1
|
Zhou ZX, Yang JJ, Zhao ND, Wang Y, Zheng WX, Guo YR, Pan QJ, Li S. Accessing renewable magnetic cellulose nanofiber adsorbent to enhance separation efficiency for adsorption and recovery of Cd 2. Int J Biol Macromol 2025; 296:139765. [PMID: 39800031 DOI: 10.1016/j.ijbiomac.2025.139765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
To address the issue of toxic cadmium pollution and meet the need for rapid separation from water body, a magnetic bio-composite material, marked as CFeMg, was prepared via a facile method. It explicitly includes components of cellulose nanofiber (CNF), Fe3O4 and Mg (OH)2. The microstructures and morphology were characterized and analyzed using XRD, FT-IR, SEM, and TEM. CNF was chemically coupled by Fe3O4, which together constructed the overall layered structure. Between layers were Mg(OH)2 flakes attached. While dealing with Cd2+, qmax of the best sample reached 361.5 mg g-1 with high adsorption efficiency. The roles of three components were explored and the adsorption mechanism was proposed. Assisted by magnetic CNF, it only took 3 min to efficiently and completely salvage the spent CFeMg sample from water after adsorption. Due to its high adsorption capacity and facile recovery performance, the prepared composite has promising application as water treatment.
Collapse
Affiliation(s)
- Zi-Xiong Zhou
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jun-Jie Yang
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Nan-Dan Zhao
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yan Wang
- Harbin Center for Disease Control and Prevention (Harbin Center for Health Examination), Harbin 150030, China
| | - Wen-Xiu Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shujun Li
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Wang QG, Guo BX, Ai JY, Shi WY, Zhang KJ, Wang P, Wang WH. Synchronous control of nitrogen and phosphorus release from sediments in shallow lakes under wind disturbance by modified zeolite and Ca/Al-based sludge combination. ENVIRONMENTAL RESEARCH 2025; 264:120448. [PMID: 39586516 DOI: 10.1016/j.envres.2024.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
To inhibit eutrophication caused by endogenous pollutants release, the experiment explored the efficiency and mechanism of the synchronous control of nitrogen (N) and phosphorus (P) release from sediments in shallow lakes under wind disturbance by modified Ca/Al-based sludge (MS) and modified zeolite (MZ). High-temperature calcination and NaCl impregnation increased the pore volume of MS and Na+ content of MZ, and the adsorption capacity of MS for PO43--P and MZ for NH4+-N was as high as 42.01 and 20.28 mg g-1. The results of a 90-day incubation experiment showed that the addition of MS and MZ increased the abundance of Thauera, Nitrospira, Denitratisoma, and Clostridium, while decreasing the proportion of Proteus Hauser and Saccharimonadales, thereby reducing the active N and P contents in sediments through microbial transformation. At the same time, the efficient adsorption performance of the MS and MZ resulted in a significant decrease in pollutants in the interstitial water and sediments. In addition, sediment resuspension caused by wind disturbance increased the contact between sediments and remediation agents, resulting in the action depth of covering materials exceeding 100 mm. Compared to adding MS or MZ alone, the combination of the two (MSZG) could synchronously, efficiently, and stably inhibit N and P release. Under the coupling effects of physical interception, physicochemical adsorption, and biotransformation, the average TN, NH4+-N, TP, and PO43--P in the overlying water of the MSZG decreased by 72.13%, 88.92%, 69.28%, and 81.26%, respectively, compared to Control, which satisfying the Class III standard for surface water. Therefore, this study could provide reference for controlling endogenous release, improving eutrophication in shallow lakes under wind disturbance, and recycling residual sludge from sewage plants.
