1
|
Liu Y, Wang Z, Tang W, Wang X, Dong Q, Liu G, Guo Y, Liang Y, Ding X, Yin Y, Cai Y, Jiang G. Water-extractable metals as indicators of wheat metal accumulation: Insights from Cd, Pb, Mn, Cu, and Zn. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135745. [PMID: 39244988 DOI: 10.1016/j.jhazmat.2024.135745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
There is a long-standing debate over the effectiveness of chemical extraction methods in assessing soil metal phytoavailability. This study addresses the limitations of widely-used chemical extraction methods and presents the water-extractable pool as a more reliable indicator based on wheat pot experiments using homogenized agricultural soil amended with lime materials, phosphate, and biochar. Over 120 days' pot experiments, Cd accumulation in whole wheat plants and tissues exhibited positive relationships with water-extractable Cd concentrations at heading and maturity stage (Spearman's rho: 0.521-0.851; P < 0.05), revealing that the water-extractable pool instead of other pools better indicates wheat metal accumulation. Water-extractable metal concentrations are effective in assessing phytoavailability of metals primarily in ionic forms in soil solution (e.g, Zn, Cd), but less reliable for metals strongly complexed with dissolved organic matter (DOM) or sensitive to redox conditions. It demonstrated that water-extractable metal concentrations and chemical forms are key factors, fundamentally determined by metal properties and impacted by environmental factors. This study clarifies a more direct link between chemical extraction and plant metal uptake mechanisms. Given the extensive application of chemical extraction methods over several decades, this study will help advance soil metal risk assessment and remediation practices.
Collapse
Affiliation(s)
- Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zidi Wang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenyao Tang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xinying Wang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qiang Dong
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xiaodong Ding
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
2
|
Liu H, Rong X, Zhao H, Xia R, Li M, Wang H, Cui H, Wang X, Zhou J. Bioaccumulation of Atmospherically Deposited Cadmium in Soybean: Three-Year Field Experiment Combined with Cadmium Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17703-17716. [PMID: 39317642 DOI: 10.1021/acs.est.4c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atmospheric deposition plays a significant role in introducing cadmium (Cd) into agroecological systems; however, accurately determining its accumulation in crops through foliar and root uptake presents challenges. This study investigated the bioaccumulation of atmospherically deposited Cd in soybean using a three-year fully factorial atmospheric exposure experiment incorporating Cd isotope analysis. Results shown that atmospheric deposition accounted for 1-13% of soil Cd pools, yet contributed 11-72% of Cd to soybean tissues during the growing seasons. Over the course of soil exposure to atmospheric deposition ranging from 1 to 3 years, no notable variations were observed in Cd concentrations in soil solutions and soybean tissues, nor in isotope ratios. Newly deposited Cd was a major source in soybean plants, and the bioavailability of deposited Cd rapidly aged in soils. Atmospheric Cd enriched in lighter isotopes induced negative isotope shifts in soybean plants. By employing an optimized isotope mixing model in conjunction with a mass balance approach, foliar Cd uptake contributed 13-51%, 16-45%, and 21-56% to stem, leaf, and seed, respectively. This study highlights substantial contribution of foliar uptake of atmospheric deposition to Cd levels in soybean and controlling foliar uptake as a potential strategy in agroecological systems experiencing high atmospheric Cd deposition.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
| | - Xiuting Rong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
3
|
Yang Z, Xia H, Guo Z, Xie Y, Liao Q, Yang W, Li Q, Dong C, Si M. Development and application of machine learning models for prediction of soil available cadmium based on soil properties and climate features. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124148. [PMID: 38735457 DOI: 10.1016/j.envpol.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Hui Xia
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Ziyun Guo
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Yanyan Xie
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - Qingzhu Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China
| | - ChunHua Dong
- Soil and Fertilizer Institute of Hunan Province, 410125, Changsha, China
| | - Mengying Si
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, 410083, Changsha, China.
