1
|
Mathew A, Poulose A, Sasidharan SP, Pasquini D, Grohens Y, Gopakumar DA, George JJ. Bioinspired Hydrophobicity via Temperature-Induced Phase Separation of Beeswax: A Pathway for Developing Cellulose Nanofiber-Based Adsorbents for the Removal of Conventional Tetracycline Tablets. ACS APPLIED BIO MATERIALS 2024; 7:7009-7022. [PMID: 39378355 DOI: 10.1021/acsabm.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cellulose nanofiber-based aerogels (CNFAs) hold immense promise across diverse fields, but their innate hydrophilicity and structural fragility in water have constrained their utility in water purification. This study introduces a green approach to induce hydrophobicity into CNFAs via thermally induced phase separation (TIPS) of beeswax, which was adhered to the nanofiber by hydrogen bonding and hydrophobic-hydrophobic interactions. The fabricated aerogel was characterized by using FTIR, SEM, XRD, TGA, contact angle, BET, and compression test. The resulting beeswax cellulose nanofiber-based aerogels (BCNFAs) possess a highly porous structure and extremely low density, enabling the aerogels to self-float and facilitate practical applications and recycling. Due to these remarkable characteristics, BCNFAs had excellent adsorption capacity within 10 min to effectively remove tetracycline (TC) from water with an adsorption capacity of 31.6 mg/g. The demonstrated methodology to induce hydrophobicity in CNFAs via TIPS of beeswax on CNFAs could be an eco-friendly and scalable approach for the fabrication of robust BCNFAs without using any toxic chemicals. So far, this is the first report on to make robust hydrophobic CNFAs by employing TIPS of beeswax while maintaining the porosity of CNFAs, which is highly desirable for effective TC tablet adsorption from water in the present context. The demonstrated work has commercial potential as it focuses on the practical utility of the modified aerogel for adsorbing conventional tetracycline tablets, rather than exclusively targeting the pharmaceutical ingredient alone.
Collapse
Affiliation(s)
- Ajith Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Aiswarya Poulose
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Sari Panikkassery Sasidharan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Daniel Pasquini
- Laboratoire d'Íngenierie des Mate riaux de Bretagne, Centre de Recherche, Rue Saint Maude-BP 95116, Lorient, Cedex F-56321, France
| | - Yves Grohens
- Chemistry Institute, Federal University of Uberlandia-UFU, Campus Santa Monica-Bloco1D-CP593, Uberlandia 38400-902, Brazil
| | - Deepu A Gopakumar
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| | - Jinu Jacob George
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala 682022, India
| |
Collapse
|
2
|
Miao S, Zhang Y, Men C, Mao Y, Zuo J. A combined evaluation of the characteristics and antibiotic resistance induction potential of antibiotic wastewater during the treatment process. J Environ Sci (China) 2024; 138:626-636. [PMID: 38135426 DOI: 10.1016/j.jes.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 12/24/2023]
Abstract
Antibiotic wastewater contains a variety of pollutant stressors that can induce and promote antibiotic resistance (AR) when released into the environment. Although these substances are mostly in concentrations lower than those known to induce AR individually, it is possible that antibiotic wastewater discharge might still promote the AR transmission risk via additive or synergistic effects. However, the comprehensive effect of antibiotic wastewater on AR development has rarely been evaluated, and its treatment efficiency remains unknown. Here, samples were collected from different stages of a cephalosporin production wastewater treatment plant, and the potential AR induction effect of their chemical mixtures was explored through the exposure of the antibiotic-sensitive Escherichia coli K12 strain. Incubation with raw cephalosporin production wastewater significantly promoted mutation rates (3.6 × 103-9.3 × 103-fold) and minimum inhibition concentrations (6.0-6.7-fold) of E. coli against ampicillin and chloramphenicol. This may be attributed to the inhibition effect and oxidative stress of cephalosporin wastewater on E. coli. The AR induction effect of cephalosporin wastewater decreased after the coagulation sedimentation treatment and was completely removed after the full treatment process. A Pearson correlation analysis revealed that the reduction in the AR induction effect had a strong positive correlation with the removal of organics and biological toxicity. This indicates that the antibiotic wastewater treatment had a collaborative processing effect of conventional pollutants, toxicity, and the AR induction effect. This study illustrates the potential AR transmission risk of antibiotic wastewater and highlights the need for its adequate treatment.
