extraction performance. The best performance was demonstrated by the LR800BM, with enrichment factors from 1780 to 155,217. Finally, it was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an analytical method with a wide linear range (1-50,000 ng·L-1), low limits of detection (0.10-1.4 ng·L-1), good repeatability (0.83 %-7.5 %) and reproducibility (4.2 %-8.9 %). This work provides valuable insights into the structure-performance relationship of biochar, which is important for the design of high-performance biochar-based adsorbents and their applications in the environment.
Collapse
Affiliation(s)
- Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xintong Xie
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, China.
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
10
|
Yue B, Wang X, Lian L, Wang Y, Gao W, Zhang H, Zhao J, Lou D. A fiber-packed needle-type extraction device with ionic liquid-based molecularly imprinted polymer as coating for extraction of chlorobenzenes in water samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Long A, Liu H, Xu S, Feng S, Shuai Q, Hu S. Polyacrylic Acid Functionalized Biomass-Derived Carbon Skeleton with Highly Porous Hierarchical Structures for Efficient Solid-Phase Microextraction of Volatile Halogenated Hydrocarbons. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4376. [PMID: 36558229 PMCID: PMC9784554 DOI: 10.3390/nano12244376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In this study, polyacrylic acid functionalized N-doped porous carbon derived from shaddock peels (PAA/N-SPCs) was fabricated and used as a solid-phase microextraction (SPME) coating for capturing and determining volatile halogenated hydrocarbons (VHCs) from water. Characterizations results demonstrated that the PAA/N-SPCs presented a highly meso/macro-porous hierarchical structure consisting of a carbon skeleton. The introduction of PAA promoted the formation of polar chemical groups on the carbon skeleton. Consequently, large specific surface area, highly hierarchical structures, and abundant chemical groups endowed the PAA/N-SPCs, which exhibited superior SPME capacities for VHCs in comparison to pristine N-SPCs and commercial SPME coatings. Under the optimum extraction conditions, the proposed analytical method presented wide linearity in the concentration range of 0.5-50 ng mL-1, excellent reproducibility with relative standard deviations of 5.8%-7.2%, and low limits of detection varying from 0.0005 to 0.0086 ng mL-1. Finally, the proposed method was applied to analyze VHCs from real water samples and observed satisfactory recoveries ranging from 75% to 116%. This study proposed a novel functionalized porous carbon skeleton as SPME coating for analyzing pollutants from environmental samples.
Collapse
Affiliation(s)
- Anying Long
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- 113 Geological Brigade, Bureau of Geology and Mineral Exploration and Development Guizhou Province, Liupanshui 553000, China
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qin Shuai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
13
|
Zhang X, Zhang J, She Y, Li Y, Cheng H, Ji R, Bian Y, Han J, Jiang X, Song Y, Xue J. Comparison of the performance of hydrochar, raw biomass, and pyrochar as precursors to prepare porous biochar for the efficient sorption of phthalate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157511. [PMID: 35872190 DOI: 10.1016/j.scitotenv.2022.157511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, three high-performance porous biochars were synthesized by the cocarbonization of Pistia stratiotes-derived precursors (raw biomass, hydrochar and pyrochar) with potassium hydroxide and utilized for the sorption of diethyl phthalate from aqueous solution. The developed pore structure, surface functional groups, high hydrophobicity characteristic and graphene structure of porous biochars contributed to the excellent sorption quantity of up to 813 mg g-1 (Ce, 25 mg L-1). Among the three precursors, hydrochar-derived porous biochar showed better properties in terms of its specific surface area and hydrophobicity, and it displayed the highest sorption capacity. The sorption kinetics and isotherm experiments confirmed that pore filling and partitioning dominated the sorption capacity while the mass transfer, hydrogen bonding and π-π stacking in the hydrochar limited the sorption rate. This finding helped to propose a feasible method for the efficient utilization of invasive aquatic plants and provided novel insight into the selection of precursors for preparing porous biochars.
