1
|
Shi G, Li H, Fu Q, Li T, Hou R, Chen Q, Xue P. Effects of biochar and compost on the abundant and rare microbial communities assembly and multifunctionality in pesticide-contaminated soil under freeze‒thaw cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125003. [PMID: 39307339 DOI: 10.1016/j.envpol.2024.125003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Biochar and compost are effective ways to improve soil quality and reduce pesticide pollution. However, the effects of them on the abundant and rare microbial communities in freeze‒thaw soil need to be further clarified. Therefore, this study took biochar, compost, and their combination as examples to explore their effects on the abundant and rare microbial communities and multifunctionality in glyphosate, imidacloprid and pyraclostrobin contaminated soil under freeze‒thaw cycles. We found that freeze‒thaw cycles enhanced the functional groups and surface aromaticity of biochar and compost, thereby improving the adsorption capacity. Biochar and compost reduced the concentration and half-life of three pesticides and enhanced the degradation function of rare taxa in soil. Biochar and compost improved the structure composition and co-occurrence relationship of abundant and rare taxa. Meanwhile, the assembly processes of abundant and rare sub-communities were mainly driven by stochastic processes and the Combined treatment promoted the transition from dispersal limitation to homogenizing dispersal and homogeneous selection. Moreover, the Combined treatment significantly improved the multifunctionality before and after freezing and thawing by increasing the diversity of rare taxa and assembly processes. The results provide new insights for farmland soil remediation in seasonal frozen areas, especially the soil functional cycle of abundant and rare microorganisms.
Collapse
Affiliation(s)
- Guoxin Shi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Heng Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ping Xue
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
2
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Community metagenomics reveals the processes of cadmium resistance regulated by microbial functions in soils with Oryza sativa root exudate input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175015. [PMID: 39069186 DOI: 10.1016/j.scitotenv.2024.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Plants exert a profound influence on their rhizosphere microbiome through the secretion of root exudates, thereby imparting critical effects on their growth and overall health. The results unveil that japonica rice showcases a remarkable augmentation in its antioxidative stress mechanisms under Cd stress. This augmentation is characterized by the sequestration of heavy metal ions within the root system and the prodigious secretion of a spectrum of flavonoids, including Quercetin, Luteolin, Apigenin, Kaempferide, and Sakuranetin. These flavonoids operate as formidable guardians, shielding the plant from oxidative damage instigated by Cd-induced stress. Furthermore, the metagenomic analyses divulge the transformative potential of flavonoids, as they induce profound alterations in the composition and structural dynamics of plant rhizosphere microbial communities. These alterations manifest through the recruitment of plant growth-promoting bacteria, effectively engineering a conducive milieu for japonica rice. In addition, our symbiotic network analysis discerns that flavonoid compounds significantly improved the positive correlations among dominant species within the rhizosphere of japonica rice. This, in turn, bolsters the stability and intricacy of the microenvironmental ecological network. KEGG functional analyses reveal a notable upregulation in the expression of flavonoid functional genes, specifically cadA, cznA, nccC, and czrB, alongside an array of transporters, encompassing RND, ABC, MIT, and P-ATPase. These molecular orchestrations distinctly demarcated the rhizosphere microbiome of japonica rice, markedly enhancing its tolerance to Cd-induced stress. These findings not only shed light on the establishment of Cd-resistant bacterial consortia in rice but also herald a promising avenue for the precise modulation of plant rhizosphere microbiomes, thereby fortifying the safety and efficiency of crop production.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
3
|
Liu Y, Yu L, Tian F, Chen W, Zhai Q. Meta-analysis of microbiomes reveals metagenomic features of fermented vegetables. Food Res Int 2023; 173:113248. [PMID: 37803564 DOI: 10.1016/j.foodres.2023.113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
