1
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Formation of halonitromethanes from different nitrophenol compounds during UV/post-chlorination: Impact factors, DFT calculation, reaction mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174718. [PMID: 38997025 DOI: 10.1016/j.scitotenv.2024.174718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
As ubiquitous chemical substances in water bodies, nitrophenol compounds (NCs) can form chlorinated halonitromethanes (Cl-HNMs) in the chlorination process. This work chose six typical NCs to explore Cl-HNMs produced during the UV/post-chlorination process, and Cl-HNMs yields from these NCs followed the increasing order of 4-, 2-, 2-amino-3-, 2-methyl-3-, 3-, and 2-chloro-3-nitrophenol. The Cl-HNMs yields increased continually or increased firstly and declined with post-chlorination time. Increasing chlorine dosage favored Cl-HNMs formation, while excessive chlorine dosage decreased Cl-HNMs produced from 2- and 4-nitrophenol. Besides, appropriate UV radiation, acidic pH, and higher precursor concentrations facilitated Cl-HNMs formation. Then, the reaction mechanisms of Cl-HNMs generated from these different NCs were explored according to density functional theory calculation and identified transformation products (TPs), and the main reactions included chlorine substitution, benzoquinone compound formation, ring opening, and bond cleavage. Moreover, the Cl-HNMs generated from 2-chloro-3-nitrophenol were of the highest toxicity, and the six NCs and their TPs also presented ecotoxicity. Finally, two kinds of real waters were used to explore Cl-HNMs formation and toxicity, and they were significantly distinguishable compared to the phenomena observed in simulated waters. This work will give new insights into Cl-HNMs formation from different NCs in water disinfection processes and help better apply the UV/post-chlorination process to water treatments.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | |
Collapse
|
2
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Reaction mechanisms of chlorinated disinfection byproducts formed from nitrophenol compounds with different structures during chlor(am)ination and UV/post-chlor(am)ination. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134544. [PMID: 38733788 DOI: 10.1016/j.jhazmat.2024.134544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nitrophenol compounds (NCs) have high formation potentials of disinfection byproducts (DBPs) in water disinfection processes, however, the reaction mechanisms of DBPs formed from different NCs are not elucidated clearly. Herein, nitrobenzene, phenol, and six representative NCs were used to explore the formation mechanisms of chlorinated DBPs (Cl-DBPs) during chlor(am)ination and UV/post-chlor(am)ination. Consequently, the coexistence of nitro and hydroxy groups in NCs facilitated the electrophilic substitution to produce intermediates of Cl-DBPs, and the different positions of nitro and hydroxy groups also induced different yields and formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Besides, the amino, chlorine, and methyl groups significantly influenced the formation mechanisms of Cl-DBPs during the chlorination and UV/post-chlorination processes. Furthermore, the total Cl-DBPs yields from the six NCs followed a decreasing order of 2-chloro-3-nitrophenol, 3-nitrophenol, 2-methyl-3-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, and 4-nitrophenol during chlorination and UV/post-chlorination. However, the total Cl-DBPs yields from the six NCs during chloramination and UV/post-chloramination followed a quite different order, which might be caused by additional reaction mechanisms, e.g., nucleophilic substitution or addition might occur to NCs in the presence of monochloramine (NH2Cl). This work can offer deep insights into the reaction mechanisms of Cl-DBPs from NCs during the chlor(am)ination and UV/post-chlor(am)ination processes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
3
|