Collapse
Affiliation(s)
- Xinrui Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Jiapeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yutong She
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Li
- Jiangsu Institute of Geological Survey, Nanjing 210018, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
14
|
Zhang C, Li F, Ho SH, Chen WH, Gunarathne DS, Show PL. Oxidative torrefaction of microalga Nannochloropsis Oceanica activated by potassium carbonate for solid biofuel production. ENVIRONMENTAL RESEARCH 2022; 212:113389. [PMID: 35561822 DOI: 10.1016/j.envres.2022.113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Oxidative torrefaction is a promising way for biomass upgrading and solid biofuel production. Alkali metals are considered to be efficient activators for enhancing biofuel upgrading during the thermal reaction process. Herein, the microalga Nannochloropsis Oceanica is selected as the feedstock for assessing potassium carbonate activated effect on solid biofuel production through oxidative torrefaction. The potential of potassium carbonate on microalgal biofuel properties upgrading is deeply explored. SEM observation and BET analysis show that torrefied microalgae can be transformed from a spherical structure with wrinkles to smaller particles with larger surface areas and higher total pore volumes, implying that potassium carbonate is a promising porogen. Moreover, potassium carbonate can significantly change the DTG curve at the temperatures of 250 °C and 300 °C from one peak to two peaks, inferring that the activated effect of potassium carbonate occurs on the torrefied microalgae. 13C NMR analysis reveals that the microalgal components significantly change as the torrefaction severity increases, with the decomposition of carbohydrate and protein components. When the potassium carbonate ratio increases from 0:1 to 1:1, the graphitization degree increase from 3.065 to 1.262, along with the increase in the HHV of solid biofuel from 25.024 MJ kg-1 to 31.890 MJ kg-1. In total, this study has comprehensively revealed the activated effect of potassium carbonate on improving the properties of microalgal solid biofuel.
Collapse
Affiliation(s)
- Congyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | | | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
15
|
Chen D, Du X, Chen K, Liu G, Jin X, Song C, He F, Huang Q. Efficient removal of aqueous Cr(VI) with ferrous sulfide/N-doped biochar composites: Facile, in-situ preparation and Cr(VI) uptake performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155791. [PMID: 35561923 DOI: 10.1016/j.scitotenv.2022.155791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
FeS nanoparticles loaded on nitrogen-doped biochar (FeS/BNC) were fabricated by pyrolyzing coffee husks pretreated with Mohr's salt. The nitrogen doping and FeS loading of biochar are simultaneously achieved in one-pot pyrolysis. The elemental analysis, SEM, TEM, XRD, XPS, Raman, FTIR and N2 adsorption-desorption technologies were used to characterize the composition and structure of FeS/NBC. The appraisement for removing aqueous Cr(VI) testified that FeS/NBC offered a synergistic scavenging effect of Cr(VI) by FeS and NBC. The effect of crucial experimental conditions (FeS/NBC dosage, foreign ions, initial pH and concentration of Cr(VI) solution) were investigated. The Cr(VI) removal capacity was as high as 211.3 ± 26 mg g-1 under the optimized condition. The practicability of FeS/NBC was examined by using simulated actual samples from tap water and lake water. The mechanism examination showed that surface adsorption/reduction and solution reduction were implicated in the removal of Cr(VI). The current work introduces a novel FeS/NBC composite prepared by an in situ pyrolysis method with excellent potential for chromium pollution remediation.
Collapse
Affiliation(s)
- Dong Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Xiaohu Du
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Kunyuan Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Chuanfu Song
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Feidei He
- School of Agriculture, Yunnan University, Kunming 650091, PR China.
