1
|
Wangchuk S, Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Numnuam A, Kanatharana P, Thavarungkul P, Limbut W. Cuprous oxide-functionalized activated porous carbon-modified screen-printed carbon electrode integrated with a smartphone for portable electrochemical nitrate detection. Talanta 2025; 287:127581. [PMID: 39837205 DOI: 10.1016/j.talanta.2025.127581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Nitrate (NO3-) is a widespread contaminant in drinking water. An electrochemical NO3- sensor was developed based on a first-time application of materials. Activated porous carbon (APC) was synthesized by carbonizing orange peel (OP) activated with KOH. Cuprous oxide crystals were uniformly decorated by electrodeposition on a screen-printed carbon electrode modified with the synthesized APC (Cu2O@APC/SPE). The modified electrode was integrated with a portable potentiostat interfaced with a smartphone to create a chronoamperometric nitrate sensor. The modified electrodes were structurally and morphologically characterized using conventional techniques, while electrochemical tests were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). The electrode material exhibited a highly porous structure, large accessible active surface areas, and excellent conductivity, which enhanced electrocatalytic performances. The developed NO3- sensor displayed a wide linear range (4-1000 μM) and a low limit of detection (LOD) of 1.2 μM. The sensor demonstrated good precision, selectivity, and reasonable recoveries. The real-world application of the NO3- sensor was validated using water samples. The sensor shows promise for applications in pharmaceuticals, agriculture, forensic investigations, and environmental monitoring.
Collapse
Affiliation(s)
- Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Physical Sciences, Sherubtse College, Royal University of Bhutan, Kanglung, 42002, Trashigang, Bhutan
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kritsada Samoson
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Apon Numnuam
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Xu C, Wang Y, Ma X, Wang X, Yang Y, Zhang Q. High-efficient removal of tebuconazole from aqueous solutions using P-doped corn straw biochar: Performance, mechanism and application. BIORESOURCE TECHNOLOGY 2024; 412:131387. [PMID: 39214180 DOI: 10.1016/j.biortech.2024.131387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Due to the serious threat posed by tebuconazole to the aquatic ecosystem, it is imperative to develop a highly efficient adsorbent material for the sustainable remediation of tebuconazole-contaminated water. Herein, a phosphorus (P)-doped biochar from corn straw and H3PO4 was fabricated by one-step pyrolysis for tebuconazole adsorption. Results showed that the P-doped biochar produced at 500℃ (PBC500) possesses a large specific surface area (SSA=869.6 m2/g), abundant surface functional groups, and the highest tebuconazole adsorption capacity (429.6 mg/g). The adsorption of tebuconazole on PBC500 followed pseudo-second-order kinetics and Langmuir adsorption isotherm models. Thermodynamic calculations indicated that the adsorption of tebuconazole by PBC500 was a spontaneous, endothermic process with a random increase. Adsorption mechanism mainly involves pore filling, π-π interactions, hydrogen bonding, and hydrophobic interaction. Moreover, PBC500 demonstrated robust anti-interference capabilities in adsorbing tebuconazole from diverse water sources and exhibited excellent reusability, underscoring its potential for a broad array of practical applications.
Collapse
Affiliation(s)
- Congling Xu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanhui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Xiaoxia Ma
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyu Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingming Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Zhang Y, Wang Y, Dong Z, Wang Y, Liu Y, Cao X, Zhang Z, Xu C, Wang N, Liu Y. Boosting uranium extraction from Seawater by micro-redox reactors anchored in a seaweed-like adsorbent. Nat Commun 2024; 15:9124. [PMID: 39443537 PMCID: PMC11500014 DOI: 10.1038/s41467-024-53366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Efficient extraction of uranium from seawater is expected to provide virtually infinite fuel sources to power nuclear reactors and thus enable sustainable development of nuclear energy. The extraction efficiency for uranium greatly depends on the availability of active adsorption sites on the adsorbents. Maximization of the utilization rate of the binding sites in the adsorbent is vital for improving adsorption capacity. Herein, micro-redox reactors functioned by Cu(I)/Cu(II) conversion are constructed internally in an adsorbent bearing both amidoxime and carboxyl groups to induce active regeneration of the inactivated binding sites to enhance uranium capture. This adsorbent has high adsorption capacity (962.40 mg-U/g-Ads), superior anti-fouling ability as well as excellent uranium uptake (14.62 mg-U/g-Ads) in natural seawater after 56 days, placing it at the top of high-performance sorbent materials for uranium harvest from seawater.