Collapse
Affiliation(s)
- Sun Miao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yiou Mao
- High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Sapkota B, Pariatamby A. Pharmaceutical waste management system - Are the current techniques sustainable, eco-friendly and circular? A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:83-97. [PMID: 37285639 DOI: 10.1016/j.wasman.2023.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Most households and healthcare facilities usually dispose of contaminated, unused, or expired (CUE) medicines with municipal wastes, the disposal of which usually amounts to $790/ton in the USA and £450/ton in the UK. Solid (e.g., tablets, capsules, powders) and semi-solid (e.g., ointment, creams) pharmaceuticals are managed with incineration/pyrolysis, encapsulation, and engineered landfills, whereas wastewater treatment plants (WWTPs) are recommended for liquid pharmaceutical wastes (PWs). However, to date, the sustainability and eco-friendliness profile of these techniques are only subjectively ensured, leading to controversial viewpoints in many guidelines. Each technique has relative strengths and weaknesses, and their comparative weighting to maximize these profiles is sought after. The present comprehensive review aims to fulfil knowledge gaps in this regard. Four electronic databases (e.g., PubMed/MEDLINE, Scopus, and ScienceDirect) were searched for PW management (PWM)-related qualitative and quantitative articles published till December 31, 2022. Articles without details of waste disposal techniques and their health and environmental impacts were excluded. Based on the literature review, we determine that incineration can be considered a sustainable option for solid and semi-solid PWs, and WWTPs can be eco-friendly for liquid PWs, whereas encapsulation and landfilling are less sustainable. It is high time that objectively proven sustainable and eco-friendly techniques be implemented for PWM based on their dosage forms or nature of hazards. Medicine take-back, eco-pharmacovigilance, extended producer responsibility, co-payment, and life cycle analysis of pharmaceuticals focusing on reduction, reuse/re-dispensing can be integrated to make existing models sustainable, circular, and eco-friendly.
Collapse
Affiliation(s)
- Binaya Sapkota
- Jeffrey Sachs Center on Sustainable Development, Sunway University, 5 Jalan University, 47500 Sunway, Selangor, Malaysia.
| | - Agamuthu Pariatamby
- Jeffrey Sachs Center on Sustainable Development, Sunway University, 5 Jalan University, 47500 Sunway, Selangor, Malaysia
| |
Collapse
|
4
|
Duarte JAP, Ribeiro AKN, de Carvalho P, Bortolini JC, Ostroski IC. Emerging contaminants in the aquatic environment: phytoplankton structure in the presence of sulfamethoxazole and diclofenac. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46604-46617. [PMID: 36719587 PMCID: PMC9888349 DOI: 10.1007/s11356-023-25589-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Chemicals from anthropogenic activities such as domestic sewage, pesticide leaching, and improper chemical disposal have caused groundwater contamination. The presence of these emerging contaminants in the aquatic environment can change water quality and biota composition. Thus, this study investigates the effect of two emerging contaminants, anti-inflammatory drug diclofenac (DCF) and antibiotic sulfamethoxazole (SMX), on the aquatic environment, evaluating the phytoplankton community structure. A microcosm experiment was conducted with 16 sampling units, each one with 500 mL of water sample containing phytoplankton exposed to these drugs at different concentrations (0.1, 0.5, and 1.0 mg L-1). The experiment lasted 15 days, and samples were collected on days 0, 3, 5, 7, and 14 to evaluate the phytoplankton community, the concentrations of the drugs, and the nutrients in the samples. Six phytoplankton groups were identified, and diatoms and green algae were the most diverse and abundant groups. For the entire community, we identified differences between the days of the experiment, varying in the diversity and density of organisms, but not between the concentrations of the two drugs. Evaluating the groups separately, we identified differences in the abundance of cyanobacteria for the treatment with diclofenac and desmids for the treatment with sulfamethoxazole. We demonstrated that the presence of pharmaceuticals in freshwater ecosystems can somehow affect the phytoplankton community, especially the diversity and abundance of cyanobacteria and desmids. Therefore, our study indicates the importance of evaluating the presence of pharmaceuticals in freshwater ecosystems and their influence on aquatic organisms, as well as pharmaceuticals may be changing the structure of the aquatic environment.