Li J, Chen J, Li J. The ideal model for determination the formation potential of priority DBPs during chlorination of free amino acids. CHEMOSPHERE 2024; 359:142306. [PMID: 38734255 DOI: 10.1016/j.chemosphere.2024.142306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Amino acids (AAs) account for about 15-35% of dissolved organic nitrogen (DON), and are known as the important precursors of nitrogenous disinfection by-products (N-DBPs). Determining the formation potential (FP) of AAs to DBPs is used to reveal the key precursors of DBPs for further control, while the ideal method for N-DBPs FP of AAs during chlorination is not revealed. In this study, the ideal FP test models for five classes of priority DBPs during chlorination of four representative AAs (accounted for about 35% of total AAs) were analyzed. For haloaldehydes (HALs), haloketones (HKs), haloacetonitriles (HANs), haloacetamides (HAMs), and halonitromethanes (HNMs), their FPs during chlorination of four AAs were 0.1-13.0, 0.01-1.1, 0.1-104, not detectable (nd)-173, and nd-0.4 μg/mg, respectively. The FPs of priority DBPs had significant deviations between different FP test models and different tested AAs. For HALs, the model, whose chlorine dosage was determined by 15 × molar concentration of AAs [Cl (mM) = 15 × M](named: model II), was the ideal model. For HKs, model II was also the ideal FP test model for AAs with ≤3 carbons, while for AAs with 4 carbons, the model, whose chlorine dosage was determined by keeping the residual chlorine at 1 ± 0.2 mg/L after 24 h of reaction (named: model 4), was the ideal model. For HANs and HNMs, model 4 was the ideal FP test model for most of the studied AAs. The performance of HAMs during chlorination of amino acids was totally different from other P-DBPs, and model 3 was recommended to be the ideal model, in which chlorine dosage was determined by 3 × mass concentration of AAs [Cl (mg/L) = X × DOC]. This study is a reference that helps researchers select an ideal model for N-DBPs FP study of AAs.
Collapse
Affiliation(s)
- Junling Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Wang T, Deng L, Tan C, Hu J, Singh RP. Effects of cupric ions on the formation of chlorinated disinfection byproducts from nitrophenol compounds during UV/post-chlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134362. [PMID: 38643576 DOI: 10.1016/j.jhazmat.2024.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Cupric ions (Cu2+) are ubiquitous in surface waters and can influence disinfection byproducts (DBPs) formation in water disinfection processes. This work explored the effects of Cu2+ on chlorinated DBPs (Cl-DBPs) formation from six representative nitrophenol compounds (NCs) during UV irradiation followed by a subsequent chlorination (i.e., UV/post-chlorination), and the results showed Cu2+ enhanced chlorinated halonitromethane (Cl-HNMs) formation from five NCs (besides 2-methyl-3-nitrophenol) and dichloroacetonitrile (DCAN) and trichloromethane (TCM) formation from six NCs. Nevertheless, excessive Cu2+ might reduce Cl-DBPs formation. Increasing UV fluences displayed different influences on total Cl-DBPs formation from different NCs, and increasing chlorine dosages and NCs concentrations enhanced that. Moreover, a relatively low pH (5.8) or high pH (7.8) might control the yields of total Cl-DBPs produced from different NCs. Notably, Cu2+ enhanced Cl-DBPs formation from NCs during UV/post-chlorination mainly through the catalytic effect on nitro-benzoquinone production and the conversion of Cl-DBPs from nitro-benzoquinone. Additionally, Cu2+ could increase the toxicity of total Cl-DBPs produced from five NCs besides 2-methyl-3-nitrophenol. Finally, the impacts of Cu2+ on Cl-DBPs formation and toxicity in real waters were quite different from those in simulated waters. This study is conducive to further understanding how Cu2+ affected Cl-DBPs formation and toxicity in chlorine disinfection processes and controlling Cl-DBPs formation in copper containing water.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
5
|