Collapse
Affiliation(s)
- Yinshan Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Yingcai Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China.
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Yuhui Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, PR China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou, Hainan, PR China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China.
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China.
| |
Collapse
|
4
|
Ding L, Tao C, Zhang S, Zheng B, Dang Z, Zhang L. One-step synthesis of phospho-rich, silica-enhanced chitosan aerogel for the efficient adsorption of uranium(VI). Int J Biol Macromol 2024; 259:129101. [PMID: 38163503 DOI: 10.1016/j.ijbiomac.2023.129101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this study, an amorphous silica reinforced, phosphoric-crosslinked chitosan foam (P-CTS@SixOy) was prepared. The introduction of amorphous silica not only increased the affinity of the adsorbent for uranium, but also improved the stability of the material. The number of active sites of P-CTS@SixOy was increased by the introduction of phosphate groups. The material exhibited excellent uranium adsorption performance with the removal capacity and efficiency of 850.5 mg g-1 and 98.1 %, respectively. After regenerations, the morphology of P-CTS@SixOy still maintained, and the uranium adsorption efficiency remained above 90 %, manifesting the excellent cycle performance of P-CTS@SixOy. In the dynamic adsorption experiment, P-CTS@SixOy successfully concentrated the volume of uranium-containing solution, and exhibited excellent uranium adsorption performance. The analysis of kinetics, isotherms, and thermodynamics manifested that the uranium adsorption behavior of P-CTS@SixOy was a spontaneous, endothermic, monolayer chemical adsorption process. X-ray photoelectron spectroscopy, Scanning Electron Microscope, and Fourier Transform Infrared Spectrometer were used to characterized the P-CTS@SixOy before and after adsorption, which demonstrated that the main interaction mechanism between uranium and P-CTS@SixOy was the complexation. These studies indicated the huge application prospect of P-CTS@SixOy in the treatment of large-scale uranium-containing wastewater.
Collapse
Affiliation(s)
- Ling Ding
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Chaoyou Tao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Shuai Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China.
| | - Bowen Zheng
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Zhenhua Dang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China.
| |
Collapse
|
5
|
Shu D, Zhang J, Ruan R, Lei H, Wang Y, Moriko Q, Zou R, Huo E, Duan D, Gan L, Zhou D, Zhao Y, Dai L. Insights into Preparation Methods and Functions of Carbon-Based Solid Acids. Molecules 2024; 29:247. [PMID: 38202830 PMCID: PMC10780815 DOI: 10.3390/molecules29010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
With the growing emphasis on green chemistry and the ecological environment, researchers are increasingly paying attention to greening materials through the use of carbon-based solid acids. The diverse characteristics of carbon-based solid acids can be produced through different preparation conditions and modification methods. This paper presents a comprehensive summary of the current research progress on carbon-based solid acids, encompassing common carbonization methods, such as one-step, two-step, hydrothermal, and template methods. The composition of carbon source material may be the main factor affecting its carbonization method and carbonization temperature. Additionally, acidification types including sulfonating agent, phosphoric acid, heteropoly acid, and nitric acid are explored. Furthermore, the functions of carbon-based solid acids in esterification, hydrolysis, condensation, and alkylation are thoroughly analyzed. This study concludes by addressing the existing drawbacks and outlining potential future development prospects for carbon-based solid acids in the context of their important role in sustainable chemistry and environmental preservation.
Collapse
Affiliation(s)
- Dong Shu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (D.S.); (J.Z.); (L.G.); (D.Z.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (D.S.); (J.Z.); (L.G.); (D.Z.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA;
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA; (H.L.); (Q.M.); (R.Z.)