Collapse
Affiliation(s)
- Qiu-Gang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Bing-Xu Guo
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Jun-Yu Ai
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Wei-Yi Shi
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Ke-Jia Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Pu Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Wen-Huai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
3
|
Ma F, Zhu T, Wang Y, Torii S, Wang Z, Zhao C, Li X, Zhang Y, Quan H, Yuan C, Hao L. Adsorption mechanism and remediation of heavy metals from soil amended with hyperthermophilic composting products: Exploration of waste utilization. BIORESOURCE TECHNOLOGY 2024; 410:131292. [PMID: 39153701 DOI: 10.1016/j.biortech.2024.131292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Due to high humification, hyperthermophilic composting products (HP) show potential for remediating heavy metal pollution. However, the interaction between HP and heavy metals remains unclear. This study investigated the adsorption mechanism and soil remediation effect of HP on heavy metals. The results showed that the maximum adsorption capacity of HP increased by an average of 30.74 % compared to conventional composting products. HP transformed 34.87 % of copper, 42.55 % of zinc, and 35.63 % of lead from exchangeable and reducible forms into residual and oxidizable forms, thus reducing the soil risk level. In conclusion, HP significantly enhanced the adsorption of heavy metals and their transformation from unstable to stable forms, primarily due to the higher content of hydroxyl and carboxyl groups. This study aims to demonstrate the effectiveness of HP for remediating heavy metal pollution and to enhance the understanding of the underlying mechanism, which lays a foundation for waste utilization.
Collapse
Affiliation(s)
- Feng Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; Department of Mechanical and Mathematical Engineering, Kumamoto University, Kumamoto 860-8555, Japan
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Shuichi Torii
- Department of Mechanical and Mathematical Engineering, Kumamoto University, Kumamoto 860-8555, Japan
| | - Zhipeng Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Chaoyue Zhao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Xu Li
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Yanping Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Haoyu Quan
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Chunli Yuan
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, MOE, Shenyang University, Shenyang 110044, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Wang X, Guo Q, Guo J, Wang C. Magnetic composite microspheres with a controlled mesoporous shell for highly efficient DNA extraction and fragment screening. J Mater Chem B 2024; 12:4899-4908. [PMID: 38682549 DOI: 10.1039/d4tb00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Rapid extraction and screening of high-purity DNA fragments is an indispensable technology in advanced molecular biology. In this article, mesoporous magnetic composite microspheres (MSP@mTiO2) with tunable pore sizes were successfully fabricated for high-purity DNA extraction and fragment screening. Owing to the strong complexation ability of Ti ions with DNA phosphate groups and the high specific surface area of mesoporous microspheres, the MSP@mTiO2 microspheres possess excellent adsorption performance, where the saturated loading capacity of MSP@mTiO2 with a specific surface area of 122 m2 g-1 is as high as 575 μg mg-1 for a salmon sperm specimen. ITC experiments demonstrated that DNA adsorption on MSP@mTiO2 microspheres is mainly driven by entropy, which gives us more potential ways to regulate the balance of adsorption and desorption. Meanwhile, the mesoporous MSP@mTiO2 microspheres exhibit a much higher extraction efficiency compared with non-porous MSP@TiO2 for whole genome DNA from Arabidopsis thaliana plants. Interestingly, DNA fragments with different lengths could be screened by simply regulating the pore size of MSP@mTiO2 or the concentration of Na3PO4 in the eluent. A small pore size and low phosphate concentration are advantageous for the extraction of short-stranded DNA fragments, and DNA fragments (≤1000 bp) can be efficiently extracted when the mesopore size of MSP@mTiO2 is lower than 7.6 nm. The extraction results from the mesoporous composite microspheres provide new promising insights into the purification and screening of DNA from complex biological samples.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Zhu D, Zhu J, Li P, Lan S. Effects of magnesium hydroxide morphology on Pb(ii) removal from aqueous solutions. RSC Adv 2024; 14:7329-7337. [PMID: 38433932 PMCID: PMC10905668 DOI: 10.1039/d3ra08040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
In this study, magnesium hydroxide (MH) particles with distinct morphologies were obtained through direct precipitation and subsequent hydrothermal treatment with various magnesium salts. The synthesized products were systematically characterized and utilized for the removal of Pb(ii) ions from aqueous solutions. The adsorption process of Pb(ii) by two different MH structures, namely flower globular magnesium hydroxide (FGMH) and hexagonal plate magnesium hydroxide (HPMH), adhered to the Langmuir isotherm and pseudo-second-order model. FGMH exhibited higher Pb(ii) removal capacity (2612 mg g-1) than HPMH (1431 mg g-1), attributable to the unique three-dimensional layered structures of FGMH that provide a larger surface area and abundant active sites. Additionally, metallic Pb was obtained by recycling the adsorbed Pb(ii) through acid dissolution-electrolysis. Furthermore, Pb(ii) removal mechanisms were investigated by analyzing adsorption kinetics and isotherms, and the adsorbed products were characterized. Based on the findings, the removal process occurs in two key stages. First, Pb(ii) ions bind with OH- ions on the surface upon diffusing to the MH surface, resulting in Pb(OH)2 deposits in situ. Concurrently, Mg(ii) ions diffuse into the solution, substituting Pb(ii) ions in the MH lattice. Second, the resultant Pb(OH)2, which is unstable, reacts with CO2 dissolved in water to yield Pb3(CO3)2(OH)2. Therefore, owing to its outstanding Pb(ii) adsorption performance and simple preparation method, FGMH is a promising solution for Pb(ii) pollution.