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
16
|
Progress in preparation of plant biomass-derived biochar and application in pesticide residues field. Se Pu 2022; 40:499-508. [PMID: 35616195 PMCID: PMC9421570 DOI: 10.3724/sp.j.1123.2021.10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
随着农药的广泛使用,其已普遍存在于环境中,对人们的身体健康产生巨大影响。因此,环境中农药残留的去除和分析检测对保护人体安全健康至关重要。同时,农药在环境中残留浓度低,需要一种对目标物有较强选择性和富集作用,并对环境影响小的前处理吸附剂。植物源生物炭是由植物源生物质作为碳源衍生得到的材料,其比表面积大、孔容量高、表面官能团可调节,且环境相容性好,其原料植物源生物质的价格低廉、来源广泛并可再生,是一种廉价高效的吸附剂。该文主要综述了近10年来植物源生物炭用于环境中农药残留去除和分析检测前处理的应用进展。其中在农药残留去除方面的应用主要包括降低农药在土壤中的移动性,修复手性农药造成的污染,负载降解农药的细菌及作为化肥的缓释载体。在农药残留分析检测前处理方面,植物源生物炭可用作分散固相萃取、固相微萃取和磁性固相萃取的吸附剂来选择性吸附水果和蔬菜中的有机磷类和三唑类农药,以及水环境中的有机氯类农药。另外,还介绍了植物源生物炭的吸附机理,详细阐述了基于计算模拟如密度泛函理论、分子动力学模拟和巨正则蒙特卡洛模拟的吸附机理研究并讨论了其优势。最后,总结了植物源生物炭在农药去除和农药残留分析检测前处理方面应用的优势,指出了其在农药残留领域应用待解决的问题。
Collapse
|
17
|
Xu S, Dong P, Liu H, Li H, Chen C, Feng S, Fan J. Lotus-like Ni@NiO nanoparticles embedded porous carbon derived from MOF-74/cellulose nanocrystal hybrids as solid phase microextraction coating for ultrasensitive determination of chlorobenzenes from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128384. [PMID: 35236041 DOI: 10.1016/j.jhazmat.2022.128384] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Lotus-like Ni@NiO embedded porous carbons (Ni@NiO/PCs) were fabricated by pyrolysis of MOF-74/cellulose nanocrystal hybrids, and used as a solid phase microextraction (SPME) coating for ultrasensitive determination of chlorobenzenes (CBs) from water combined with gas chromatography-mass spectrometry. Owing to its abundant chemical groups, high porosity, and excellent thermal stability, the as-prepared Ni@NiO/PCs presented superior extraction performance compared to commercial SPME coatings. Notably, Ni@NiO/PCs derived from MOF-74/CNC hybrids presented higher extraction efficiencies towards CBs than that derived from pristine CNC and MOF-74 due to the formation of micro/mesopores and more abundant oxygen-containing groups. Under the optimum extraction conditions, the proposed analytical method presented wide linearity range (0.5-1500 ng L-1), ultra-low detection of limit (0.005-0.049 ng L-1), and excellent precision with relative standard deviations of 4.7-9.2% for a single fiber and 8.8-10.9% for 5 fibers, and long lifetime (≥160 times). The proposed analytical method was finally applied for determination of CBs from real water samples, and the recoveries were in the range of 93.2-116.8% towards eight CBs. This study delivered a novel and efficient sorbent as SPME coating to extraction and determination of CBs from water.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China.
