1
|
Zhao M, Guo J, Chen Z, Wang F. A disposable electrochemical magnetic immunosensor for the rapid and sensitive detection of 5-formylcytosine and 5-carboxylcytosine in DNA. Biosens Bioelectron 2024; 262:116547. [PMID: 38968775 DOI: 10.1016/j.bios.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
5-formylcytosine (5 fC) and 5-carboxylcytosine (5caC) serve as key intermediates in DNA demethylation process with significant implications for gene regulation and disease progression. In this study, we introduce a novel electrochemical sensing platform specifically designed for the sensitive and selective detection of 5 fC and 5caC in DNA. Protein A-modified magnetic beads (ProtA-MBs) coupled with specific antibodies facilitate the immunorecognition and enrichment of these modified bases. Signal amplification is achieved through several chemical reactions involving the interaction between N3-kethonaxl and guanine, copper-free click chemistry for the attachment of dibenzocyclooctyne (DBCO)-Biotin, and the subsequent recognition by streptavidin-conjugated horseradish peroxidase (SA-HRP). The assay's readout is performed on a disposable laser-induced graphene (LIG) electrode, modified with the bead-antibody-DNA complex in a magnetic field, and analyzed using differential pulse voltammetry in a system employing hydroquinone (HQ) as the redox mediator and H2O2 as the substrate. This immunosensor displayed excellent sensitivity, with detection limits of 14.8 fM for 5 fC across a 0.1-1000 pM linear range and 87.4 fM for 5caC across a 0.5-5000 pM linear range, and maintained high selectivity even in the presence of interferences from other DNA modifications. Successful application in quantifying 5 fC and 5caC in genomic DNA from cell extracts, with recovery rates between 97.7% to 102.9%, underscores its potential for clinical diagnostics. N3-kethoxal was used for the first time in an electrochemical sensor. This work not only broadens the toolkit for detecting DNA modifications but also provides a fresh impetus for the development of point-of-care testing (POCT) technologies.
Collapse
Affiliation(s)
- Mei Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Jingyi Guo
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Zilin Chen
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Fang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
3
|
Jiang Y, Ding Q, Yuan R, Liu G, Yuan Y. Photoactive conjugated microporous polymer@C 60 with quencher on tailed Y-triangular DNA structure for high-performance signal-off photoelectrochemical biosensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131724. [PMID: 37257386 DOI: 10.1016/j.jhazmat.2023.131724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Herein, we synthesized a conjugated microporous polymer (CMP) decorated C60 (CMP@C60) with high photoelectric conversion efficiency, in which continuously repeated donor-acceptor (D-A) π electron unit within one molecule of CMP on C60 could not only effectively increase the mobility of photogenerated carriers with improved electron transmission, but also constitute the cascade energy band matching with reduced electron-hole recombination. Based on the high-performance of CMP@C60 for producing exciting initial photoelectrochemical (PEC) signal, a sensitive signal-off sensing platform was designed for lead ion (Pb2+) assay by coupling with quencher methylene blue (MB) interacting on efficient long tailed Y-triangular DNA structure (LYTD). The proposed LYTD with a tripod structure could generate six long tails in situ on its side at the same time via a simple hybridization chain reaction (HCR), providing notably grooves on electrode to accommodate quencher MB to significantly depress the signal for sensitive detection of Pb2+. As a result, the proposed PEC biosensor revealed excellent analysis capability with a low detection limit of 0.3 fM (S/N = 3). Additionally, it also showed satisfactory stability in the detection of tap water samples, lake water samples and clinical serum samples, manifesting great application prospect in the areas of environmental pollutant detection.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Guangpeng Liu
- Chongqing Key Laboratory of Karst Environment, College of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Cao L, Zhou Y, Gao L, Zheng Y, Cui X, Yin H, Wang S, Zhang M, Zhang H, Ai S. Photoelectrochemical biosensor for DNA demethylase detection based on enzymatically induced double-stranded DNA digestion by endonuclease-exonuclease system and Bi 4O 5Br 2-Au/CdS photoactive material. Talanta 2023; 262:124670. [PMID: 37245429 DOI: 10.1016/j.talanta.2023.124670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
A novel photoelectrochemical (PEC) biosensor for the detection of DNA demethylase MBD2 was developed based on Bi4O5Br2-Au/CdS photosensitive material. Bi4O5Br2 was firstly modified with gold nanoparticles (AuNPs), following with the modification onto the ITO electrode with CdS to realize the strong photocurrent response as a result of AuNPs had good conductibility and the matched energy between CdS and Bi4O5Br2. In the presence of MBD2, double-stranded DNA (dsDNA) on the electrode surface was demethylated, which triggered the digestion activity of endonuclease HpaII to cleave dsDNA and induced the further cleavage of the dsDNA fragment by exonuclease III (Exo III), causing the release of biotin labeled dsDNA and inhibiting the immobilization of streptavidin (SA) onto the electrode surface. As a results, the photocurrent was increased greatly. However, in the absence of MBD2, HpaII digestion activity was inhibited by DNA methylation modification, which further caused the failure in the release of biotin, leading to the successful immobilization of SA onto the electrode to realize a low photocurrent. The sensor had a detection of 0.3-200 ng/mL and a detection limit was 0.09 ng/mL (3σ). The applicability of this PEC strategy was assessed by studying the effect of environmental pollutants on MBD2 activity.