An insightful exploration of the fermented vegetable microbiome is the key to improving food quality and sustainability. Based on 57 fermented vegetable samples from China, Ireland, the UK, and Germany retrieved from public genome databases, we conducted a high-resolution meta-analysis of the fermented vegetable microbiomes. There were significant differences in the microbiota composition and functional pathway diversity of the tested samples, as reflected by the differences in their geographical origins. Metagenomic analysis also revealed the metagenomic features of carbohydrate-active enzymes and antibiotic resistance genes in the fermented vegetable metagenomes. Five putative new species were detected by recovering 221 metagenome-assembled genomes belonging to the genera Rubrobacteraceae, Bifidobacteriaceae, and Ruminococcaceae. Our results provide new ecological insights into the implications of fermented vegetable microbiota composition and functional potential and highlight the importance of high-resolution metagenomic analysis to further investigate the fermented food microbiome.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Zhao W, Chen Z, Yang X, Sheng L, Mao H, Zhu S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum's resistance to Cr stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164970. [PMID: 37343864 DOI: 10.1016/j.scitotenv.2023.164970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Chromium (Cr) can disrupt a plant's normal physiological and metabolic functions and severely impact the microenvironment. However, limited studies have investigated the impact of arbuscular mycorrhizal fungi (AMF) inoculation on the rhizosphere microorganisms of Iris tectorum under Cr stress, and the mechanisms of how rhizosphere microorganisms interact with hosts and contaminants. In this study, we investigated the effects of AMF inoculation on the growth, absorption of nutrients and heavy metals, and functional genes of the rhizosphere microbial community of I. tectorum under Cr stress in a greenhouse pot experiment. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum, while decreasing the content of Cr in soil. Furthermore, metagenome analysis demonstrated significant changes in the structure and composition of the rhizosphere microbial community after AMF formed a mycorrhizal symbiosis system with the I. tectorum. Specifically, the abundance of functional genes related to nutrient cycling (N, P) and heavy metal resistance (chrA and arsB), as well as the abundance of heavy metal transporter family (P-atPase, MIT, CDF, and ABC) in the rhizosphere microbial community were up-regulated and their expression. Additionally, the synergies between rhizosphere microbial communities were regulated, and the complexity and stability of the rhizosphere microbial ecological network were enhanced. This study provides evidence that AMF can regulate rhizosphere microbial communities to improve plant growth and heavy metal stress tolerance, and helps us to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil under AMF symbiosis.
Collapse
Affiliation(s)
- Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-, Suchdol 16500, Czech Republic
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
5
|
Wang Q, Liu Z, Ma A, Li Z, Liu B, Ma Q. Computational methods and challenges in analyzing intratumoral microbiome data. Trends Microbiol 2023; 31:707-722. [PMID: 36841736 PMCID: PMC10272078 DOI: 10.1016/j.tim.2023.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
The human microbiome is intimately related to cancer biology and plays a vital role in the efficacy of cancer treatments, including immunotherapy. Extraordinary evidence has revealed that several microbes influence tumor development through interaction with the host immune system, that is, immuno-oncology-microbiome (IOM). This review focuses on the intratumoral microbiome in IOM and describes the available data and computational methods for discovering biological insights of microbial profiling from host bulk, single-cell, and spatial sequencing data. Critical challenges in data analysis and integration are discussed. Specifically, the microorganisms associated with cancer and cancer treatment in the context of IOM are collected and integrated from the literature. Lastly, we provide our perspectives for future directions in IOM research.
Collapse
Affiliation(s)
- Qi Wang
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Zhaoqian Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China; Shandong National Center for Applied Mathematics, Jinan, Shandong, 250100, China.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Feng C, Ouyang X, Deng Y, Wang J, Tang L. A novel g-C 3N 4/g-C 3N 4-x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129845. [PMID: 36067556 DOI: 10.1016/j.jhazmat.2022.129845] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The abuse of pesticides and antibiotics and their harm to the environment are the disadvantages of modern agriculture and breeding industry. g-C3N4 has shown great potential in photocatalytic water pollution purification under visible light irradiation, however, the conventional g-C3N4 suffers from the disadvantage of limited optical absorption and serious charge recombination, resulting in inefficient light energy conversion and pollutant degradation. This study provides a strategy of combining defect engineering with a built-in electric field to prepare homojunction a photocatalyst with high optical absorption rate and charge separation efficiency. Experiments and DFT simulation revealed the mechanism of significant improvement in the photocatalytic performance of the prepared catalyst, and proposed the pollutant degradation pathway. In addition, the photocatalytic effects of the prepared catalysts on different natural water bodies, natural light, and various water conditions were investigated, revealing the applicability of the catalysts in the purification of pollutants in various water environments.