Collapse
Affiliation(s)
| | | | - Priscilla de Carvalho
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | | | |
Collapse
|
5
|
Dai W, Pang JW, Ding J, Wang YQ, Zhang LY, Ren NQ, Yang SS. Study on the removal characteristics and degradation pathways of highly toxic and refractory organic pollutants in real pharmaceutical factory wastewater treated by a pilot-scale integrated process. Front Microbiol 2023; 14:1128233. [PMID: 36970662 PMCID: PMC10034018 DOI: 10.3389/fmicb.2023.1128233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionPharmaceutical wastewater frequently contains high levels of toxic pollutants. If they are discharged untreated, they pose a threat to the environment. The traditional activated sludge process and the advanced oxidation process do not sufficiently remove toxic and conventional pollutants from pharmaceutical wastewater treatment plants (PWWTPs).MethodsWe designed a pilot-scale reaction system to reduce toxic organic pollutants and conventional pollutants from pharmaceutical wastewater during the biochemical reaction stage. This system included a continuous stirred tank reactor (CSTR), microbial electrolysis cells (MECs), an expanded sludge bed reactor (EGSB), and a moving bed biofilm reactor (MBBR). We used this system to further investigate the benzothiazole degradation pathway.Results and discussionThe system effectively degraded the toxic pollutants (benzothiazole, pyridine, indole, and quinoline) and the conventional chemicals (COD, NH4+-N, TN). During the stable operation of the pilot-scale plant, the total removal rates of benzothiazole, indole, pyridine, and quinoline were 97.66, 94.13, 79.69, and 81.34%, respectively. The CSTR and MECs contributed the most to the removal of toxic pollutants, while the EGSB and MBBR contributed less to the removal of the four toxic pollutants. Benzothiazoles can be degraded via two pathways: the benzene ring-opening reaction and the heterocyclic ring-opening reaction. The heterocyclic ring-opening reaction was more important in degrading the benzothiazoles in this study.ConclusionThis study provides feasible design alternatives for PWWTPs to remove both toxic and conventional pollutants at the same time.
Collapse
Affiliation(s)
- Wei Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, China
| | - Jie Ding
- National Engineering Research Center for Bioenergy, Harbin Institute of Technology, Harbin, China
- *Correspondence: Jie Ding,
| | - Yu-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- Shan-Shan Yang,
| |
Collapse
|
6
|
Carles L, Wullschleger S, Joss A, Eggen RIL, Schirmer K, Schuwirth N, Stamm C, Tlili A. Wastewater microorganisms impact microbial diversity and important ecological functions of stream periphyton. WATER RESEARCH 2022; 225:119119. [PMID: 36170769 DOI: 10.1016/j.watres.2022.119119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Effluents of wastewater treatment plants can impact microbial communities in the receiving streams. However, little is known about the role of microorganisms in wastewater as opposed to other wastewater constituents, such as nutrients and micropollutants. We aimed therefore at determining the impact of wastewater microorganisms on the microbial diversity and function of periphyton, key microbial communities in streams. We used a flow-through channel system to grow periphyton upon exposure to a mixture of stream water and unfiltered or ultra-filtered wastewater. Impacts were assessed on periphyton biomass, activities and tolerance to micropollutants, as well as on microbial diversity. Our results showed that wastewater microorganisms colonized periphyton and modified its community composition, resulting for instance in an increased abundance of Chloroflexi and a decreased abundance of diatoms and green algae. This led to shifts towards heterotrophy, as suggested by the changes in nutrient stoichiometry and the increased mineralization potential of carbon substrates. An increased tolerance towards micropollutants was only found for periphyton exposed to unfiltered wastewater but not to ultra-filtered wastewater, suggesting that wastewater microorganisms were responsible for this increased tolerance. Overall, our results highlight the need to consider the role of wastewater microorganisms when studying potential impacts of wastewater on the receiving water body.