Collapse
Affiliation(s)
- LuLu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Lanlan Gao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Suo Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
5
|
Yu X, Chang W, Zhang H, Cai Z, Yang Y, Zeng C. Visual and Real-Time Monitoring of Cd 2+ in Water, Rice, and Rice Soil with Test Paper Based on [2 + 2] Lanthanide Clusters. Inorg Chem 2023; 62:6387-6396. [PMID: 37027515 DOI: 10.1021/acs.inorgchem.3c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Cadmium ions (Cd2+) are highly toxic to animal and human health, especially through the drinking of Cd2+-contaminated water and eating Cd2+-contaminated rice. Therefore, accurate detection of Cd2+ in water, rice, and rice soil is urgent. In this work, two [2 + 2] lanthanide clusters of Tb2Tb2 and Eu2Eu2 were synthesized and characterized in detail. Interestingly, Tb2Tb2 is a rapid sensor for Cd2+ through luminescence "turn-off". Further studies show that Tb2Tb2 is a highly sensitive and selective sensor toward Cd2+ in water, rice supernatants, and rice soil supernatants, with a very short response time of 20 s. The limit of detection (LOD) in the above three real samples is as low as 0.0112, 1.1240, and 0.1124 ppb, respectively, which is lower than the national standards for food safety in China (GB 2762-2022). More interestingly, a portable sensing device of test paper based on Tb2Tb2 is developed with a facile method, which shows visible, highly sensitive, and selective sensing toward Cd2+ in real samples of water, rice supernatants, and rice soil supernatants. Tb2Tb2 and its sensing device of test paper are an on-site analysis sensor for potentially non-expert users, especially for people in remote rural areas.
Collapse
Affiliation(s)
- Xiaobo Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Wenting Chang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hua Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ziyan Cai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chenghui Zeng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
6
|
A "signal-on" photoelectrochemical sensor for human epidermal growth factor receptor 2 detection based on Y6/CdS organic-inorganic heterojunction. Mikrochim Acta 2022; 189:425. [PMID: 36255496 DOI: 10.1007/s00604-022-05489-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/10/2022] [Indexed: 10/24/2022]
Abstract
A "signal-on" photoelectrochemical (PEC) immunosensor was successfully constructed for determination of human epidermal growth factor receptor 2 (HER2) based on organic-inorganic heterojunction Y6/CdS as photoactive material. Compared with single organic semiconductor, Y6, Y6/CdS exhibited higher photoelectric conversion efficiency due to the formation of heterojunction. In the presence of HER2, sandwich immune structure was formed between HER2 aptamer and anti-HER2 antibody (Ab) by specific recognition. The polydopamine (PDA) nanoparticles were used for signal amplification to enhance photocurrent intensity as PDA can act as electron donor to eliminate holes and promote electron-hole pairs separation. The developed PEC sensor displayed a wide detection range of 5-1000 pg mL-1 and a low detection limit of 2.2 pg mL-1 for HER2 (S/N = 3). The sensor was successfully used for the detection of HER2 in serum with recoveries between 94.8 and 104% and relative standard deviations (RSDs) in the range of 1.2-4.3%. Furthermore, the designed immunosensor possessed good stability, selectivity, and reproducibility, which can find potential clinical applications for disease diagnosis. A "signal-on" photoelectrochemical sensor was reported for human epidermal growth factor receptor 2 detection based on Y6/CdS organic-inorganic heterojunction.