| | - Panlong Dong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Changpo Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
18
|
Jin B, Li J, Wang Y, Yang Z, Yao X, Sun W, Lu Y, Zhu X, Zhang T. Nitrogen doping and porous tuning carbon derived from waste biomass boosting for toluene capture: Experimental study and density functional theory simulation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Zhang Y, Xu M, He R, Zhao J, Kang W, Lv J. Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: Key role of environmentally persistent free radicals. CHEMOSPHERE 2022; 294:133737. [PMID: 35090846 DOI: 10.1016/j.chemosphere.2022.133737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Because of the increasingly widespread contamination of antibiotics, the preparation of biochar by heteroatom doping to further improve the catalytic degradation efficiency of antibiotics has become a major focus of research. In this study, N-doped (NBC), S-doped (SBC), and NS-doped (NSBC) moso bamboo biochar were obtained at preparation temperatures of 300-700 °C. The concentration of environmentally persistent free radicals (EPFRs) in all biochars peaked when the preparation temperature was 500 °C: 2.45 × 1019 spins·g-1 (BC), 9.23 × 1019 spins·g-1 (NBC), 6.10 × 1019 spins·g-1 (SBC), and 4.36 × 1019 spins·g-1 (NSBC). After heteroatom doping, EPFR species were more abundant, and the distribution of three types of EPFRs (oxygen-centered (g > 2.0040), carbon-centered (g < 2.0030), and carbon-centered radicals with oxygen atom free radicals (2.0030 < g < 2.0040) varied with the preparation temperature. In the process of antibiotic degradation, both NBC and SBC increased the degradation rate of antibiotics, whereas NSBC reduced the degradation rate. Compared with the degradation rate of antibiotics of biochar (79.86%), the degradation rate of antibiotics by NBC, SBC, and NSBC via PMS activation was 92.23%, 88.86%, and 70.97% on average in 30 min, respectively. The greatest contributors to the catalytic degradation were SO4•-, followed by 1O2, •OH, and O2•-. EPFRs and 1O2 might be the main contributors to the free radical and non-free radical pathways. The enhancement of EPFRs following the N doping or S doping of biochar is the key factor underlying PMS activation. Therefore, changes in the structure of biochar can better activate PMS to produce reactive oxygen species-degrading antibiotics. The mineralization rate of antibiotics by BC, NBC, SBC, and NSBC was 42.12%, 47.06%, 44.99%, and 39.01%, respectively. This means that a small portion of the antibiotics was completely decomposed into CO2, H2O, and inorganic substances after degradation. Cyclic experiments showed that heteroatom-doped biochar had higher reusability, and the degradation rate decreased less than 15%.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Mengqi Xu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Rui He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Wei Kang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| | - Jinghua Lv
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
20
|
Abstract
The problem of global warming and the emission of greenhouse gases is already directly affecting the world’s energy. In the future, the impact of CO2 emissions on the world economy will constantly grow. In this paper, we review the available literature sources on the benefits of using algae cultivation for CO2 capture to decrease CO2 emission. CO2 emission accounts for about 77% of all greenhouse gases, and the calculation of greenhouse gas emissions is 56% of all CO2 imports. As a result of the study of various types of algae, it was concluded that Chlorella sp. is the best at capturing CO2. Various methods of cultivating microalgae were also considered and it was found that vertical tubular bioreactors are emerging. Moreover, for energy purposes, thermochemical methods for processing algae that absorb CO2 from flue gases were considered. Of all five types of thermochemical processes for producing synthesis gas, the most preferred method is the method of supercritical gasification of algae. In addition, attention is paid to the drying and flocculation of biofuels. Several different experiments were also reviewed on the use of flue gases through the cultivation of algae biomass. Based on this literature review, it can be concluded that microalgae are a third generation biofuel. With the absorption of greenhouse gases, the growth of microalgae cultures is accelerated. When a large mass of microalgae appears, it can be used for energy purposes. In the results, we present a plan for further studies of microalgae cultivation, a thermodynamic analysis of gasification and pyrolysis, and a comparison of the results with other biofuels and other algae cultures.