Collapse
Affiliation(s)
- Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Jiachen Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Ping Li
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Shengjie Lan
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| |
Collapse
|
6
|
Wu X, Li R, Lin J. Contrasting effects of MgAl- and MgFe-based layered double hydroxides on phosphorus mobilization and microbial communities in sediment. CHEMOSPHERE 2024; 346:140643. [PMID: 37939924 DOI: 10.1016/j.chemosphere.2023.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
The effects of two types of layered double hydroxides (LDH) in-situ treatment on sediment phosphorus (P) mobilization and microbial community's structure were studied comparatively. The results presented that magnesium/aluminum-based (MA) and magnesium/iron (MF)-based LDH displayed great phosphate uptake ability in aqueous solution in a broad pH range of 3-8. The maximum phosphate sorption capacity of MA was 64.89 mg/g, around four times greater than that of MF (14.32 mg/g). Most of phosphate bound by MA and MF is hard to re-liberate under reduction and ordinary pH (5-9) conditions. In the in-situ remediation, the MA and MF capping/amendment both prevented P migration from the sediment to the overlying water (OL-water) under long-term anaerobic conditions, and MA had a better interception efficiency compared to MF in the same application mode. MA amendment significantly reduced mobile P (Mob-P) content in sediment and could remain its stable Mob-P inactivation capacity over a wide pH range. On the contrary, MF amendment increased Mob-P content in sediment and exhibited a variable ability to inactivate Mob-P under elevated pH conditions. MF can decrease Mob-P content at pH of 7 and 11 but increase Mob-P content at pH of 8-10. Under resuspension conditions, MA and MF capping groups still maintained low P levels in OL-water, while MA capping simultaneously showed a certain degree of resistance to sediment resuspension, but it had a weaker stabilizing effect for sediment than MF. Microbial community analysis manifested neither MA nor MF addition observably altered the sediment microbial diversity, but impacted the functional microorganisms' abundance and reshaped the microbial community's structure, intervening the sediment-P stabilization. Viewed from environmental friendliness, control efficiency, stability of P fixation capacity, and application convenience, MA capping wrapped by fabric is more suitable for addressing internal P loading in eutrophic lakes and holds great potential application.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Ruzhong Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|
7
|
Yang Q, Li C, Hu J, Hou X. Ultrasensitive determination of selenium in water and food samples by ICP-MS: UiO-66-NH 2 for preconcentration and direct slurry hydride generation. Anal Chim Acta 2023; 1283:341901. [PMID: 37977772 DOI: 10.1016/j.aca.2023.341901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Selenium is an indispensable microelement for humans and food is the main source of selenium intake. As one of the best techniques for the determination of selenium, inductive coupling plasma-mass spectrometry (ICP-MS) features some unique advantages, such as wide linear range and high sensitivity. Nevertheless, it still remains a challenge to achieve the accurate and high sensitivity determination of ultra-trace selenium in food samples by ICP-MS owning to the high first ionization energy of selenium and interferences from sample matrices as well as isobaric interferences. RESULTS In this work, UiO-66-NH2 (metal organic framework, MOF) was fast synthesized by microwave method and employed for the preconcentration of ultra-trace selenium with an adsorption efficiency of nearly 100%. The selenium-adsorbed MOF was collected by filtration, and then simply converted to slurry for in situ hydride generation (HG) for sensitive detection of selenium by ICP-MS. Various factors affecting the adsorption of selenium by the MOF (including pH, adsorption time, and amount of MOF) together with main parameters of hydride generation (including concentrations of HCl and NaBH4) were carefully evaluated. Experimental results show that effective matrix separation can greatly reduce interference, with an excellent detection limit of 1 ng/L. The practicability and accuracy of this method were successfully confirmed by the determination of trace selenium in several food samples. SIGNIFICANCE UiO-66-NH2 (MOF) was used as an effective adsorbent for the preconcentration of selenium prior to direct slurry sampling HG-ICP-MS determination. Direct slurry sampling avoided additional elution procedures and was conducive to eliminating matrix and isobaric interferences. High sensitivity and anti-interference determination were achieved for determination of ultra-trace Se in complex food samples.
