1
|
Wang Z, Wang Q, Gong X. Unveiling the Mysteries of Contrast-Induced Acute Kidney Injury: New Horizons in Pathogenesis and Prevention. TOXICS 2024; 12:620. [PMID: 39195722 PMCID: PMC11360536 DOI: 10.3390/toxics12080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
The utilization of contrast media (CM) in clinical diagnostic imaging and interventional procedures has escalated, leading to a gradual increase in the incidence of contrast-induced acute kidney injury (CI-AKI). Presently, the scarcity of effective pharmacological treatments for CI-AKI poses significant challenges to clinical management. Firstly, we explore the pathogenesis of CI-AKI in this review. Beyond renal medullary ischemia and hypoxia, oxidative stress, cellular apoptosis, and inflammation, emerging mechanisms such as ferroptosis, release of neutrophil extracellular traps (NETs), and nitrosative stress, which offer promising avenues for the management of CI-AKI, are identified. Secondly, a comprehensive strategy for the early prevention of CI-AKI is introduced. Investigating the risk factors associated with CI-AKI is essential for the timely identification of high-risk groups. Additionally, exploring early sensitive biomarkers is crucial for early diagnosis. A synergistic approach that combines these sensitive biomarkers, CI-AKI risk factors, and disease risk prediction models enhances both the accuracy and efficiency of early diagnostic processes. Finally, we explore recent pharmacological and non-pharmacological interventions for the management of Cl-AKI. Beyond the traditional focus on the antioxidant N-acetylcysteine (NAC), we look at active compounds from traditional Chinese medicine, including tetramethylpyrazine (TMP), salvianolic acid B (Sal B), as well as emerging preventive medications like N-acetylcysteine amide (NACA), alprostadil, and others, which all showed potential benefits in animal and clinical studies for CI-AKI prevention. Furthermore, innovative strategies such as calorie restriction (CR), enhanced external counterpulsation (EECP), and mesenchymal stem cell therapy are highlighted as providing fresh insights into Cl-AKI prevention and management.
Collapse
Affiliation(s)
| | | | - Xuezhong Gong
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; (Z.W.); (Q.W.)
| |
Collapse
|
2
|
Yin F, Zhang X, Zhang Z, Zhang M, Yin Y, Yang Y, Gao Y. ERK/PKM2 Is Mediated in the Warburg Effect and Cell Proliferation in Arsenic-Induced Human L-02 Hepatocytes. Biol Trace Elem Res 2024; 202:493-503. [PMID: 37237135 DOI: 10.1007/s12011-023-03706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
This study aimed to investigate the potential role of pyruvate kinase M2 (PKM2) and extracellular regulated protein kinase (ERK) in arsenic-induced cell proliferation. L-02 cells were treated with 0.2 and 0.4 μmol/L As3+, glycolysis inhibitor (2-deoxy-D-glucose,2-DG), ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)-butadiene, U0126] or transfected with PKM2 plasmid. Cell viability, proliferation, lactate acid production, and glucose intake capacity were determined by CCK-8 assay, EdU assay, lactic acid kit and 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) uptake kit, respectively. Also, levels of PKM2, phospho-PKM2S37, glucose transporter protein 1 (GLUT1), lactate dehydrogenase A (LDHA), ERK, and phospho-ERK were detected using Western blot and the subcellular localization of PKM2 in L-02 cells was detected by immunocytochemistry (ICC). Treatment with 0.2 and 0.4 μmol/L As3+ for 48 h increased the viability and proliferation of L-02 cells, the proportion of 2-NBDG+ cell and lactic acid in the culture medium, and GLUT1, LDHA, PKM2, phospho-PKM2S37, and phospho-ERK levels and PKM2 in nucleus. Compared with the 0.2 μmol/L As3+ treatment group, the lactic acid in the culture medium, cell proliferation and cell viability, and the expression of GLUT1 and LDHA were reduced in the group co-treated with siRNA-PKM2 and arsenic or in the group co-treated with U0126. Moreover, the arsenic-increased phospho-PKM2S37/PKM2 was decreased by U0126. Therefore, ERK/PKM2 plays a key role in the Warburg effect and proliferation of L-02 cells induced by arsenic, and also might be involved in arsenic-induced upregulation of GLUT1 and LDHA. This study provides a theoretical basis for further elucidating the carcinogenic mechanism of arsenic.