| |
Collapse
|
4
|
Dong Q, Xiao C, Cheng W, Yu H, Liu J, Liu G, Liu Y, Guo Y, Liang Y, Shi J, Yin Y, Cai Y, Jiang G. Revealing the Sources of Cadmium in Rice Plants under Pot and Field Conditions from Its Isotopic Fractionation. ACS ENVIRONMENTAL AU 2024; 4:162-172. [PMID: 38765061 PMCID: PMC11100327 DOI: 10.1021/acsenvironau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 05/21/2024]
Abstract
The highly excessive uptake of cadmium (Cd) by rice plants is well known, but the transfer pathway and mechanism of Cd in the paddy system remain poorly understood. Herein, pot experiments and field investigation were systematically carried out for the first time to assess the phytoavailability of Cd and fingerprint its transfer pathway in the paddy system under different treatments (slaked lime and biochar amendments), with the aid of a pioneering Cd isotopic technique. Results unveiled that no obvious differences were displayed in the δ114/110Cd of Ca(NO3)2-extractable and acid-soluble fractions among different treatments in pot experiments, while the δ114/110Cd of the water-soluble fraction varied considerably from -0.88 to -0.27%, similar to those observed in whole rice plant [Δ114/110Cdplant-water ≈ 0 (-0.06 to -0.03%)]. It indicates that the water-soluble fraction is likely the main source of phytoavailable Cd, which further contributes to its bioaccumulation in paddy systems. However, Δ114/110Cdplant-water found in field conditions (-0.39 ± 0.05%) was quite different from those observed in pot experiments, mostly owing to additional contribution derived from atmospheric deposition. All these findings demonstrate that the precise Cd isotopic compositions can provide robust and reliable evidence to reveal different transfer pathways of Cd and its phytoavailability in paddy systems.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- BNU-HKUST
Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Cailing Xiao
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenhan Cheng
- School
of
Resource & Environment, Anhui Agricultural
University, Hefei 230036, China
| | - Huimin Yu
- CAS
Key Laboratory of Crust-Mantle Materials and Environments, School
of Earth and Space Sciences, University
of Science and Technology of China, Hefei 230026, China
| | - Juan Liu
- School
of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangliang Liu
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Yanwei Liu
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Liu H, Wang H, Zhao H, Wang H, Xia R, Wang X, Li M, Zhou J. Speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in soil-earthworm (Eisenia fetida) system near a large copper smelter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171700. [PMID: 38490408 DOI: 10.1016/j.scitotenv.2024.171700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in the soil-earthworm (Eisenia fetida) system were investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.8-year and 1.8-year atmospheric depositions. The results shown that the newly deposited metals (Cu, Cd, and Pb) primarily accumulated in the topsoil (0-6 cm) and were present as the highly bioavailable speciation. They can migrate further to increase the concentrations of Cu, Cd, and Pb in soil solution of the deeper layer (at 10 cm) by 12 %-436 %. Earthworms tended to preferentially accumulate the newly deposited metals, which contributed 10 %-61 % of Cu, Cd, and Pb in earthworms. Further, for the unpolluted and moderately polluted soils, the newly deposited metals induced the significant oxidative stress in earthworms, resulting in significant increases in antioxidant enzyme activities (SOD, CAT, and GSH-Px). No significant differences were observed in the levels of heavy metals in soil solutions, bioaccumulation, and enzyme activities in earthworms exposed to 0.8-year and 1.8-year depositions, indicating the bioavailability of atmospheric metals deposited into soils was rapidly decreased with time. This study highlights the high bioaccumulation and toxicity of heavy metals to earthworm from the new atmospheric deposition during the earthworm growing period.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Hu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China.