Collapse
|
21
|
Zhang S, Hua Z, Yao W, Lü T, Zhang D, Zhao Q, Li J, Zhao H. Preparation of bamboo-derived magnetic biochar for solid-phase microextraction of fentanyls from urine. J Sep Sci 2022; 45:1766-1773. [PMID: 35261155 DOI: 10.1002/jssc.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022]
Abstract
In this study, a biochar-based magnetic solid-phase microextraction method, coupled with liquid chromatography-mass spectrometry (LC/MS), was developed for analyzing fentanyl analogs from urine sample. Magnetic biochar was fabricated through an one-step pyrolysis carbonization and magnetization process, followed by an alkali treatment. In order to achieve desired extraction efficiency, feed stocks (wood and bamboo) and different pyrolysis temperatures (300-700 °C) were optimized. The magnetic bamboo biochar pyrolyzed at 400°C was found to have the greatest potential for extraction of fentanyls, with enrichment factors ranging from 58.9 to 93.7, presumably due to H-bonding and π- π interactions between biochar and fentanyls. Various extraction parameters, such as type and volume of desorption solvent, pH, extraction time were optimized, respectively, to achieve the highest extraction efficiency for the target fentanyls. Under optimized conditions, the developed method was found to have detection limits of 3.1-9.4 ng/L, a linear range of 0.05-10 μg/L, good precisions (1.9-9.4% for intra-batch, 2.9-9.9% for inter-batch), and satisfactory recoveries (82.0-111.3%). The developed method by using magnetic bamboo biochar as adsorbent exhibited to be an efficient and promising pretreatment procedure and could potentially be applied for drug analysis in biological samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suling Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Ziluo Hua
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, China
| | - Ting Lü
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dong Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingwei Zhao
- Department of Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianhong Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528011, China
| | - Hongting Zhao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528011, China
| |
Collapse
|
22
|
Nitrogen, oxygen-codoped hierarchically porous biochar for simultaneous enrichment and ultrasensitive determination of o-xylene and its hydroxyl metabolites in human urine by solid phase microextraction-gas chromatography-mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Medeiros DCCDS, Nzediegwu C, Benally C, Messele SA, Kwak JH, Naeth MA, Ok YS, Chang SX, Gamal El-Din M. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151120. [PMID: 34756904 DOI: 10.1016/j.scitotenv.2021.151120] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 05/22/2023]
Abstract
Biochar has been widely studied as an adsorbent for the removal of contaminants from wastewater due to its unique characteristics, such as having a large surface area, well-distributed pores and high abundance of surface functional groups. Critical review of the literature was performed to understand the state of research in utilizing biochars for industrial wastewater remediation with emphasis on pollutants that co-exist in wastewater from several industrial activities, such as textile, pharmaceutical and mining industries. Such pollutants include organic (such as synthetic dyes, phenolic compounds) and inorganic contaminants (such as cadmium, lead). Multiple correspondence analyses suggest that through batch equilibrium, columns or constructed wetlands, researchers have used mechanistic modelling of isotherms, kinetics, and thermodynamics to evaluate contaminant removal in either synthetic or real industrial wastewaters. The removal of organic and inorganic contaminants in wastewater by biochar follows several mechanisms: precipitation, surface complexation, ion exchange, cation-π interaction, and electrostatic attraction. Biochar production and modifications promote good adsorption capacity for those pollutants because biochar properties stemming from production were linked to specific adsorption mechanisms, such as hydrophobic and electrostatic interactions. For instance, adsorption capacity of malachite green ranged from 30.2 to 4066.9 mg g-1 depending on feedstock type, pyrolysis temperature, and chemical modifications. Pyrolyzing biomass at above 500 °C might improve biochar quality to target co-existing pollutants. Treating biochars with acids can also improve pollutant removal, except that the contribution of precipitation is reduced for potentially toxic elements. Studies on artificial intelligence and machine learning are still in their infancy in wastewater remediation with biochars. Meanwhile, a framework for integrating artificial intelligence and machine learning into biochar wastewater remediation systems is proposed. The reutilization and disposal of spent biochar and the contaminant release from spent biochar are important areas that need to be further studied.