Wang T, Deng L, Tan C, Hu J, Singh RP. Comparative analysis of chlorinated disinfection byproducts formation from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172200. [PMID: 38575027 DOI: 10.1016/j.scitotenv.2024.172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Nitrophenol compounds (NCs) are widely distributed in water environments and regarded as important precursors of disinfection byproducts (DBPs). Herein, 4-nitrophenol and 2-amino-4-nitrophenol were selected as representative NCs to explore chlorinated DBPs (Cl-DBPs) formation during UV/post-chlorination. Dichloronitromethane (DCNM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), and trichloromethane (TCM) were formed from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination, and the yields of individual Cl-DBPs from 2-amino-4-nitrophenol were higher than those from 4-nitrophenol. Meantime, increasing chlorine contact time, UV fluence, and free chlorine dose could enhance Cl-DBPs formation, while much higher values of the three factors might decrease the yields of Cl-DBPs. Besides, alkaline pH could decrease the yields of halonitromethane (HNMs) and DCAN but increase the yields of TCM. Also, higher concentrations of 4-nitrophenol and 2-amino-4-nitrophenol would induce more Cl-DBPs formation. Subsequently, the possible formation pathways of DCNM, TCNM, DCAN, and TCM form 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination were proposed according to transformation products (TPs) and density functional theory (DFT) calculation. Notably, Cl-DBPs formed from 2-amino-4-nitrophenol presented higher toxicity than those from 4-nitrophenol. Among these generated Cl-DBPs, DCAN and TCNM posed higher cytotoxicity and genotoxicity, respectively. Furthermore, 4-nitrophenol, 2-amino-4-nitrophenol, and their TPs exhibited ecotoxicity. Finally, 4-nitrophenol and 2-amino-4-nitrophenol presented a high potential to produce DCNM, TCNM, DCAN, and TCM in actual waters during UV/post-chlorination, but the Cl-DBPs yields were markedly different from those in simulated waters. This work can help better understand Cl-DBPs formation from different NCs during UV/post-chlorination and is conducive to controlling Cl-DBPs formation.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
6
|
Yu R, Qian Y, Chen Y, Shi Y, Guo J, An D. Computational-aided analysis of the pathway and mechanism of dichloroacetonitrile formation from phenylalanine upon chloramination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171995. [PMID: 38547977 DOI: 10.1016/j.scitotenv.2024.171995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Dichloroacetonitrile (DCAN) is an emerging disinfection by-product (DBP) that is widespread in drinking water. However, the pathway for DCAN formation from aromatic amino acids remains unclear, leading to a lack of an understanding of its explicit fate during chloramination. In this study, we investigated the specific formation mechanism of DCAN during the chloramination of phenylalanine based on reaction kinetics and chemical thermodynamics. The reason for differences between aldehyde and decarboxylation pathways was explained, and kinetic parameters of the pathways were obtained through quantum chemistry calculations. The results showed that the reaction rate constant of the rate-limiting step of the aldehyde pathway with 1.9 × 10-11 s-1 was significantly higher than that of decarboxylation (3.6 × 10-16 s-1 M-1), suggesting that the aldehyde pathway is the main reaction pathway for DCAN formation during the chloramination of phenylalanine to produce DCAN. Subsequently, theoretical calculations were performed to elucidate the effect of pH on the formation mechanism, which aligned well with the experimental results. Dehydrohalogenation was found to be the rate-limiting step under acidic conditions with reaction rate constants higher than those of the rate-limiting step (expulsion of amines) under neutral conditions, increasing the rate of DCAN formation. This study highlights the differences in DCAN formation between the decarboxylation and aldehyde pathways during the chloramination of precursors at both molecular and kinetic levels, contributing to a comprehensive understanding of the reaction mechanisms by which aromatic free amino acids generate DCAN.
Collapse
Affiliation(s)
- Rui Yu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China.