Collapse
Affiliation(s)
- Chengyang Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaocheng Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
7
|
Lin Y, Mei L, Wei Q, Li B, Zhang P, Sun S, Cui G. Leymus chinensis resists degraded soil stress by modulating root exudate components to attract beneficial microorganisms. Front Microbiol 2022; 13:951838. [PMID: 36569063 PMCID: PMC9780673 DOI: 10.3389/fmicb.2022.951838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Phytoremediation is an effective means to improve degraded soil nutrients and soil structure. Here, we investigated the remediation effects of Leymus chinensis on the physicochemical properties and structure of degraded soil after 3 years of cultivation and explored the bacterial and fungal drivers in root exudates by metabolomics and high-throughput sequencing. The results showed that root exudates increased soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP) and soil aggregates, and organic acids in root exudates reduced pH and activated insoluble nutrients into forms that are available to plants, such as available nitrogen (NH4 +-N), nitrate nitrogen (NO3 --N), and available phosphorus (AP). The cultivation of L. chinensis restored the diversity and richness of soil microorganisms and recruited potential beneficial bacteria and fungi to resist degraded soil stress, and L. chinensis also regulated the abundances of organic acids, amino acids and fatty acids in root exudates to remediate degraded soils. Spearman correlation analysis indicated that glutaric acid, 3-hydroxybutyric acid and 4-methylcatechol in root exudates attracted Haliangium, Nitrospira and Mortierella to the rhizosphere and dispersed the relative abundance of the harmful microorganisms Fusicolla and Fusarium. Our results demonstrate that L. chinensis enhances soil fertility, improves soil structure, promotes microbial diversity and abundance, and recruits potentially beneficial microorganisms by modulating root exudate components.
Collapse
|
8
|
Yin H, Chen Y, Feng Y, Feng L, Yu Q. Synthetic physical contact-remodeled rhizosphere microbiome for enhanced phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128828. [PMID: 35395523 DOI: 10.1016/j.jhazmat.2022.128828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation is a prevalent strategy to treat environmental pollution caused by heavy metals and eutrophication-related pollutants. Although rhizosphere microbiome is critical for phytoremediation, it remains a great challenge to artificially remodel rhizosphere microbiome for enhancing multiple pollutant treatment. In this study, we designed a synthetic bacterium to strengthen physical contact between natural microbes and plant roots for remodeling the Eichhornia crassipes rhizosphere microbiome during phytoremediation. The synthetic bacterium EcCMC was constructed by introducing a surface-displayed synthetic protein CMC composed of two glucan-binding domains separated by the sequence of the fluorescent protein mCherry. This synthetic bacterium strongly bound glucans and recruited natural glucan-producing bacterial and fungal cells. Microbiome and metabolomic analysis revealed that EcCMC remarkably remodeled rhizosphere microbiome and increased stress response-related metabolites, leading to the increased activity of antioxidant enzymes involved in stress resistance. The remodeled microbiome further promoted plant growth, and enhanced accumulation of multiple pollutants into the plants, with the removal efficiency of the heavy metal cadmium, total organic matters, total nitrogen, total potassium, and total phosphorus reaching up to 98%, 80%, 97%, 93%, and 90%, respectively. This study sheds a novel light on remodeling of rhizosphere microbiome for enhanced phytoremediation of water and soil systems.
Collapse
Affiliation(s)
- Hongda Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yuqiao Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yuming Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Lian Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
9
|
Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, Erijman L. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World J Microbiol Biotechnol 2022; 38:98. [PMID: 35478266 DOI: 10.1007/s11274-022-03281-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.