Collapse
Affiliation(s)
| | - Christopher Nzediegwu
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Chelsea Benally
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Selamawit Ashagre Messele
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jin-Hyeob Kwak
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada; Department of Rural Construction Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
24
|
Xu S, Liu H, Long A, Li H, Chen C, Feng S, Fan J. Carbon Dot-Decorated Graphite Carbon Nitride Composites for Enhanced Solid-Phase Microextraction of Chlorobenzenes from Water. NANOMATERIALS 2022; 12:nano12030335. [PMID: 35159684 PMCID: PMC8838722 DOI: 10.3390/nano12030335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/25/2023]
Abstract
In this work, carbon dot-decorated graphite carbon nitride composites (CDs/g-C3N4) were synthesized and innovatively used as a SPME coating for the sensitive determination of chlorobenzenes (CBs) from water samples, coupled with gas chromatography-mass spectrometry. The CDs/g-C3N4 coating presented superior extraction performance in comparison to pristine g-C3N4, owing to the enhancement of active groups by CDs. The extraction capacities of as-prepared SPME coatings are higher than those of commercial coatings due to the functions of nitrogen-containing and oxygen-containing group binding, π-π stacking, and hydrophobic interactions. Under optimized conditions, the proposed method exhibits a wide linearity range (0.25-2500 ng L-1), extremely low detection of limits (0.002-0.086 ng L-1), and excellent precision, with relative standard deviations of 5.3-9.7% for a single fiber and 7.5-12.6% for five fibers. Finally, the proposed method was successfully applied for the analysis of CBs from real river water samples, with spiked recoveries ranging from 73.4 to 109.1%. This study developed a novel and efficient SPME coating material for extracting organic pollutants from environmental samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
- Correspondence: (S.X.); (S.F.)
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Anying Long
- 113 Geological Brigade, Guizhou Bureau of Geology and Mineral Resources, Liupanshui 553000, China;
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Changpo Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Correspondence: (S.X.); (S.F.)
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
25
|
Zeng L, Cheng D, Mao Z, Zhou Y, Jing T. ZIF-8/nitrogen-doped reduced graphene oxide as thin film microextraction adsorbents for simultaneous determination of novel halogenated flame retardants in crayfish-aquaculture water systems. CHEMOSPHERE 2022; 287:132408. [PMID: 34597646 DOI: 10.1016/j.chemosphere.2021.132408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Novel halogenated flame retardants (HFRs) have attracted much attention due to their environmental hazard and adverse effects on human health. In this study, a sensitive and simultaneous method for the determination of six novel HFRs was developed, including tetrabromobisphenol A (TBBPA), tetrachlorobisphenolA, TBBPA bis(2-hydroxyethyl ether), TBBPA bis(allyl ether), TBBPA bis(2,3-dibromopropyl ether) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine. ZIF-8 modified nitrogen-doped reduced graphene oxide (ZIF-8@N-rGO) was synthesized and coated onto a syringe filter to prepare a thin film microextraction (TFME) device. The adsorption capacities of ZIF-8@N-rGO for novel HFRs ranged from 50.98 to 112.84 mg g-1, exhibiting good extraction efficiency through a combination of π-π, hydrophobic, and hydrogen bonding interactions. The TFME device was coupled to a high-performance liquid chromatography-ultraviolet detection system to simultaneously determine target HFRs in crayfish-aquaculture water systems. Under the optimal extraction parameters, the linearities ranged from 0.1 to 100 ng mL-1. The method detection limits ranged from 0.030 to 0.14 ng mL-1 and relative recoveries ranged from 88.6 to 106.2%. We found that novel HFRs were detected in water and crayfish samples and were primarily distributed in the viscera and head shell of the crayfish. The bioconcentration factors ranged from 0.25 to 19.20 L kg-1, indicating non-bioaccumulation in the crayfish. This study provides valuable technology and information for potential health risks of exposure to novel HFRs from consuming crayfish.