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Qian Moriko
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA; (H.L.); (Q.M.); (R.Z.)
| | - Rongge Zou
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA; (H.L.); (Q.M.); (R.Z.)
| | - Erguang Huo
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Dengle Duan
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Lu Gan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (D.S.); (J.Z.); (L.G.); (D.Z.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Dan Zhou
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (D.S.); (J.Z.); (L.G.); (D.Z.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yunfeng Zhao
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (D.S.); (J.Z.); (L.G.); (D.Z.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA;
| |
Collapse
|
6
|
Zeng T, Yu H, Luo D, Guan H, He H, Zhang C. Ultrathick GeP Anode To Balance the Extreme Load and Compliance for High Areal Capacity Flexible Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55779-55789. [PMID: 37991386 DOI: 10.1021/acsami.3c12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The ever-growing application of miniaturized electric devices calls for the manufacturing of energy storage systems with a high areal energy density. Thick electrode design is a promising strategy to acquire high areal energy density by enhancing active mass loading and minimizing inactive components. However, the sluggish reaction kinetics and poor electrode mechanical stability that are accompanied by the increased electrode thickness remain unsolved problems. Herein, for the first time, we propose a novel chemical cross-linking strategy to fabricate GeP thick electrodes with adjustable electrode thicknesses and active mass loadings for high areal capacity sodium-ion batteries (SIBs). The chemical cross-linking between carboxylic multiwalled carbon nanotubes (CNTs) and pyrolysis cellulose nanofibers (CNFs) forms a 3D network that encloses GeP nanoparticles, which guarantees fast charge transfer, efficient stress relief, and alleviated volume expansion/shrinkage of the electrode. The hierarchical porous structure generates numerous interconnected channels for unfettered Na+ diffusion, ensuring uncompromised reaction kinetics as the electrode thickness increases. As a result, the ultrathick 1031 μm GeP@C-CNTs-CNFs electrode featuring a mass loading of 18.3 mg cm-2 delivers an ultrahigh areal capacity of 10.58 mAh cm-2 accompanied by superior cycling stability, which outperforms all reported Ge-based electrodes (generally below 1.5 mAh cm-2). This work sheds insightful light on designing high areal capacity flexible thick electrodes for the applications of miniaturized electric devices.
Collapse
Affiliation(s)
- Tianbiao Zeng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huaibo Yu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Dan Luo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huibin Guan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Khosrowshahi MS, Mashhadimoslem H, Shayesteh H, Singh G, Khakpour E, Guan X, Rahimi M, Maleki F, Kumar P, Vinu A. Natural Products Derived Porous Carbons for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304289. [PMID: 37908147 PMCID: PMC10754147 DOI: 10.1002/advs.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 11/02/2023]
Abstract
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.
Collapse
Affiliation(s)
- Mobin Safarzadeh Khosrowshahi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hadi Shayesteh
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Elnaz Khakpour
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Mohammad Rahimi
- Department of Biosystems EngineeringFaculty of AgricultureFerdowsi University of MashhadMashhad9177948974Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyNo. 424, Hafez StTehran15875‐4413Iran
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| |
Collapse
|
8
|
Zhang Y, Jiang Y, Bai S, Dong Z, Cao X, Wei Q, Wang Y, Zhang Z, Liu Y. Ultra-fast uranium capture via the synergistic interaction of the intrinsic sulfur atoms and the phosphoric acid groups adhered to edge sulfur of MoS 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131745. [PMID: 37295327 DOI: 10.1016/j.jhazmat.2023.131745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
In order to deal with the sudden nuclear leakage event to suppress the spread of radioactive contaminants in a short period of time, it is extremely urgent needed to explore an adsorbent that could be capable of in-situ remedial actions to rapidly capture the leaked radionuclides in split second. An adsorbent was developed that MoS2 via ultrasonic to expose more surface defects afterwards functionalized by phosphoric acid resulting in more active sites being endowed on the edge S atoms of Mo-vacancy defects, while simultaneously increased the hydrophilicity and interlayer spacing. Hence, an overwhelming fast adsorption rates (adsorption equilibrium within 30 s) are presented and place the MoS2-PO4 at the top of performing sorbent materials. Moreover, the maximum capacity calculated from Langmuir model is as high as 354.61 mg·g-1, the selective adsorption capacity (SU) achieving 71.2% in the multi-ion system and with more than 91% capacity retention after 5 cycles of recycling. Finally, XPS and DFT insight into the adsorption mechanism, which can be explained as interaction of UO22+ on the surface of MoS2-PO4 by forming U-O and U-S bonds. The successful fabrication of such a material may provide a promising solution for emergency treatment of radioactive wastewater during nuclear leakage events.