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Yijun Shi
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Jun Guo
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Okoyeocha EOM, Tewari-Singh N. Chloropicrin induced ocular injury: Biomarkers, potential mechanisms, and treatments. Toxicol Lett 2024; 396:70-80. [PMID: 38677567 DOI: 10.1016/j.toxlet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Ocular tissue, especially the cornea, is overly sensitive to chemical exposures. The availability and adoption of chemical threat agent chloropicrin (CP) is growing in the United States as a pesticide and fumigant; thereby increasing the risk of its use in warfare, terrorist attacks and non-intentional exposure. Exposure to CP results in immediate ocular, respiratory, and dermal injury; however, we lack knowledge on its mechanism of toxicity as well as of its breakdown products like chlorine and phosgene, and effective therapies are elusive. Herein, we have reviewed the recent findings on exposure route, toxicity and likely mechanisms of CP induced ocular toxicity based on other vesicating chemical warfare agents that cause ocular injury. We have focused on the implication of their toxicity and mechanistic outcomes in the ocular tissue, especially the cornea, which could be useful in the development of broad-spectrum effective therapeutic options. We have discussed on the potential countermeasures, overall hallmarks and challenges involved in studying ocular injuries from chemical threat agent exposures. Finally, we reviewed useful available technologies and methods that can assist in the identification of effective medical countermeasures for chemical threat agents related ocular injuries.
Collapse
Affiliation(s)
- Ebenezar O M Okoyeocha
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
8
|
Xue Q, Deng L, Tang Q, Wang T, Luo W. Formation of halonitromethanes from benzylamine during UV/chlorination: Impact factors, toxicity alteration, and pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16437-16452. [PMID: 38319423 DOI: 10.1007/s11356-024-32132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Halonitromethanes (HNMs), a representative nitrogen-containing disinfection byproduct, have gained significant concerns due to their higher cytotoxicity and genotoxicity. UV/chlorination is considered a promising alternative disinfection technology for chlorination. This study aimed to investigate the HNMs formation from benzylamine (BZA) during UV/chlorination. The experimental results revealed that the yields of HNMs initially raised to a peak then dropped over time. Higher chlorine dosage and BZA concentration promoted the formation of HNMs, whereas alkaline pH inhibited their formation. The presence of bromine ion (Br-) not only converted chlorinated-HNMs (Cl-HNMs) to brominated (chlorinated)-HNMs Br (Cl)-HNMs) and brominated-HNMs (Br-HNMs) but also enhanced the total concentration of HNMs. Besides, the calculated cytotoxicity index (CTI) and genotoxicity index (GTI) of HNMs were elevated by 68.97% and 60.66% as Br- concentration raised from 2 to 6 µM. The possible formation pathways of HNMs from BZA were proposed based on the intermediates identified by a gas chromatography/mass spectrometry (GC/MS). In addition, the formation rules of HNMs in actual water verified the results in deionized water during UV/chlorination. The results of this study provide basic data and a theoretical basis for the formation and control of HNMs, which is conducive to applying UV/chlorination.
Collapse
Affiliation(s)
- Qi Xue
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China.
| | - Qian Tang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Tao Wang
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| | - Wei Luo
- Department of Municipal Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, People's Republic of China
| |
Collapse
|
9
|
Wang T, Deng L, Dai W, Tan C, Hu J, Singh RP. Bromide induced the formation of brominated halonitromethanes from aspartic acid in the UV/chlorine disinfection process. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:54. [PMID: 38252329 DOI: 10.1007/s10653-024-01854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Brominated halonitromethanes (Br-HNMs) are generated in water disinfection processes and present high toxicity to human health. This work used aspartic acid (ASP) as the precursor to reveal that bromide (Br-) induced the production of Br-HNMs in the UV/chlorine disinfection process. Consequently, six Br-HNMs were identified, and their yields presented an increasing and then declining evolution over the reaction time from 0 to 15 min. Also, the total Br-HNMs yield reached the maximum of 251.1 μg L-1 at 5 min and then declined to 107.1 μg L-1. The total Br-HNMs yield increased from 2.40 to 251.14 μg L-1 with the increase of Cl2:Br- ratios from 0.25 to 3.0 by increasing free chlorine dosage with a fixed Br- concentration, and it increased from 207.59 to 251.14 μg L-1 and then decreased to 93.44 μg L-1 with the increase of Cl2:Br- ratio from 1.0 to 3.6 by increasing Br- concentration with a fixed free chlorine dosage. Besides, the total Br-HNMs yield reached the highest value (251.14 μg L-1) at pH 7.0 and the lowest value (74.20 μg L-1) at pH 8.0. Subsequently, the possible reaction mechanism of Br-HNMs generated from ASP was deduced, and the changes in toxicity of Br-HNMs also followed an increasing and then declining trend, closely relating to Br-HNMs yields and Br- utilization. This work explored and illustrated the yields, influence factors, reaction mechanisms, and toxicity of Br-HNMs formed from Br- containing ASP water during UV/chlorine disinfection, which might help to control Br-HNMs formation.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China.