Collapse
Affiliation(s)
- Lingshuai Zeng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Danqi Cheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
26
|
Zhang S, Hua Z, Yao W, Lü T, Chen Y, Fang Z, Zhao H. Use of corn straw-derived biochar for magnetic solid-phase microextraction of organophosphorus pesticides from environmental samples. J Chromatogr A 2021; 1660:462673. [PMID: 34800896 DOI: 10.1016/j.chroma.2021.462673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023]
Abstract
In this study, the potentials of utilizing corn straw-derived biochar in environmental sample pretreatment were examined. An one-step magnetization and carbonization process was developed to prepare magnetic biochar by mixing corn straw powder with Fe2+/Fe3+ and then pyrolyzed at different temperatures (400-800 °C). The obtained magnetic biochars were characterized by using scanning electron microscopy, Brunauer-Emmett-Teller isotherms, X-ray diffraction and Fourier transform infrared spectroscopy. Various extraction affecting parameters, such as Fe2+/Fe3+content, pyrolytic temperature, species of desorption solvent, extraction and desorption time, respectively, were studied and optimized. Results showed that the magnetic biochar pyrolyzed at 700 °C exhibited the best extraction performance, with enrichment factors ranging from 52 to 210, presumably due to H-bonding and π-π interactions between biochar and organophosphorus, as well as to the high surface area and pore volume of biochar. The magnetic biochar-based extraction was further combined with gas chromatography-mass spectrometry (GC/MS) to analyze trace organophosphorus pesticides from environmental samples. The method demonstrated good linearity (0.1-50 µg·L-1), low limits of detection (0.02-0.11 µg·L-1), and high recoveries (72.4-96.8%) from spiked water and soil samples. The results of this study suggested the promising potentials of utilizing corn straw-derived biochar for efficiently enriching trace organophosphorus pesticides from complex environmental samples.
Collapse
Affiliation(s)
- Suling Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Ziluo Hua
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, China
| | - Ting Lü
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, China
| | - Yueping Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, China
| | - Zheng Fang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528011, Guangdong, China
| | - Hongting Zhao
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Environmental and Chemical Engineering, Foshan University, Foshan, 528011, Guangdong, China.
| |
Collapse
|
27
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
28
|
Qu J, Wang S, Jin L, Liu Y, Yin R, Jiang Z, Tao Y, Huang J, Zhang Y. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(Ⅵ) and tetracycline adsorption from water. BIORESOURCE TECHNOLOGY 2021; 340:125692. [PMID: 34358982 DOI: 10.1016/j.biortech.2021.125692] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 05/27/2023]
Abstract
Magnetic porous water hyacinth-derived biochar (MPBCMW3) was synthesized via two-step Microwave (MW)-assisted processes. Characterization results not only testified high specific surface area (2097.50 m2/g) of the MPBCMW3 assisted by MW-assisted pyrolysis, but also revealed its favorable magnetism derived from MW-assisted hydrothermal process. The MPBCMW3 possessed pH-dependent monolayer adsorption capacities of 202.61 and 202.62 mg/g for Cr(VI) and TC with quick attainments of uptake equilibrium within 150 and 200 min. Moreover, the Cr(VI) and TC uptake were substantially steady under the interference from multifarious co-existing ions with slight decline after three adsorption-desorption cycles. Furthermore, the MPBCMW3 was demonstrated to achieve excellent Cr(VI) binding primarily through complexation, electrostatic interaction, reduction and ion exchange, while presenting outstanding TC removal via pore filling, π-π stacking, hydrogen bonding force, electrostatic interaction and complexation. All these findings suggested the MPBCMW3 synthesized by MW-assisted processes as an excellent adsorbent for purification of Cr(VI) and TC-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Laiyu Jin
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Junjian Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Preparation of porous carbon nanomaterials and their application in sample preparation: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Cheng L, Ji Y, Liu X, Mu L, Zhu J. Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: Coupling DFT calculations with experiments. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wu Y, Cheng H, Pan D, Zhang L, Li W, Song Y, Bian Y, Jiang X, Han J. Potassium hydroxide-modified algae-based biochar for the removal of sulfamethoxazole: Sorption performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112912. [PMID: 34089954 DOI: 10.1016/j.jenvman.2021.112912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Biochar has been deemed one of the most promising sorbents for the removal of organic pollutants from aqueous solution. In this study, potassium hydroxide-modified Enteromorpha prolifera biochars (PEBCs) were prepared for the first time and applied for efficient sorption of a typical antibiotic, sulfamethoxazole (SMX). The characteristics of PEBCs, including morphology, pore structure, graphitization degree, surface functional groups, and surface element composition, were investigated. Moreover, sorption kinetic and isotherm experiments were carried out to explore the sorption process, performance, and mechanisms. The maximum sorption capacity for SMX can reach 744 mg g-1, which is much higher than that reported for sorbents. The sorption of SMX onto PEBCs was controlled by both physical and chemical processes. Moreover, pore filling, hydrogen bonding, partitioning, π-π stacking, and electrostatic interactions were possible sorption mechanisms. This study indicated that the structure and properties of algal biochar can be further improved by potassium hydroxide modification at high temperature and applied as an excellent sorbent for the removal of antibiotics from aqueous solution.