Collapse
Affiliation(s)
- Qing Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jing Hu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
8
|
Zhu J, Li P, Yang B, Lan S, Chen W, Zhu D. Facile fabrication of Fe 3O 4@Mg(OH) 2 magnetic composites and their application in Cu(ii) ion removal. RSC Adv 2023; 13:33403-33412. [PMID: 38025863 PMCID: PMC10644123 DOI: 10.1039/d3ra05961h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we fabricated magnetic Fe3O4@Mg(OH)2 composites through the seed deposition technique to achieve Cu(ii) ion removal from aqueous solutions. As indicated by the characterization results, three-dimensional flower-like spheres composed of external Mg(OH)2 were formed, with nano-Fe3O4 particles uniformly embedded in the "flower petals" of the spheres. The efficacy of Fe3O4@Mg(OH)2-3 in Cu(ii) ion removal was examined through batch experiments. The impact of solution pH on removal efficiency was examined, and the pseudo-second-order model and the Langmuir model provided good fits to the adsorption kinetics and isotherm data, respectively. Remarkably, Fe3O4@Mg(OH)2-3 exhibited a significant removal capacity of 1051.65 mg g-1 for Cu(ii) ions. Additionally, the composite displayed a notable saturation magnetization value of 17.3 emu g-1, facilitating isolation from sample solutions through external magnetic fields after Cu(ii) ion absorption. At the solid-liquid interface, a mechanism involving ion exchange between Mg(ii) and Cu(ii) cations was realized as the mode of Cu(ii) ion removal. The composites' effective adsorption properties and rapid magnetic separation highlighted their suitability for use in treating copper-contaminated water.
Collapse
Affiliation(s)
- Jiachen Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Ping Li
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Bowen Yang
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Shengjie Lan
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Weiyuan Chen
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, School of Chemical Engineering, Qinghai University Xining 810016 PR China
| |
Collapse
|
9
|
Zhang Y, Xiao YF, Xu GS, Xu MD, Wang DC, Jin Z, Liu JQ, Yang LL. Preparation of basic magnesium carbonate nanosheets modified pumice and its adsorption of heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111137-111151. [PMID: 37801248 DOI: 10.1007/s11356-023-30023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Heavy metal pollution in wastewater poses a grave danger to the environment and the human body. Pumice is a mineral with abundant reserves and low prices, and its prospect of heavy metal adsorbent is very broad. In this work, we modified pumice with basic magnesium carbonate nanosheets by a convenient hydrothermal synthesis. The adsorption capacity of heavy metals is greatly improved. The effects of different pH and adsorption dosages are investigated. All the optimum pH values for Cu2+, Pb2+, and Cd2+ are 5. The adsorption of three kinds of ions conforms to the quasi-second-order adsorption kinetics model. The theoretical adsorption capacities of Cu2+, Pb2+, and Cd2+, which are calculated by the Langmuir model, are 235.29 mg/L, 595.24 mg/L, and 370.34 mg/L, respectively. The adsorption of Cu2+ and Cd2+ fit the Langmuir model better. The Freundlich model is fitted well with the adsorption of Pb2+. In the experiment simulating real wastewater, the adsorption capacity of heavy metals is not affected. It also shows good reusability in three regeneration cycles. And Mg5(CO3)4(OH)2·4H2O@pumice adsorption column showed the good removal efficiency of three heavy metals at different concentrations and different spatial velocities in the column experiment. Thus, it is believed that the Mg5(CO3)4(OH)2·4H2O@pumice is a promising adsorbent for the efficient removal of heavy metals.