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
6
|
Kong F, Lu S. Soil inorganic amendments produce safe rice by reducing the transfer of Cd and increasing key amino acids in brown rice. J Environ Sci (China) 2024; 136:121-132. [PMID: 37923424 DOI: 10.1016/j.jes.2022.09.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2023]
Abstract
The digestibility of cadmium (Cd) in brown rice is directly related to amino acid metabolism in rice and human health. In our field study, three kinds of alkaline calcium-rich soil inorganic amendments (SIAs) at three dosages were applied to produce safe rice and improve the quality of rice in Cd-contaminated paddy. With the increased application of SIA, Cd content in iron plaque on rice root significantly increased, the transfer of Cd from rice root to grain significantly decreased, and then Cd content in brown rice decreased synchronously. The vitro digestibility of Cd in brown rice was estimated by a physiologically based extraction test. Results showed that more than 70% of Cd in brown rice could be digested by simulated gastrointestinal juice. Based on the total and digestible Cd contents in brown rice to evaluate the health risk, the application of 2.25 ton SIA/ha could produce safe rice in acidic slightly Cd-contaminated paddy soils. The amino acids (AAs) in brown rice were determined by high-performance liquid chromatography. The contents of 5 key AAs (KAAs) that actively respond to environmental changes increased significantly with the increased application of SIA. The structural equation model indicated that KAAs could be affected by the Cd translocation capacity from rice root to grain, and consequently altered the ratio of indigestible Cd in brown rice. The formation of indigestible KAAs-Cd complexes by combining KAAs (phenylalanine, leucine, histidine, glutamine, and asparagine) with Cd in brown rice could be considered a potential mechanism for reducing the digestibility of Cd.
Collapse
Affiliation(s)
- Fanyi Kong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenggao Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Yu S, Wang X, Zhang R, Chen R, Ma L. A review on the potential risks and mechanisms of heavy metal exposure to Chronic Obstructive Pulmonary Disease. Biochem Biophys Res Commun 2023; 684:149124. [PMID: 37897914 DOI: 10.1016/j.bbrc.2023.149124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic disease that affects patients as well as the health and economic stability of society as a whole. At the same time, heavy metal pollution is widely recognized as having a possible impact on the environment and human health. Therefore, these diseases have become important global public health issues. In recent years, researchers have shown great interest in the potential association between heavy metal exposure and the development of COPD, and there has been a substantial increase in the number of related studies. However, we still face the challenge of developing a comprehensive and integrated understanding of this complex association. Therefore, this review aimed to evaluate the existing epidemiological studies to clarify the association between heavy metal exposure and COPD. In addition, we will discuss the biological mechanisms between the two to better understand the multiple molecular pathways and possible mechanisms of action involved, and provide additional insights for the subsequent identification of potential strategies to prevent and control the effects of heavy metal exposure on the development of COPD in individuals and populations.
Collapse
Affiliation(s)
- Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rongxuan Zhang
- Department of Respiratory, The Second People's Hospital of Lanzhou City, 730030, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Fan Q, Jiu Y, Zou D, Feng J, Zhao M, Zhang Q, Lv D, Song J, Xu Z, Ye H. Alkaline humic acid fertilizer alters the distribution, availability, and translocation of cadmium and zinc in the acidic soil-Sauropus androgynus system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115698. [PMID: 37976927 DOI: 10.1016/j.ecoenv.