Collapse
Affiliation(s)
- Yarui Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing, 100015, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Huaian, Jiangsu, 223100, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing, 100015, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Huaian, Jiangsu, 223100, PR China.
| | - Deng Pan
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Liumeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing, 100015, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Huaian, Jiangsu, 223100, PR China
| | - Wei Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Huaian, Jiangsu, 223100, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Huaian, Jiangsu, 223100, PR China.
| |
Collapse
|
32
|
Amini S, Ebrahimzadeh H, Seidi S, Jalilian N. Application of electrospun polyacrylonitrile/Zn-MOF-74@GO nanocomposite as the sorbent for online micro solid-phase extraction of chlorobenzenes in water, soil, and food samples prior to liquid chromatography analysis. Food Chem 2021; 363:130330. [PMID: 34157556 DOI: 10.1016/j.foodchem.2021.130330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022]
Abstract
An online micro solid-phase extraction (online-µSPE) using electrospun nanofibers, as an efficient sorbent, was developed to extract chlorobenzenes (CBs) from paddy soil, agricultural wastewater, and food samples (fruit juices, vegetables, rice samples) followed by high performance liquid chromatography analysis. Electrospun nanofibers were fabricated using a nanocomposite containing polyacrylonitrile and Zn-metal organic framework 74 @graphene oxide (PAN/Zn-MOF-74@GO), and subsequently characterized. Under the optimal conditions, acceptable linearity was obtained in the range of 0.25-700.00 ng mL-1 for 1,2-dichlorobenzene (1,2-DCB) and 2.50-700.00 ng mL-1 for both 1,2,3-trichlorobenzene (1,2,3-TCB) and 1,2,4-trichlorobenzene (1,2,4-TCB) with determination coefficients ≥ 0.9991. The limits of detection ranged from 0.08 to 1.10 ng mL-1. The intra-day and inter-day single fiber and fiber to fiber relative standard deviations were observed in the range of 4.1%-9.5% and 5.8%-12.1%, respectively. The performance of this method was examined by determining the target analytes in the different spiked samples.
Collapse
Affiliation(s)
- Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Shahram Seidi
- Faculty of Science, Khaje Nasir Toosi University of Technology, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
33
|
Atinafu DG, Yun BY, Wi S, Kang Y, Kim S. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. ENVIRONMENTAL RESEARCH 2021; 195:110853. [PMID: 33567299 DOI: 10.1016/j.envres.2021.110853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
To obtain high thermal performance composite phase change materials (PCMs), various other supporting materials have been utilized to encapsulate organic PCMs. In this study, four carbon materials (biochar, activated carbon, carbon nanotubes, and expanded graphite) were introduced to support heptadecane. The composite PCMs were designed using vacuum impregnation techniques. The structural stability, chemical compatibility, thermal stability, and thermal energy storage capacity of the as-prepared materials were systematically characterized using differential scanning calorimetry, Fourier-transform infrared spectroscopy, etc. Among the supporting materials, expanded graphite had a high PCM content of 94.5%, whereas it was low for biochar-supported PCM (25.7%). Meanwhile, the latent heat storage capacity ranged from 53.3 J/g to 195.9 J/g. It was observed that the intermolecular interactions between the PCM and supporting materials and the surface functionality of the encapsulating agents play a leading role in the thermal performance of the composite PCMs. Furthermore, pore structures such as specific surface area, total pore volume, and pore size distribution have a combined effect on the crystallinity of heptadecane in the composite PCMs. The study will provide insight into developing and designing carbon-based composite PCMs for heat-storage purposes.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghwan Wi
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|