Collapse
Affiliation(s)
- Yong Zhang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Yi-Fan Xiao
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Guang-Song Xu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Min-Da Xu
- School of Materials and Chemical Engineering, Anhui JianZhu University, Hefei Anhui, 230601, People's Republic of China
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - De-Cai Wang
- School of Materials and Chemical Engineering, Anhui JianZhu University, Hefei Anhui, 230601, People's Republic of China
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Zhen Jin
- School of Materials and Chemical Engineering, Anhui JianZhu University, Hefei Anhui, 230601, People's Republic of China.
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China.
| | - Jia-Qi Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Li-Li Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| |
Collapse
|
10
|
Chen M, Zhou Y, Sun Y, Chen X, Yuan L. Coal gangue-based magnetic porous material for simultaneous remediation of arsenic and cadmium in contaminated soils: Performance and mechanisms. CHEMOSPHERE 2023; 338:139380. [PMID: 37394193 DOI: 10.1016/j.chemosphere.2023.139380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Remediation of arsenic (As) and cadmium (Cd) co-contaminated soil is a challenge in environmental remediation. In this study, coal gangue-based magnetic porous material (MPCG) was designed for simultaneous immobilization of As and Cd in contaminated soil. After the incubation experiment, the effects of CG and MPCG on the availability and fractions of As and Cd and the related microbial functional genes were analyzed to explore the potential remediation mechanisms of MPCG for As and Cd in contaminated soil. The results showed that the stabilization effect of MPCG on As and Cd was significantly higher than that of coal gangue. It reduced the available As and Cd by 17.94-29.81% and 14.22-30.41%, respectively, and transformed unstable As/Cd to stable. The remediation mechanisms of MPCG on As included adsorption, oxidation, complexation and precipitation/co-precipitation. Meanwhile, the remediation mechanisms of MPCG for Cd included adsorption, ion exchange, complexation and precipitation. In addition, MPCG increases the abundance of sulfate-reducing bacteria (dsrA) by 43.39-381.28%, which can promote sulfate reduction. The sulfide can precipitate with As and Cd to reduce the availability of As and Cd in soil. Thus, MPCG is a promising amendment for achieving the remediation of As and Cd co-contaminated soil.
Collapse
Affiliation(s)
- Min Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Yuzhi Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China
| | - Yuan Sun
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China.
| | - Liang Yuan
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
11
|
Shen L, Jin R, Chen W, Qi D, Zhai S. Preparation of Biochar Composite Microspheres and Their Ability for Removal with Oil Agents in Dyed Wastewater. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6155. [PMID: 37763433 PMCID: PMC10532710 DOI: 10.3390/ma16186155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Oil agents produced from the degreasing treatment of synthetic fibers are typical pollutants in wastewater from printing and dyeing, which may cause large-scale environmental pollution without proper treatment. Purifying oily dye wastewater (DTY) at a low cost is a key problem at present. In this study, biochar microspheres with oil removal ability were prepared and derived from waste bamboo chips using the hydrothermal method. The structure of the biochar microsphere was regulated by activation and modification processes. Biochar microspheres were characterized, and their adsorption behaviors for oily dye wastewater were explored. The results show that the adsorption efficiency of biochar microspheres for oily dye wastewater (DTY) was improved significantly after secondary pyrolysis and the lauric acid grafting reaction. The maximum COD removal quantity of biochar microspheres for DTY was 889 mg/g with a removal rate of 86.06% in 30 min. In addition, the kinetics showed that chemisorption was the main adsorption manner. Considering the low cost of raw materials, the application of biochar microspheres could decrease the cost of oily wastewater treatment and avoid environmental pollution.