Collapse
|
7
|
Li C, Sun X, Zhu Y, Liang W, Nie Y, Shi W, Ai S. Core-shell structural nitrogen-doped carbon foam loaded with nano zero-valent iron for simultaneous remediation of Cd (II) and NAP in water and soil: Kinetics, mechanism, and environmental evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155091. [PMID: 35398127 DOI: 10.1016/j.scitotenv.2022.155091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
An economical, efficient, and environmentally friendly technology was developed for simultaneous remediation of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in soil and water. In this study, using pinecones powder as the precursor, the core-shell structural nitrogen-doped carbon foam loaded with nano zero-valent iron (nZVI@NCF) was synthesized through Mannich reaction and high-temperature carbon reduction. The nZVI@NCF was applied as the adsorbent and catalyst to simultaneously remediate the composite pollutants of Cd (II) and naphthalene (NAP). Under the optimal conditions, the adsorption capacity of Cd (II) in water and soil were 13.9 mg·g-1 and 1.97 mg·g-1, respectively, and the adsorption process conformed to the pseudo-second-order kinetic model. The degradation rates of NAP in water (10 mg·L-1) reached almost 100% as well as it could reach 59.12% in soil (10 mg·kg-1). In addition, it was proved that the presence of NAP could compete with Cd (II) for the active sites on the surface of the material to inhibit the adsorption of Cd (II), while the co-existence of Cd (II) could improve the degradation of NAP by the nZVI@NCF/PMS system due to the nZVI-Cd bimetallic effect and the pro-oxidant effect of Cd (II) promoting the generation of ROS. The free radical quenching experiment revealed that the generated ·O2- was the main substance that mediated the redox of nZVI/Fe2+/Fe3+ to oxidative NAP during the degradation process. Furthermore, the results of the phytotoxicity test demonstrated that the nZVI@NCF/PMS system could effectively remediate the soil co-contaminated with Cd (II) and NAP as well as improve the soil environment quality. This research will provide new materials and potential technologies for the efficient treatment of the composite pollutants in the environment.
Collapse
Affiliation(s)
- Changyu Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xiaoting Sun
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Yifan Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Wenxu Liang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Yongxin Nie
- College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
8
|
Wu T, Du Y, Dai L, Li J, Song X, Feng J, Wang X, Wei Q, Ju H. A Direct Z-Scheme AgBr/CuBi 2O 4 Photocathode for Ultrasensitive Detection of Ciprofloxacin and Ofloxacin by Controlling the Release of Luminol in Self-Powered Microfluidic Photoelectrochemical Aptasensors. Anal Chem 2022; 94:10651-10658. [PMID: 35857412 DOI: 10.1021/acs.analchem.2c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An innovative self-powered microfluidic photoelectrochemical (PEC) aptasensor was developed that uses photoactive AgBr/CuBi2O4 (ACO) composites as the photocathode matrix for ultrasensitive detection of ciprofloxacin (CIP) and ofloxacin (OFL). The formation of direct Z-scheme heterojunctions in ACO composites greatly aided electron/hole pair separation. Meanwhile, ZnIn2S4-decorated CdS nanorod arrays (CZIS) as the photoanode were used instead of a platinum counter electrode to provide electrons. The "signal-off" CIP detection was accomplished through the steric hindrance effect in the photoanode due to the combination of aptamer(CIP) and CIP. To increase the cathodic photocurrent intensity for OFL determination, controlled release of luminol was first used. Luminol molecules were successfully embedded in the porous structure of silicon dioxide nanospheres (PSiO2) by the electrostatic adsorption between PSiO2 and aptamer(OFL). The luminol released by specific recognition between OFL and aptamer(OFL) could not only react with •O2- but also produce chemiluminescence emission, resulting in the "signal-on" state. Because of the signal "on-off-on", the proposed aptasensor exhibited wide linear ranges for CIP (0.001-100 ng/mL) and OFL (0.0005-100 ng/mL) detection. Furthermore, the low detection limits of CIP (0.06 pg/mL) and OFL (0.022 pg/mL) could achieve the ultrasensitive analysis.