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Humic acids (HA) are a popular soil additive to reduce metal availability, but they have the drawbacks of reduced effectiveness over time and a significant reduction in soil pH. An alkaline humic acid fertilizer (AHAF) combining alkaline additives with HA was developed to overcome such drawbacks. A field experiment was conducted to investigate the effects of different AHAF application rates on the physicochemical properties, bioavailability, accumulation, and translocation of Cd and Zn heavy metals in Sauropus androgynus grown in acidic soil. Based on our results, the 100AF (100% AHAF) treatment significantly increased soil pH, cation exchange capacity (CEC), and organic matter content (OM) after one year of application. Compared with the control treatment (CK), the application of different rates of AHAF resulted in a 37.1-40.3% decrease in soil exchangeable Cd fractions (Exc-Cd) and an increase in the humic acid-bound Cd fractions (HA-Cd) Fe- and Mn-oxide-bound Cd fractions (OX-Cd), and organic matter-bound Cd fractions (OM-Cd) by 9.5-64.6%, 24.8-45.1%, and 158.8-191.2%, respectively (P < 0.05). The different AHAF treatments decreased the Res-Zn, Exc-Zn, and OM-Zn fractions by 69.6-73.0%, 7.4-23.9%, and 18.1-23.2%, respectively (P < 0.05), and increased the HA-Zn fraction by 8.4-28.1%. In the control treatment, the bioconcentration factors (BCFs) for Cd and Zn in different S. androgynus plant organs were in the following order: (Cd) Leaves > Stems > Branches > Roots > Edible branches; (Zn) Roots > Stems > Leaves > Branches > Edible branches. The transfer factors (TFs) of Cd and Zn in S. androgynus were classified as follows: TF2 > TF1 > TF3 > TF4. Thus, S. androgynus stems, and roots had a strong ability to transport Cd and Zn to the leaves. Compared with CK, the 100AF treatment significantly increased the BCFs for Zn in all plant parts (except BCFedible branches). In contrast, it significantly decreased all BCFs and TFs for Cd and the TF4 for Zn, effectively reducing Cd and Zn accumulation in the edible branches of S. androgynus. Soil pH, CEC, OM, and HA-M fraction were highly and significantly negatively correlated with Cd and Zn content in edible branches (P < 0.001). Stepwise multiple linear regression analysis revealed that the soil HA-M fraction was the key contributing factor for Zn accumulation and translocation in S. androgynus. Moreover, based on our findings, the absorption, uptake, and translocation of Cd and Zn were mainly determined by metal speciation and the pH in the soil. Moreover, the competitive antagonistic mechanisms between Zn and Cd absorption also affected their accumulation in S. androgynus. Thus, AHAF can be used as a soil amendment to sustainably improve acidic soils and effectively reduce Cd and Zn accumulation in edible branches of S. androgynus.
Collapse
Affiliation(s)
- Qiong Fan
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Yuanda Jiu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Dongmei Zou
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jian Feng
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Min Zhao
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Qun Zhang
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Daizhu Lv
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jia Song
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Zhi Xu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Haihui Ye
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China.
| |
Collapse
|
9
|
Tao Q, Liu J, Zhang H, Khan MB, Luo Y, Huang R, Wu Y, Li Q, Xu Q, Tang X, Wang C, Li B. Synergistic impacts of ferromanganese oxide biochar and optimized water management on reducing Cd accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115146. [PMID: 37348222 DOI: 10.1016/j.ecoenv.2023.115146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Ferromanganese oxide biochar composite (FMBC) is an efficient remediation material for cadmium -contaminated soils. However, the effect of FMBC under varied water managements on the remediation of Cd-polluted soil is unclear. In this study, we conducted both incubation and field experiments to investigate the combined effects of corn-stover-derived biochar modified with ferromanganese on the immobilization and uptake of Cd by rice under continuous aerobic (A), aerobic-flooded (AF), and flooded-aerobic (FA) water management regimes. The results showed that loading iron-manganese significantly increased the maximum sorption capacity (Qm) of Cd on FMBC (50.46 mg g-1) due to increased surface area, as compared to the pristine biochar (BC, 31.36 mg g-1). The results revealed that soil Eh and pH were significantly affected by FMBC and it's synergistic application with different water regimes, thus causing significant differences in the concentrations of DTPA-extractable Cd under different treatments. The lowest DTPA-extractable Cd content (0.28-0.46 mg-1) was observed in the treatment with FMBC (2.5 %) combined FA water amendment, which reduced the content of available Cd in soil by 2.63-28.4 %. Moreover, the treatments with FMBC-FA resulted the proportion of residual Cd increased by 22.2 % compared to the control. Variations in the content and fraction of Cd had a significant influence on its accumulation in the rice grains. The FMBC-FA treatments reduced the Cd concentration in roots, shoots and grains by 37.97 %, 33.98 %, and 53.66 %, respectively, when compared with the control. Predominantly because of the reduction in Cd biological toxicity and the improved soil nutrient content, the combined application increased the biomass and yield of rice to some extent. Taken together, the combination of the Fe-Mn modified biochar and flooded-aerobic water management may potentially be applied in Cd-polluted soil to mitigate the impacts of Cd on rice production.