Collapse
Affiliation(s)
- Lu Shen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (R.J.); (D.Q.)
| | - Rushi Jin
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (R.J.); (D.Q.)
| | - Wanming Chen
- Zhejiang Haoyu Technology Co., Ltd., Shaoxing 312000, China;
| | - Dongming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (R.J.); (D.Q.)
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| | - Shimin Zhai
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (R.J.); (D.Q.)
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| |
Collapse
|
12
|
Liu Q, Wei SX, Shi ZC, Chen H, Yang H, Au CT, Xie TL, Yin SF. High-Throughput Synthesis of Uniform Mg(OH) 2 Nanoparticles in an Oscillating Feedback Minireactor Designed by the Selective Dimension Scale-Out Method. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Shi-Xiao Wei
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Zu-Chun Shi
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Han Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Chak-Tong Au
- College of Chemical Engineering, Fuzhou University, Fuzhou350002, P. R. China
| | - Ting-Liang Xie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
13
|
Hu L, Shi L, Shen F, Tong Q, Lv X, Li Y, Liu Z, Ao L, Zhang X, Jiang G, Hou L. Electrocatalytic hydrodechlorination system with antiscaling and anti-chlorine poisoning features for salt-laden wastewater treatment. WATER RESEARCH 2022; 225:119210. [PMID: 36215844 DOI: 10.1016/j.watres.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The high salinity and coexistence of scaling ions (Ca2+, Mg2+, HCO3-) in wastewater challenge the efficacy and durability of palladium (Pd)-mediated electrocatalytic hydrodechlorination (EHDC) reaction for chlorinated organic pollutant detoxification, due to the accompanying Cl- poisoning at Pd sites and scaling on electrode. In a concentrated NaCl solution (5.8 g L - 1) with Ca2+ (80.0 mg L - 1), Mg2+ (30.0 mg L - 1) and HCO3- (180.0 mg L - 1), the EHDC efficiency of Pd towards 2,4-dichlorophenol decreases significantly from 67.8% to 33.1% in 72.0 h of reaction, and the electrode is covered with layers of fluffy aragonite precipitate. Herein we demonstrate the inclusion of a commercial antiscalant 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) can prevent both scale formation and Cl- poisoning, leading to an efficient and steady EHDC process. A mechanistic study reveals that the unique dual function of PBTC primarily originates from the bearing phosphonate and carboxyl groups. With the large affinity of these groups (especially the phosphonate group) for scaling cations and Pd, the PBTC can chelate and stabilize the scaling cations in water and replace Cl- at Pd surface. It can also release protons, and trigger the formation of more electron-deficient Pdδ+ species via PBTC-Pd binding, leading to an enhanced EHDC. This work provides effective solutions to the scaling/poisoning issues that commonly encountered in real wastewater and paves a solid road for EHDC application in pollution abatement.
Collapse
Affiliation(s)
- Lin Hu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China; High Tech Inst Beijing, Beijing 100000, China; Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China.
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China.
| |
Collapse
|
14
|
Borgohain X, Rashid H. Rapid and enhanced adsorptive mitigation of groundwater fluoride by Mg(OH) 2 nanoflakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70056-70069. [PMID: 35583754 DOI: 10.1007/s11356-022-20749-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is one of the most abundant anions in groundwater, posing a significant threat to the safe drinking water supply worldwide. Fluoride contamination in drinking water at levels greater than 1.5 mg L-1 causes a variety of serious health problems. To address this problem, the current study deals with the synthesis of Mg(OH)2 nanoflakes by a facile and simple hydrothermal method in the absence of any added template. The sizes of these nanoflakes are in the range of 90 to 200 nm. These nanoflakes are pure and crystalline, possessing hexagonal phase structures. The surface areas of Mg(OH)2 nanoflakes are varying from 75.8 to 108.1 m2 g-1. These Mg(OH)2 nanoflakes exhibit excellent adsorption performance for fluoride over a pH range of 2.0 to 9.0 with a maximum Langmuir adsorption capacity of 3129 mg g-1 at pH 7.0 at 313 K which is the highest for such kind of adsorbent reported so far. The adsorption process is spontaneous and endothermic which primarily follows pseudo-second-order kinetics. The adsorbent is effective in the presence of co-existing anions and is reusable up to the fifth cycle with a minimal loss of adsorption performance. The nanoflakes can effectively remove highly concentrated groundwater fluoride to a permissible limit within a short time which increases the versatility of using these nanoflakes for practical applications.