Collapse
Affiliation(s)
- Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Jingshuai Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Jinhui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Xueying Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan, Shandong 250022, China.,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag 2S/Ag decorated ZnIn 2S 4/C 3N 4 3D/2D Z-scheme heterostructures and amplified by Au/Cu 2+-boron-nitride nanozyme. Biosens Bioelectron 2022; 203:114048. [PMID: 35121445 DOI: 10.1016/j.bios.2022.114048] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Enzyme-mediated signal amplification strategies have gained substantial attention in photoelectrochemical (PEC) biosensing, while natural enzyme on the photoelectrode inevitably obstructs the interfacial electron transfer, in turn deteriorating the photocurrent responses. Herein, Au nanoparticles and Cu2+-modified boron nitride nanosheets (AuNPs/Cu2+-BNNS) behaved as nanozyme to achieve remarkable magnification in the PEC signals from a novel signal-off aptasensor for ultra-sensitive assay of telomerase (TE) activity based on Ag2S/Ag nanoparticles decorated ZnIn2S4/C3N4 Z-scheme heterostructures (termed as Ag2S/Ag/ZnIn2S4/C3N4, synthesized by hydrothermal treatment). Specifically, telomerase primer sequences (TS) were extended by TE in the presence of deoxyribonucleoside triphosphates (dNTPs), which was directly bond with the thiol modified complementary DNA (cDNA), achieving efficient linkage with the nanozyme via Au-S bond. The immobilized nanoenzyme catalyzed the oxidation between 4-chloro-1-naphthol (4-CN) and H2O2 to generate insoluble precipitation on the photo-electrode. By virtue of the inhibited PEC signals with the TE-enabled TS extension, an aptasensor for assay of TE activity was developed, showing the wide linear range of 50-5×105 cell mL-1 and a low detection limit of 19 cell mL-1. This work provides some valuable guidelines for developing advanced nanozyme-based PEC bioanalysis of diverse cancer cells.
Collapse
|
10
|
Photoelectrochemical detection of microRNAs based on target-triggered self-assembly of energy band position-matched CdS QDs and C 3N 4 nanosheets. Mikrochim Acta 2022; 189:65. [PMID: 35064308 DOI: 10.1007/s00604-022-05168-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
An ultrasensitive photochemical biosensor based on the target miRNA-triggered catalytic hairpin assembly (CHA) reaction between Au nanoparticles (AuNPs)/C3N4 nanosheets and CdS quantum dots (QDs) was developed for the determination of miRNAs. Firstly, AuNPs/C3N4 nanosheets were immobilized onto a working glassy carbon electrode. Then, the hairpin probe 1 (H1) was loaded through Au-S bonding. Afterward, the unbound sites were blocked with 6-mercaptohexanol to avoid nonspecific adsorption. In the presence of the target miRNA, the CHA reaction between the H1 and hairpin probe 2-CdS QDs (H2-CdS QDs) could be triggered. As a result, the AuNPs/C3N4 nanosheet and CdS QDs were linked by the double helix structure H1-H2. Unlike the other CHA reactions, H2 used in this work is longer than H1 so that the AuNPs/C3N4 nanosheets could touch the CdS QDs. Given the matched energy band positions between the C3N4 nanosheet and CdS QDs, a strong photocurrent could be obtained after the CHA reaction was triggered by the target miRNA. In addition, p-type C3N4 nanosheets and n-type CdS QDs presented reduction photocurrents and oxidation photocurrents, respectively. Therefore, the photocurrents were vectors in this design that can eliminate the interference of nonspecific adsorption and avoid the generation of false-positive signals. Under the optimal conditions, the limit of detection was 92 aM. The constructed photoelectrochemical biosensor showed good reproducibility and selectivity in the analysis of serum samples, which indicates its great prospects in disease diagnostics and bioanalysis.