Collapse
Affiliation(s)
- María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marco Allegrini
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Keren Hernandez Guijarro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Unidad Integrada Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Filipe Behrends Kraemer
- Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
| | - Héctor Morrás
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
- Facultad de Ciencias Agrarias y Veterinaria, Universidad del Salvador, Pilar, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Yu W, Xue Z, Zhao X, Zhang R, Liu J, Guo S. Glyphosate-induced GhAG2 is involved in resistance to salt stress in cotton. PLANT CELL REPORTS 2022; 41:1131-1145. [PMID: 35243542 DOI: 10.1007/s00299-022-02844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE The transcription of GhAG2 was strongly enhanced by glyphosate treatment. Overexpression of GhAG2 could improve plant tolerance to salt and salicylic acid stress. Although glyphosate has been widely used as an herbicide over the past decade owing to its high efficacy on weed controls and worldwide commercialization of glyphosate-resistant crops, little is known about the glyphosate-induced responses and transcriptional changes in cotton plants. Here, we report the identification of 26 differentially expressed genes after glyphosate treatment, among which, six highly up-regulated sequences share homology to cotton expressed sequence tags (ESTs) responsive to abiotic stresses. In addition, we cloned GhAG2, a gene whose transcription was strongly enhanced by glyphosate treatment and other abiotic stresses. Transgenic GhAG2 plants showed improved tolerance to salt, and salicylic acid (SA) stress. The results could open the door to exploring the function of the GhAG2 proteins, the glyphosate-induced transcriptional profiles, and the physiological biochemical responses in cotton and other crops. GhAG2 could also be used to improve salt stress tolerance through breeding and biotechnology in crops. Furthermore, these results could provide guidelines to develop a glyphosate-inducible system for controlled expression of targeted genes in plants.
Collapse
Affiliation(s)
- Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xianzheng Zhao
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA.
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Zeng H, Hu W, Liu G, Xu H, Wei Y, Zhang J, Shi H. Microbiome-wide association studies between phyllosphere microbiota and ionome highlight the beneficial symbiosis of Lactococcus lactis in alleviating aluminium in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:66-74. [PMID: 34971956 DOI: 10.1016/j.plaphy.2021.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The phyllosphere is one of the most abundant habitats for global microbiota. The ionome is the composition of mineral elements in plants. The correlation between phyllosphere microbiota and the ionome remains elusive in plants, especially in the most important tropical crop cassava. In this study, microbiome-wide association studies (MWASs) of thirty varieties were performed to reveal the association between phyllosphere microbiota and ionomic variations in cassava. Annotation of metagenomic species identified some species that were significantly correlated with ionomic variations in cassava. Among them, Lactococcus lactis abundance was negatively associated with leaf aluminium (Al) levels but positively related to leaf potassium (K) levels. Notably, both the reference and isolated L. lactis showed strong binding capacity to Al. Further bacterial transplantation of isolated L. lactis could significantly decrease endogenous Al levels but increase K levels in cassava, and it can also lead to increased citric acid and lactic acid levels as well as higher transcript levels of K uptake-related genes. Taken together, this study reveals the involvement of phyllosphere microbiota in ionomic variation in cassava, and the correlation between L. lactis abundance and Al and K levels provides novel insights into alleviating Al accumulation and promoting K uptake simultaneously.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan province, 571101, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Haoran Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan province, 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China.
| |
Collapse
|
12
|
Zhang Z, Han Z, Wu Y, Jiang S, Ma C, Zhang Y, Zhang J. Metagenomics assembled genome scale analysis revealed the microbial diversity and genetic polymorphism of Lactiplantibacillus plantarum in traditional fermented foods of Hainan, China. Food Res Int 2021; 150:110785. [PMID: 34865800 DOI: 10.1016/j.foodres.2021.110785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
Exploring the microbiome in fermented foods and their effects on food quality and sustainability is beneficial to provide data support for understanding how they affects human physiology. Here, metagenomic sequencing and metagenomic assembled genomes (MAGs) were applied to appraise the microbial diversity of fermented Yucha (FYC) and fermented vegetables (FVE). The antibiotic resistance genes (ARGs) enrichment and genetic polymorphism of Lactiplantibacillus plantarum in fermented foods of different regions were compared. The results showed that Lactiplantibacillus plantarum was the dominant species in FYC, while Lactiplantibacillus fermentum in FVE occupied the dominant position. From 32 high-quality MAGs, the central differential Lactic acid bacteria were higher in FVE. By comparing the Lactiplantibacillus plantarum MAGs in Hainan and Other regions, we found that the total Single Nucleotide Polymorphisms of Lactiplantibacillus plantarum in Hainan were significantly higher than other areas. Six non-synonymous mutations were included in the primary differential mutation, especially TrkA family potassium uptake protein and MerR family transcriptional regulator, which may be related to the hypersaline environment and highest ARGs enrichment in Hainan. This research provides valuable insight into our understanding of the microbiome of fermented food. Meanwhile, the analysis of Lactiplantibacillus plantarum genetic polymorphism based on MAGs helps us understand this strain's evolutionary history.