Collapse
Affiliation(s)
- Xavy Borgohain
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh, 791 112, India
| | - Harunar Rashid
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh, 791 112, India.
| |
Collapse
|
15
|
Ma C, Chen G, Shi J, Zhou H, Ren W, Du Y. Improvement mechanism of water resistance and volume stability of magnesium oxychloride cement: A comparison study on the influences of various gypsum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154546. [PMID: 35302022 DOI: 10.1016/j.scitotenv.2022.154546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The development of magnesium oxychloride cement can effectively utilize the waste of potash industry and reduce its harm to the environment. Although magnesium oxychloride cement paste (MOCP) has excellent performance in dry environment, its performance is greatly deteriorated in water or humid environment, which severely limits its practical application. In order to improve the water resistance of MOCP, MOCP was modified by various gypsum in this study, and the intrinsic mechanism was explored. Results showed that replacing MgO with gypsum delayed the setting time of MOCP and effectively improved its volume stability. Although the incorporation of gypsum reduced the 14-d air-cured compressive strength of MOCP, waste gypsum was able to significantly improve the water resistance of MOCP compared to natural gypsum. When 80% flue gas desulfurization gypsum and phosphogypsum (weight of magnesium oxide) were incorporated into MOCP, the 14-d air-cured compressive strength of MOCP was only decreased by 14.49% and 15.94% compared with the control group, but its 28-d water immersion strength retention coefficient (SRC) could still reach 61.02% and 46.55%, respectively. However, for the control group and MOCP with 80% natural gypsum, the 28-d SRC were only 28.99% and 8.41%. The incorporation of high-volume waste gypsum to MOCP not only reduced the relative content of MgO, but also improved the stability of the 5-phase in water, which was beneficial to improve the water resistance of MOCP. In addition, high-volume waste gypsum-modified MOCP had lower cost and carbon emissions, and exhibited superior water resistance and sustainability compared to existing MOCP compositions.
Collapse
Affiliation(s)
- Cong Ma
- Institute of Urban Smart Transportation Safety Maintenance, Shenzhen University, Shenzhen, Guangdong Province, 518061, PR China
| | - Gege Chen
- School of Civil Engineering, Central South University, Changsha 410075, China
| | - Jinyan Shi
- School of Civil Engineering, Central South University, Changsha 410075, China.
| | - Haijun Zhou
- Institute of Urban Smart Transportation Safety Maintenance, Shenzhen University, Shenzhen, Guangdong Province, 518061, PR China; The Key Laboratory on Durability of Civil Engineering in Shenzhen, Shenzhen University, Shenzhen 518061, China; Key Laboratory for Resilient Infrastructures of Coastal Cities, Ministry of Education, Shenzhen University, Shenzhen 518060, China
| | - Weixin Ren
- Institute of Urban Smart Transportation Safety Maintenance, Shenzhen University, Shenzhen, Guangdong Province, 518061, PR China
| | - Yanliang Du
- Institute of Urban Smart Transportation Safety Maintenance, Shenzhen University, Shenzhen, Guangdong Province, 518061, PR China
| |
Collapse
|
16
|
|
17
|
Amrulloh H, Kurniawan YS, Ichsan C, Jelita J, Simanjuntak W, Situmeang RTM, Krisbiantoro PA. Highly efficient removal of Pb(II) and Cd(II) ions using magnesium hydroxide nanostructure prepared from seawater bittern by electrochemical method. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|