Collapse
Affiliation(s)
- Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yunyi Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
3
|
Liu L, Yu C, Ahmad S, Ri C, Tang J. Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118546. [PMID: 37418916 DOI: 10.1016/j.jenvman.2023.118546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Chen Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shakeel Ahmad
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China
| | - Cholnam Ri
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Process and Environmental Criteria, Nankai University, Tianjin, 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Si B, Wang X, Liu Y, Wang J, Zhou Y, Nie Y, Xu A. Multi-locus deletion mutation induced by silver nanoparticles: Role of lysosomal-autophagy dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114947. [PMID: 37105094 DOI: 10.1016/j.ecoenv.2023.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Due to the rapid production growth and a wide range of applications, safety concerns are being raised about the genotoxic properties of silver nanoparticles (AgNPs). In this research, we found AgNPs induced a size-dependent genotoxicity via lysosomal-autophagy dysfunction in human-hamster hybrid (AL) cells. Compared with 25 nm and 75 nm particles, 5 nm AgNPs could accentuate the genotoxic responses, including DNA double-strand breaks (DSBs) and multi-locus deletion mutation, which could be significantly enhanced by autophagy inhibitors 3-methyl adenine (3-MA), Bafilomycin A1 (BFA), and cathepsin inhibitors, respectively. The autophagy dysfunction was closely related to the accumulation of 5 nm AgNPs in the lysosomes and the interruption of lysosome-autophagosome fusion. With lysosomal protective agent 3-O-Methylsphingomyelin (3-O-M) and endocytosis inhibitor wortmannin, the reactivation of lysosomal function and the recovery of autophagy significantly attenuated AgNP-induced genotoxicity. Our data provide clear evidence to illustrate the role of subcellular targets in the genotoxicity of AgNPs in mammalian cells, which laid the basis for better understanding the health risk of AgNPs and their related products.
Collapse
Affiliation(s)
- Bo Si
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yemian Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
5
|
Jing H, Yan N, Fan R, Li Z, Wang Q, Xu K, Hu X, Zhang L, Duan X. Arsenic Activates the NLRP3 Inflammasome and Disturbs the Th1/Th2/Th17/Treg Balance in the Hippocampus in Mice. Biol Trace Elem Res 2022; 201:3395-3403. [PMID: 36100822 DOI: 10.1007/s12011-022-03421-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
Arsenic exerts neurotoxicity and immunomodulatory effects. Studies have shown that the nervous system is not considered to be an immune-privileged site. However, the effect of arsenic-induced neuroimmune toxicity has rarely been reported. We aimed to investigate the toxic effects of arsenic on the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and the Th1/Th2/Th17/Treg balance in the brain tissue of mice. Mice were exposed to NaAsO2 (0, 2.5, 5, and 10 mg/kg) for 24 h. Our results showed that 10 mg/kg arsenic exposure significantly decreased brain and hippocampal indices (p < 0.05). The mRNA and protein levels of the blood‒brain barrier (BBB) tight junction protein occludin were decreased in the 5 and 10 mg/kg arsenic-treated groups. Compared with those in the control group, NLRP3 protein levels in 10 mg/kg arsenic-treated mice, caspase-1 protein levels in 2.5, 5, and 10 mg/kg arsenic-treated mice, and IL-1β protein levels in 5 and 10 mg/kg arsenic-treated mice were increased in the hippocampus (p < 0.05). In addition, arsenic induced a hippocampal inflammatory response by upregulating the mRNA levels of the proinflammatory factors IL-6 and TNF-α and downregulating the mRNA level of the anti-inflammatory factor IL-10. Moreover, arsenic decreased the mRNA levels of the Th1 and Th2 transcription factors T-bet and GATA3 and the cytokines IFN-γ and IL-4 and increased the mRNA levels of the Th17 transcription factor RORγt and the cytokine IL-22 (p < 0.05). Collectively, our study demonstrated that arsenic could induce immune-inflammatory responses by regulating the NLRP3 inflammasome and CD4+ T lymphocyte differentiation. These results provide a novel strategy to block the arsenic-induced impairment of neuroimmune responses.
Collapse
Affiliation(s)
- Hui Jing
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, China
| | - Ronghua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Zhou Li
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Xinkang Hu
- Clinical Medicine ("5+3" integrated Training), The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
6
|
Tracking cellular transformation of As(III) in HepG2 cells by single-cell focusing/capillary electrophoresis coupled to ICP-MS. Anal Chim Acta 2022; 1226:340268. [DOI: 10.1016/j.aca.2022.340268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
|
7
|
Wang X, Xu A, Liu Y. Combined biological effects of silver nanoparticles and heavy metals in different target cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16324-16331. [PMID: 34651267 DOI: 10.1007/s11356-021-16395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) and heavy metals are considered to coexist in the environment. Increasing evidence shows that AgNPs can interact with heavy metals; however, the impact of distinct exposure conditions on their combined toxicity is still largely unknown. Here, we investigated the co-effects of AgNPs and heavy metals, including arsenic (As), cadmium (Cd), and nickel (Ni), in target cell lines. The results demonstrated that pretreated with polyvinylpyrrolidone-coated (PVP-coated) AgNPs at noncytotoxic concentrations significantly inhibited the cytotoxicity of As and Cd in human-hamster hybrid AL cells, but had slight effect on the toxicity of Ni. The antagonistic effects have also been observed in other non-cancerous cell lines, such as Chinese hamster ovary (CHO) cells, mouse embryonic fibroblasts (MEFs), and human normal liver (LO2) cells. In addition, the co-effects between AgNPs and heavy metals are independent of surface coatings of AgNPs. Our data revealed that the combined biological effects of AgNPs and heavy metals are closely related to the physicochemical properties of heavy metals themselves and the tested cell lines.
Collapse
Affiliation(s)
- Xue Wang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Anhui Laboratory of High Magnetic Field, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Anhui Laboratory of High Magnetic Field, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Anhui Laboratory of High Magnetic Field, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China.
| |
Collapse
|