| | - Wenjuan Dai
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | | |
Collapse
|
10
|
Zhou Y, Jiao JJ, Huang H, Liu YD, Zhong R, Yang X. Insights into C-C Bond Cleavage Mechanisms in Dichloroacetonitrile Formation during Chlorination of Long-Chain Primary Amines, Amino Acids, and Dipeptides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18834-18845. [PMID: 37183372 DOI: 10.1021/acs.est.2c07779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dichloroacetonitrile (DCAN) as one of the potentially prioritized regulated DBPs has drawn great attention; however, understanding its formation, especially the C-C bond cleavage mechanisms, is limited. In this study, DCAN formation mechanisms from long-chain primary amines, amino acids, and dipeptides during chlorination were investigated by a combined computational and experimental approach. The results indicate that nitriles initially generate for all of the above precursors, then they undergo β-C-hydroxylation or/and α-C-chlorination processes, and finally, DCAN is produced through the Cα-Cβ bond cleavage. For the first time, the underlying mechanism of the C-C bond cleavage was unraveled to be electron transfer from the O- anion into its attached C atom in the chlorinated nitriles, leading to the strongly polarized Cα-Cβ bond heterocleavage and DCAN- formation. Moreover, DCAN molar yields of precursors studied in the present work were found to be determined by their groups at the γ-site of the amino group, where the carbonyl group including -CO2-, -COR, and -CONHR, the aromatic group, and the -OH group can all dramatically facilitate DCAN formation by skipping over or promoting the time-consuming β-C-hydroxylation process and featuring relatively lower activation free energies in the C-C bond cleavage. Importantly, 4-amino-2-hydroxybutyric acid was revealed to possess the highest DCAN yield among all the known aliphatic long-chain precursors to date during chlorination. Additionally, enonitriles, (chloro-)isocyanates, and nitriles can be generated during DCAN formation and should be of concern due to their high toxicities.
Collapse
Affiliation(s)
- Yingying Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jia-Jia Jiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huang Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Hua Z, Liang J, Wang D, Zhou Z, Fang J. Formation Mechanisms of Nitro Products from Transformation of Aliphatic Amines by UV/Chlorine Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18754-18764. [PMID: 37294018 DOI: 10.1021/acs.est.3c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Formation of nitrogenous disinfection byproducts from aliphatic amines is a widespread concern owing to the serious health risks associated with them. However, the mechanisms of transforming aliphatic amines and forming nitro products in the UV/chlorine process have rarely been discussed, which are investigated in this work. Initially, secondary amines (R1R2NH) are transformed into secondary organic chloramines (R1R2NCl) via chlorination. Subsequently, radicals, such as HO• and Cl•, are found to contribute predominantly to such transformations. The rate constants at which HO•, Cl•, and Cl2•- react with R1R2NCl are (2.4-5.1) × 109, (1.5-3.8) × 109, and (1.2-6.1) × 107 M-1 s-1, respectively. Consequently, R1R2NCl are transformed into primary amines (R1NH2/R2NH2) and chlorinated primary amines (R1NHCl/R2NHCl and R1NCl2/R2NCl2) by excess chlorine. Furthermore, primarily driven by UV photolysis, chlorinated primary amines can be transformed into nitroalkanes with conversion rates of ∼10%. Dissolved oxygen and free chlorine play crucial roles in forming nitroalkanes, and post-chlorination can further form chloronitroalkanes, such as trichloronitromethane (TCNM). Radicals are involved in forming TCNM in the UV/chlorine process. This study provides new insights into the mechanisms of transforming aliphatic amines and forming nitro products using the UV/chlorine process.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jieying Liang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ding Wang
- General Institute of Water Resources and Hydropower Planning and Design, Beijing 100120, China