Collapse
Affiliation(s)
- Zeng Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Zhe Han
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yuqing Wu
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Chenchen Ma
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yanjun Zhang
- Chinese Academy of Tropical Agricultural Science, Spice and Beverages Research Institute, Wanning, Hainan 571533, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
13
|
The Diversity of Culture-Dependent Gram-Negative Rhizobacteria Associated with Manihot esculenta Crantz Plants Subjected to Water-Deficit Stress. DIVERSITY 2021. [DOI: 10.3390/d13080366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a lack of studies on the root-associated bacterial microbiome of cassava plants. The identification and characterization of rhizobacteria can contribute to understanding the adaptation of the agriculturally important crop plants to abiotic stress. Rhizobacteria play a significant role in plants, as they can alleviate the drought stress by various mechanisms that enhance the plant growth under these stressor conditions. In this study, Gram-negative bacterial strains from the plant rhizosphere of cassava Manihot esculenta Crantz CIAT MCOL1734 variety subjected to water deprivation were isolated, characterized according to their morphological properties, and then identified by VITEK® 2. An increase in the diversity, abundance, and species richness of Gram-negative rhizobacterial community was found in cassava plants subjected to water-deficit stress. In total, 58 rhizobacterial strains were isolated from cassava plants. The identification process found that the bacteria belonged to 12 genera: Achromobacter, Acinetobacter, Aeromonas, Buttiauxella, Cronobacter, Klebsiella, Ochrobactrum, Pluralibacter, Pseudomonas, Rhizobium, Serratia, and Sphingomonas. Interestingly, Pseudomonas luteola and Ocrhobactrum anthropi were rhizobacteria isolated exclusively from plants submitted to drought conditions. The cassava roots constitute a great reservoir of Gram-negative bacteria with a remarkable potential for biotechnological application to improve the drought tolerance of plant crops under water-deficit conditions.
Collapse
|
14
|
Ku YS, Wang Z, Duan S, Lam HM. Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe-Plant Interactions. BIOLOGY 2021; 10:biology10060477. [PMID: 34071379 PMCID: PMC8227670 DOI: 10.3390/biology10060477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Rhizosphere, where microbes and plants coexist, is a hotspot of mobile genetic element (MGE) transfers. It was suggested that ancient MGE transfers drove the evolution of both microbes and plants. On the other hand, recurrent MGE transfers regulate microbe-plant interaction and the adaptation of microbes and plants to the environment. The studies of MGE transfers in the rhizosphere provide useful information for the research on pathogenic/ beneficial microbe-plant interaction. In addition, MGE transfers between microbes and the influence by plant root exudates on such transfers provide useful information for the research on bioremediation. Abstract The transfer of mobile genetic elements (MGEs) has been known as a strategy adopted by organisms for survival and adaptation to the environment. The rhizosphere, where microbes and plants coexist, is a hotspot of MGE transfers. In this review, we discuss the classic mechanisms as well as novel mechanisms of MGE transfers in the rhizosphere. Both intra-kingdom and cross-kingdom MGE transfers will be addressed. MGE transfers could be ancient events which drove evolution or recurrent events which regulate adaptations. Recent findings on MGE transfers between plant and its interacting microbes suggest gene regulations brought forth by such transfers for symbiosis or defense mechanisms. In the natural environment, factors such as temperature and soil composition constantly influence the interactions among different parties in the rhizosphere. In this review, we will also address the effects of various environmental factors on MGE transfers in the rhizosphere. Besides environmental factors, plant root exudates also play a role in the regulation of MGE transfer among microbes in the rhizosphere. The potential use of microbes and plants for bioremediation will be discussed.
Collapse
|