Collapse
|
11
|
Li H, Li Q, Zhao S, Wang X, Li F. Aptamer-Target Recognition-Promoted Ratiometric Electrochemical Strategy for Evaluating the Microcystin-LR Residue in Fish without Interferences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:680-686. [PMID: 35012307 DOI: 10.1021/acs.jafc.1c06476] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the significance of food safety, it is highly urgent to develop a sensitive yet reliable sensor for the practical analysis of algal toxins. As most of the developed sensors are disturbed by interfering substances and the target toxin is detected in a single-signal manner based on the immunoassay technology. Herein, we developed an aptamer-based dual-signal ratiometric electrochemical sensor for the sensitive and accurate analysis of microcystin-LR (MC-LR), using it as a proof-of-concept analyte. Methylene blue-tagged ssDNA (MB-ssDNA) was immobilized at the gold electrode surface accompanied with the absence of ferrocene-tagged ssDNA (Fc-ssDNA), resulting in a high differential pulse voltammetry (DPV) current of MB and a low DPV current of Fc. The recognition of MB-ssDNA by MC-LR stimulated the formation of MC-LR@MB-ssDNA, which induced the removal of MB-ssDNA from the electrode and the exposure of SH-ssDNA, enabling Fc-ssDNA to be captured at the electrode surface via nucleic acid hybridization. In comparison with MC-LR deficiency, the DPV signal of MB dropped along with an improved DPV signal of Fc, contributing to the ratiometric detection of MC-LR, with the limit of detection down to 0.0015 nM. Furthermore, this ratiometric electrochemical sensor was successfully explored to assess the bioaccumulated amount of MC-LR in the liver and meat of fish. The aptamer-based ratiometric strategy to develop an electrochemical MC-LR assay will offer a promising avenue to develop high-performance sensors, and the sensor will find more useful application in MC-LR-related aquatic product safety studies.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xuemei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
12
|
Abstract
Nowadays, the emerging photoelectrochemical (PEC) bioanalysis has drawn intensive interest due to its numerous merits. As one of its core elements, functional nanostructured materials play a crucial role during the construction of PEC biosensors, which can not only be employed as transducers but also act as signal probes. Although both chemical composition and morphology control of nanostructured materials contribute to the excellent analytical performance of PEC bioassay, surveys addressing nanostructures with different dimensionality have rarely been reported. In this review, according to classification based on dimensionality, zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructures used in PEC bioanalysis are evaluated, with an emphasis on the effect of morphology on the detection performances. Furthermore, using the illustration of recent works, related novel PEC biosensing patterns with promising applications are also discussed. Finally, the current challenges and some future perspectives in this field are addressed based on our opinions.
Collapse
|
13
|
Dong M, Lv Y, Peng X, Zhao S. Investigation of photoelectric behaviors of silver sulfide particles in different surroundings. RSC Adv 2021; 12:1028-1034. [PMID: 35425132 PMCID: PMC8978871 DOI: 10.1039/d1ra07864j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Silver sulfide (Ag2S) is a traditional semiconductor material, however, the photoelectric properties of Ag2S particles under different environments are still lacking. In this paper, we reported the preparation of Ag2S particles and their photoelectric properties under different environments. Results showed that the photoelectric performance of Ag2S particles was closely related to the environment. It was found that a copper phthalocyanine coating could improve the light response, the mixture of alcohols and air could increase the photoconductivity, and the mixture of carbon disulfide and air could decrease the photoconductivity. The mechanism of the effect of various experimental conditions on photoelectric properties was also discussed.
Collapse
Affiliation(s)
- Mengmeng Dong
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Yanfei Lv
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Xue Peng
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Shichao Zhao
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| |
Collapse
|
14
|
Wang Q, Yin H, Zhou Y, Cao L, Yu Z, Xu Y, Ai S. Photoelectrochemical Biosensor for
5‐Formylcytosine
Based on
WS
2
/Bi/
Bi
2
O
2
CO
3
Nanocomposite and Rolling Circle Amplification. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Lulu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Zhengkun Yu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Yamin Xu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University Taian Shandong 271018 China
| |
Collapse
|
15
|
Liu M, Chen G, Qin Y, Li J, Hu L, Gu W, Zhu C. Proton-Regulated Catalytic Activity of Nanozymes for Dual-Modal Bioassay of Urease Activity. Anal Chem 2021; 93:9897-9903. [PMID: 34240847 DOI: 10.1021/acs.analchem.1c01999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benefiting from the merits of high stability and superior activity, nanozymes are recognized as promising alternatives to natural enzymes. Despite the great leaps in the field of therapy and colorimetric sensing, the development of highly sensitive nanozyme-involved photoelectrochemical (PEC) biosensors is still in its infancy. Specifically, the investigation of multifunctional nanozymes facilitating different catalytic reactions remains largely unexplored due to the difficulty in synergistically amplifying the PEC signals. In this work, mesoporous trimetallic AuPtPd nanospheres were synthesized with both efficient oxidase and peroxidase-like activities, which can synergistically catalyze the oxidation of 4-chloro-1-naphthol to produce benzo-4-chlorohexadienone precipitation on the surface of photoactive materials, and thus lead to the decreased photocurrent as well as increased charge-transfer resistance. Inspired by the proton-dependent catalytic activity of nanozymes, a self-regulated dual-modal PEC and electrochemical bioassay of urease activity was innovatively established by in situ regulating the activity of AuPtPd nanozymes through urease-mediated proton-consuming enzymatic reactions, which can remarkably improve the accuracy of the assay. Meanwhile, the determination of urease activity in spiked human saliva samples was successfully realized, indicating the reliability of the biosensor and its application prospects in clinical diagnosis.
Collapse
Affiliation(s)
- Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|