Collapse
Affiliation(s)
- Yinshan Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yuanping Jiang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Shuxuan Bai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Qianglin Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Yingcai Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China.
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China; Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| |
Collapse
|
9
|
Tang Z, Dai Z, Gong M, Chen H, Zhou X, Wang Y, Jiang C, Yu W, Li L. Efficient removal of uranium(VI) from aqueous solution by a novel phosphate-modified biochar supporting zero-valent iron composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40478-40489. [PMID: 36609758 DOI: 10.1007/s11356-022-25124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is an important strategic resource as well as a heavy metal element with both chemical and radiotoxicity. At present, the rapid and efficient removal of uranium from wastewater remains a huge challenge for environmental protection and ecological security. In this paper, phosphate-modified biochar supporting nano zero-valent iron (PBC/nZVI) was triumphantly prepared and fully characterized. The introduction of polyphosphate can greatly increase the specific surface area of biochar pores, and then the zero-valent iron can be evenly distributed on the surface of material, thus leading to excellent removal performance of the PBC/nZVI for U(VI). The theoretical maximum U(VI) removal capacity of PBC/nZVI was up to 967.53 mg/g at pH 5. The results of adsorption kinetics, isotherm, and thermodynamics showed that the adsorption of uranium by PBC/nZVI was a monolayer physical adsorption and endothermic reaction. And the PBC/nZVI has favorable selectivity toward uranium against the interference of coexisting metal ions. Further mechanism studies show that the excellent uranium removal performance of PBC/nZVI is mainly attributed to the synergistic effect of physical adsorption and chemical reduction. This work proves that the PBC/nZVI has a wide application prospect in the field of uranium wastewater treatment.
Collapse
Affiliation(s)
- Ziwei Tang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhongran Dai
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mi Gong
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Hong Chen
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiayu Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yating Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Cong Jiang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Wanying Yu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Le Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Hengyang Key Laboratory for Comprehensive Prevention and Control of Uranium Contamination and its Health Hazards, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Provincial Key Laboratory for Typical Environment Pollution and Health Hazard, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Xu X, Xie Y, Guo P, Shi Y, Sun M, Zhou J, Wang C, Han C, Liu J, Li T. Facile synthesis of novel helical imprinted fibers based on zucchini-derived microcoils for efficient recognition of target protein in biological sample. Food Chem 2023; 404:134645. [DOI: 10.1016/j.foodchem.2022.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
11
|
Zhang X, Liu R, Wang H, Liu L, Yue C. Fabrication of Phosphate-Containing Mesoporous Carbon for Fast and Efficient Uranium (VI) Extraction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Microbial mediated synthesis of lanthanum-modified seed crystals and their application for removal of phosphorus and calcium from domestic wastewater. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Liu Y, Xu Z, Xia C, Hu B, Zeng W, Zhu Y. Extremely effective removal of U(VI) from aqueous solution by 3D flower-like calcium phosphate synthesized using mussel shells and rice bran. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Liu C, Li Y, Liu S, Zhou Y, Liu D, Fu C, Ye L, Fu Y. UO22+ capture using amidoxime grafting low-cost activated carbon (AO-AC) from solution: Adsorption kinetic, isotherms and interaction mechanism. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ma M, Deng H, Ren Z, Zhong X. High-speed and efficient removal of uranium (VI) from aqueous solution by hydroxyapatite-modified ordered mesoporous carbon (CMK-3). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78989-79001. [PMID: 35704231 DOI: 10.1007/s11356-022-21351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the synthesis and application of green, cost-effective, and sustainable materials for uranium (VI) removal was significant to environmental protection. The ordered mesoporous carbon (CMK-3) supported different mass of hydroxyapatite materials (HAP@CMK-3) were facilely synthesized via hydrothermal method. The resultant materials were characterized by XRD, FT-IR, BET, SEM, TEM mapping, and XPS, and implemented for immobilizing U(VI). Not only the specific surface area of HAP (7.01 m2/g) was increased by the loading on CMK-3 (818.37 m2/g), but also the adsorption capacity of CMK-3 was increased by HAP modification. Impressively, HAP@CMK-3 exhibited highly adsorption capacity of U(VI) with the increase of HAP deposition and was capable of achieving fast reaction. Therein to, the specific surface area of HAP@CMK-3(2:1) was 253.68 m2/g, as well as the adsorption capacity was up to 1072 mg/g (fitted by Langmuir isotherm, at pH=3.0, 298 K) and the adsorption process was completed in 30 min (followed by pseudo-second-order kinetic). The adsorption mechanisms of U(VI) on HAP@CMK-3 involved electrostatic forces, ionic interactions, and chemical complexation. This work offered new avenues to address the limitations of cost and less secondary pollution for the removal of U(IV) from wastewater.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Hao Deng