| | - Zhihong Zhou
- Guangzhou Ecological Environmental Monitoring Center, Guangzhou 510006, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
12
|
Wang T, Deng L, Shen J, Tan C, Hu J, Singh RP. Formation, toxicity, and mechanisms of halonitromethanes from poly(diallyl dimethyl ammonium chloride) during UV/monochloramine disinfection in the absence and presence of bromide ion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117819. [PMID: 36996559 DOI: 10.1016/j.jenvman.2023.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Bromide ion (Br-) is known as a prevalent component in water environments, which exhibits significant impacts on halonitromethanes (HNMs) formation. This study was performed to explore and compare the formation, toxicity, and mechanisms of HNMs from poly(diallyl dimethyl ammonium chloride) (PDDACl) in the absence and presence of Br- in the UV/monochloramine (UV/NH2Cl) disinfection process. The results showed that chlorinated HNMs were found in the absence of Br-, while brominated (chlorinated) HNMs and brominated HNMs were found in the presence of Br-. Furthermore, the peaks of total HNMs were promoted by 2.0 and 2.4 times, respectively when 1.0 and 2.0 mg L-1 Br- were added. Also, the peaks of total HNMs were enhanced with the increase of the NH2Cl dosage, which were reduced with the increase of pH. It should be noted that Br- induced higher toxicity of HNMs, and the cytotoxicity and genotoxicity of HNMs with the addition of 2.0 mg L-1 Br- were 78.0 and 3.7 times those without the addition of Br-, respectively. Meanwhile, both the reaction mechanisms of HNMs produced from PDDACl were speculated in the absence and presence of Br-. Finally, different HNMs species and yields were discovered in these two real water samples compared to those in simulated waters. These findings of this work will be conducive to understanding the significance of Br- affecting HNMs formation and toxicity in the disinfection process.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China.
| | - Jiaxin Shen
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | | |
Collapse
|
13
|
Yin S, Shen Q, Liu YD, Zhong R. Comparison of nitrate formation mechanisms from free amino acids and amines during ozonation: a computational study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:680-693. [PMID: 36809457 DOI: 10.1039/d2em00501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrate as a potential surrogate parameter for abatement of micropollutants, oxidant exposure, and characterizing oxidant-reactive DON during ozonation has attracted extensive attention, however, understanding of its formation mechanisms is still limited. In this study, nitrate formation mechanisms from amino acids (AAs) and amines during ozonation were investigated by the DFT method. The results indicate that N-ozonation initially occurs to produce competitive nitroso- and N,N-dihydroxy intermediates, and the former is preferred for both AAs and primary amines. Then, oxime and nitroalkane are generated during further ozonation, which are the important last intermediate products for nitrate formation from the respective AAs and amines. Moreover, the ozonation of the above important intermediates is the nitrate yield-controlling step, where the relatively higher reactivity of the CN moiety in the oxime compared to the general Cα atom in the nitroalkane explains why the nitrate yields of most AAs are higher than those from general amines, and it is the larger number of released Cα- anions, which are the real reaction sites attacked by ozone, that leads to the higher nitrate yield for nitroalkane with an electron-withdrawing group bound to the Cα atom. The good relationship between nitrate yields and activation free energies of the rate-limiting step (ΔG≠rls) and nitrate yield-controlling step (ΔG≠nycs) for the respective AAs and amines verifies the reliability of the proposed mechanisms. Additionally, the bond dissociation energy of Cα-H in the nitroalkanes formed from amines was found to be a good parameter to evaluate the reactivity of the amines. The findings here are helpful for further understanding nitrate formation mechanisms and predicting nitrate precursors during ozonation.