Collapse
Affiliation(s)
- Louis Carles
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Simon Wullschleger
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Adriano Joss
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Rik I L Eggen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Kristin Schirmer
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH, Zürich, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL Lausanne, Lausanne, Switzerland
| | - Nele Schuwirth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Christian Stamm
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Ahmed Tlili
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH, Zürich, Switzerland.
| |
Collapse
|
7
|
Araújo APDC, Luz TMD, Rocha TL, Ahmed MAI, Silva DDME, Rahman MM, Malafaia G. Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: Perspective study of genotoxicity, mutagenicity, and redox unbalance. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128691. [PMID: 35334274 DOI: 10.1016/j.jhazmat.2022.128691] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite the toxicity of microplastics (MPs) in freshwater fish has been demonstrated in previous studies, their effects when mixed with other pollutants (organic and inorganic) are poorly understood. Thus, we aimed to test the hypothesis that the association of polyethylene MPs (PE-MPs) to a mix of emerging pollutants induces more adverse genotoxic, mutagenic, and redox unbalance effects in adult zebrafish (Danio rerio), after 15 days of exposure. Although the accumulation of MPs in animals was greater in animals exposed to PE-MPs alone, erythrocyte DNA damage (comet assay) and the frequency of erythrocytic nuclear abnormalities (ENAs) evidenced in zebrafish exposed to PE-MPs alone were as pronounced as those observed in animals exposed to the mix of pollutant (alone or in combination with MPs), which constitutes the big picture of the current study. Moreover, we noticed that such effects were associated with an imbalance between pro-and antioxidant metabolism in animals, whose activity of superoxide dismutase (SOD) and catalase (CAT) was assessed in different organs which were not sufficient to counterbalance the production of reactive oxygen species [hydrogen peroxide (H2O2)] and nitrogen [nitric oxide (NO)] evaluated. The principal component analysis (PCA) also revealed that while the antioxidant activity was more pronounced in the brain and liver of animals, the highest production of H2O2 was perceived in the gills and muscles, suggesting that the biochemical response of the animals was organ-dependent. Thus, the present study did not demonstrate antagonistic, synergistic, or additive effects on animals exposed to the combination between PE-MPs and a mix of pollutants in the zebrafish, which reinforces the theory that interactions between pollutants in aquatic ecosystems may be as complex as their effects on freshwater ichthyofauna.
Collapse
Affiliation(s)
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
8
|
Hu Y, Lei D, Wu D, Xia J, Zhou W, Cui C. Residual β-lactam antibiotics and ecotoxicity to Vibrio fischeri, Daphnia magna of pharmaceutical wastewater in the treatment process. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127840. [PMID: 34896711 DOI: 10.1016/j.jhazmat.2021.127840] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
The discharge of pharmaceutical wastewater introduces numerous pollutants into the environment, and their pollution level reduction has aroused extensive concern. This study investigated the variation in residual antibiotics and ecotoxicity to two nutritional-level model organisms in the pharmaceutical wastewater treatment process (PWTP). The wastewater in the equalization tank contained massive organic matters (2.9-18.7 times higher than the permissible values in GB21903-2008) and antibiotics (310.88 μg/L), posing extremely toxic effects to Vibrio fischeri (V. fischeri) and Daphnia magna (D. magna). The biological anaerobic/aerobic treatment units contributed the most to the reduction of antibiotics and the ecotoxicity to both organisms, with the removal rates of 72% and > 90%, respectively. The ecotoxicity of pharmaceutical wastewater was strongly and positively correlated with the residual antibiotics, amoxicillin, cephalexin, ammonia nitrogen, and total phosphorus (P < 0.05). However, the detected amounts of amoxicillin and cephalexin were approximately 105 times lower than the predicted no-effect concentrations of amoxicillin and cephalexin to V. fischeri and D. magna in freshwater, which implied the joint ecotoxicity posed by multicomponent mixtures, such as the residual antibiotics and organic toxic substances, rather than the specific residual antibiotics. This study provides a better understanding of the variations and residual levels of pollutants in PWTPs, including their ecotoxicity risk to the aquatic environment, highlighting the need to optimize pharmaceutical wastewater treatment technologies.
Collapse
Affiliation(s)
- Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dandan Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da Wu
- North China Pharmaceutical Huasheng Co. Ltd, Shijiangzhuang, Hebei 052160, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wang Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|