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Zhenyu Ren
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Xin Zhong
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
16
|
Xin Q, Wang Q, Gan J, Lei Z, Hu E, Wang H, Wang H. Enhanced performance in uranium extraction by the synergistic effect of functional groups on chitosan-based adsorbent. Carbohydr Polym 2022; 300:120270. [DOI: 10.1016/j.carbpol.2022.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022]
|
17
|
Liu C, Li Y, Liu S, Zhou Y, Liu D, Fu C, Ye L. Efficient extraction of UO22+ from seawater by polyethylenimine functionalized activated carbon (PEI-AC): adsorption performance and mechanism. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Sun Y, Yuan N, Ge Y, Ye T, Yang Z, Zou L, Ma W, Lu L. Adsorption behavior and mechanism of U(VI) onto phytic Acid-modified Biochar/MoS2 heterojunction materials. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Nie X, Zhang Y, Jiang Y, Pan N, Liu C, Wang J, Ma C, Xia X, Liu M, Zhang H, Li X, Dong F. Efficient extraction of U(VI) from uranium enrichment process wastewater by amine-aminophosphonate-modified polyacrylonitrile fibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154743. [PMID: 35337879 DOI: 10.1016/j.scitotenv.2022.154743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The enrichment and recovery of U(VI) from low-level radioactive wastewater in the process of uranium enrichment is important for the sustainable development of nuclear energy and environmental protection. Herein, a novel amine-aminophosphonate bifunctionalized polyacrylonitrile fiber (AAP-PAN), was prepared for the extraction of U(VI) from simulated and real uranium-containing process wastewater. The AAP-PAN fiber demonstrated a maximum adsorption capacity of 313.6 mg g-1 at pH = 6.0 and 318 K in the batch experiments. During the dynamic column experiment, over 99.99% removal of U(VI) could be achieved by the fiber using multi-ion simulated solution and real wastewater with an excellent saturation adsorption capacity of 132.0 mg g-1 and 72.5 mg g-1, respectively. It also exhibited an outstanding reusability for at least 5 cycles of adsorption process. The mechanism for U(VI) removal was studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis in the assist of simulation calculation. It suggested that the amine and aminophosphonate groups can easily bind uranyl ions due to U(VI) is more likely to combine with oxygen atoms of CO and PO, respectively.
Collapse
Affiliation(s)
- Xiaoqin Nie
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yujing Zhang
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yating Jiang
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China
| | - Chang Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Junling Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China
| | - Chunyan Ma
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China
| | - Xue Xia
- National Coinnovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hongping Zhang
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoan Li
- Mianyang Central Hospital, NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang 621000, China.
| | - Faqin Dong
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
20
|
Fu H, Wang L, Bao Q, Ni D, Hu P, Shi J. Acid Neutralization and Immune Regulation by Calcium-Aluminum-Layered Double Hydroxide for Osteoporosis Reversion. J Am Chem Soc 2022; 144:8987-8999. [PMID: 35549335 DOI: 10.1021/jacs.2c00749] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Osteoporosis is a kind of global chronic bone disease characterized by progressive loss of bone mass and bone quality reduction, leading to a largely increased risk of bone fragility. In clinics, the current treatment of osteoporosis relies on the inhibition of bone damage by osteoclasts but ignores the function of immune cells in the progress of osteoporosis, leading to much compromised therapeutic efficacy. In this work, a highly effective osteoporosis-immunotherapeutic modality is established for the treatment of osteoporosis based on acid neutralization in synergy with immune microenvironment regulation by a specially designed nanocatalytic medicine, calcein functionalized calcium-aluminum-layered double hydroxide (CALC) nanosheets. Briefly, the mildly alkaline CALC nanosheets could neutralize the acidic microenvironment of osteoporosis accompanying the acidity-responsive LDH degradation. Subsequently, calcium phosphate nanoparticles (CAPs) are generated by the reaction between the released Ca2+ from LDH degradation and endogenous phosphates, resulting in M2 phenotype anti-inflammatory differentiation of bone macrophages through a c-Maf transcriptional factor pathway and the following activity enhancements of regulatory T cells (Treg) and the deactivation of T helper 17 cells (TH17). Both in vitro and in vivo results show an excellent therapeutic efficacy on osteoporosis featuring a significant BV/TV (%) enhancement of femurs from 6.2 to 10.7, demonstrating high feasibility of this therapeutic concept through the combined acid neutralization and immune regulation. Such an inorganic nanomaterial-based strategy provides a novel, efficient, and biosafe therapeutic modality for intractable osteoporosis treatment, which will benefit patients suffering from osteoporosis.