Collapse
Affiliation(s)
- Shuning Yin
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Qunfang Shen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Formation of halonitromethanes from methylamine in the presence of bromide during UV/Cl 2 disinfection. J Environ Sci (China) 2022; 117:28-36. [PMID: 35725080 DOI: 10.1016/j.jes.2021.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
The UV/Cl2 process is commonly used to achieve a multiple-barrier disinfection and maintain residuals. The study chose methylamine as a precursor to study the formation of high-toxic halonitromethanes (HNMs) in the presence of bromide ions (Br-) during UV/Cl2 disinfection. The maximum yield of HNMs increased first and then decreased with increasing concentration of Br-. An excessively high concentration of Br- induced the maximum yield of HNMs in advance. The maximum bromine incorporation factor (BIF) increased, while the maximum bromine utilization factor (BUF) decreased with the increase of Br- concentration. The maximum yield of HNMs decreased as pH value increased from 6.0 to 8.0 due to the deprotonation process. The BUF value remained relatively higher under an acidic condition, while pH value had no evident influence on the BIF value. The maximum yield of HNMs and value of BUF maximized at a Cl2:Br- ratio of 12.5, whereas the BIF value remained relatively higher at low Cl2:Br- ratios (2.5 and 5). The amino group in methylamine was first halogenated, and then released into solution as inorganic nitrogen by the rupture of C-N bond or transformed to nitro group by oxidation and elimination pathways. The maximum yield of HNMs in real waters was higher than that in pure water due to the high content of dissolved organic carbon. Two real waters were sampled to verify the law of HNMs formation. This study helps to understand the HNMs formation (especially brominated species) when the UV/Cl2 process is adopted as a disinfection technique.
Collapse
|
15
|
Han Y, Zhou Y, Liu YD, Zhong R. Reaction Mechanisms of Histidine and Carnosine with Hypochlorous Acid Along with Chlorination Reactivity of N-Chlorinated Intermediates: A Computational Study. Chem Res Toxicol 2022; 35:750-759. [PMID: 35436107 DOI: 10.1021/acs.chemrestox.1c00389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypochlorous acid (HOCl) released from activated leukocytes not only plays a significant role in the human immune system but is also implicated in numerous diseases including atherosclerosis and some cancers due to its inappropriate production. Histidine (His) and carnosine (Car), as a respective mediator and protective agent of HOCl damage, have attracted considerable attention; however, their detailed reaction mechanisms are still unclear. In this study, using a His residue with two peptide bond groups (HisRes) as a model, the reaction mechanisms of HisRes and Car including NεH and NδH tautomers with HOCl along with the chlorination reactivity of N-chlorinated intermediates were investigated by quantum chemical methods. The obtained results indicate that in the imidazole side chain, the pyridine-like N is the most reactive site rather than the pyrrole-like N, and the kinetic order of all of the possible reaction sites in HisRes follows pyridine-like N > imidazole Cδ ≫ imidazole Cε > pyrrole-like N, while that in Car is pyridine-like N ≫ imidazole Cδ ≫ amide N. As for N-chlorinated intermediates at imidazole, although the unprotonated form has a low chlorination reactivity as expected, it can still chlorinate tyrosine. Especially, the protonated form exhibits similar ability to HOCl, causing secondary damage in vivo. N-Chlorinated Car features higher internal chlorine migration ability than its intermolecular transchlorination, preventing further HOCl-induced damage. Additionally, a generally overlooked nucleophilic Cl- shift is also found in N-chlorinated Car/HisRes, indicating that nucleophilic sites in biomolecules also need to be considered. The outcomes of this study are expected to expand our understanding of secondary damage and protective mechanisms involved in HOCl in humans.
Collapse
Affiliation(s)
- Yuzhou Han
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yingying Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|