Collapse
Affiliation(s)
- Hao Fu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Lingtian Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Qunqun Bao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Ping Hu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| |
Collapse
|
21
|
Sakr AK, Al-Hamarneh IF, Gomaa H, Abdel Aal MM, Hanfi MY, Sayyed M, Khandaler MU, Cheira MF. Removal of uranium from nuclear effluent using regenerated bleaching earth steeped in β‒naphthol. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Shi J, Gao Z. Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150341. [PMID: 34563912 DOI: 10.1016/j.scitotenv.2021.150341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A new hypothesis that seed crystals (SC) and bacteria based on microbially induced calcium precipitation (MICP) synergistically remove fluoride (F-) from groundwater was proposed, with a focus on evaluating the defluoridation potential of this method and revealing its F- removal mechanism. The crucial conditions were optimized to reduce preparation and operation costs. SC furnished more available binding sites due to the existence of bacteria, and the reuse experiments showed that the defluoridation efficiency of SC still remained a high level after 14 cycles (70.10%), with a residual F- concentration of 0.96 mg L-1. The SEM-EDS, FTIR and XRD analyses indicated the predominant F- removal mechanism of SC could be ascribed to the chemisorption, ion exchange, and co-precipitation. Moreover, ion exchange and co-precipitation (PO43- involvement) were validated more contributive than chemisorption (CaCO3 and CaSO4 involvement). As a feasible, reusable, and eco-friendly technique, SC suggests promising applications in the treatment of fluoride-contaminated groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
23
|
Lei J, Lin J, Zhan Y, Zhang Z, Ma J. Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113471. [PMID: 34358942 DOI: 10.1016/j.jenvman.2021.113471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness and mechanism of aluminum/iron co-modified calcite (Al/Fe-CA) for the control of phosphorus (P) liberation from sediments was investigated. The results showed that Al/Fe-CA possessed good sorption performance for phosphate, and the maximum phosphate sorption capacity for Al/Fe-CA could reach 27.0 mg/g. The major mechanisms involved the surface adsorption of phosphate on calcite, the precipitation between phosphate and Ca2+ leached from calcite, and the ligand exchange between Al/Fe-bound hydroxyl groups and phosphate to form the Al-O-P and Fe-O-P inner-sphere complexes. The re-releasing risk of Al/Fe-CA-bound P under the circumstances of normal pH (5-9) and reducing environment was very low. Al/Fe-CA addition could significantly reduce the risk of P releasing from sediment to overlying water (OL-water), and the inactivation of mobile P, reactive soluble P (SRP) and diffusive gradient in thin-films (DGT)-labile P in sediment by Al/Fe-CA had a great part in the suppression of sediment-P liberation to OL-water by the Al/Fe-CA amendment. Al/Fe-CA capping and fabric-wrapped Al/Fe-CA capping both could greatly reduce the risk of P releasing from sediment into OL-water, and the formation of a static layer with low concentrations of SRP and DGT-labile P in the upper sediment was the key to sustaining a high P controlling efficiency. When the applied mode of Al/Fe-CA varied from capping to amendment, although the inactivation efficiency of DGT-labile P in the overlying water and upper sediment by Al/Fe-CA would decrease to a certain degree, the inactivation efficiency of DGT-labile P in the lower sediment by Al/Fe-CA would increase. Results of this study suggest that Al/Fe-CA has the high potential to be used as an active capping or amendment material for the management of internal P loading in surface water bodies.
Collapse
Affiliation(s)
- Jiajia Lei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jiawen Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|