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiahui Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haiyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | | | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
10
|
Goncharuk EA, Zagoskina NV. Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules 2023; 28:molecules28093921. [PMID: 37175331 PMCID: PMC10180413 DOI: 10.3390/molecules28093921] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The current state of heavy metal (HM) environmental pollution problems was considered in the review: the effects of HMs on the vital activity of plants and the functioning of their antioxidant system, including phenolic antioxidants. The latter performs an important function in the distribution and binding of metals, as well as HM detoxification in the plant organism. Much attention was focused on cadmium (Cd) ions as one of the most toxic elements for plants. The data on the accumulation of HMs, including Cd in the soil, the entry into plants, and the effect on their various physiological and biochemical processes (photosynthesis, respiration, transpiration, and water regime) were analyzed. Some aspects of HMs, including Cd, inactivation in plant tissues, and cell compartments, are considered, as well as the functioning of various metabolic pathways at the stage of the stress reaction of plant cells under the action of pollutants. The data on the effect of HMs on the antioxidant system of plants, the accumulation of low molecular weight phenolic bioantioxidants, and their role as ligand inactivators were summarized. The issues of polyphenol biosynthesis regulation under cadmium stress were considered. Understanding the physiological and biochemical role of low molecular antioxidants of phenolic nature under metal-induced stress is important in assessing the effect/aftereffect of Cd on various plant objects-the producers of these secondary metabolites are widely used for the health saving of the world's population. This review reflects the latest achievements in the field of studying the influence of HMs, including Cd, on various physiological and biochemical processes of the plant organism and enriches our knowledge about the multifunctional role of polyphenols, as one of the most common secondary metabolites, in the formation of plant resistance and adaptation.
Collapse
Affiliation(s)
- Evgenia A Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Natalia V Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
11
|
Lv BB, Yang CL, Tan ZX, Zheng L, Li MD, Jiang YL, Liu L, Tang MM, Hua DX, Yang J, Xu DX, Zhao H, Fu L. Association between cadmium exposure and pulmonary function reduction: Potential mediating role of telomere attrition in chronic obstructive pulmonary disease patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114548. [PMID: 36652742 DOI: 10.1016/j.ecoenv.2023.114548] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental cadmium (Cd) exposure is linked to pulmonary function injury in the general population. But, the association between blood Cd concentration and pulmonary function has not been investigated thoroughly in chronic obstructive pulmonary disease (COPD) patients, and the potential mechanisms are unclear. METHODS All eligible 789 COPD patients were enrolled from Anhui COPD cohort. Blood specimens and clinical information were collected. Pulmonary function test was conducted. The subunit of telomerase, telomerase reverse transcriptase (TERT), was determined through enzyme linked immunosorbent assay (ELISA). Blood Cd was measured via inductively coupled-mass spectrometer (ICP-MS). RESULTS Blood Cd was negatively and dose-dependently associated with pulmonary function. Each 1-unit increase of blood Cd was associated with 0.861 L decline in FVC, 0.648 L decline in FEV1, 5.938 % decline in FEV1/FVC %, and 22.098 % decline in FEV1 % among COPD patients, respectively. Age, current-smoking, self-cooking and higher smoking amount aggravated Cd-evoked pulmonary function decrease. Additionally, there was an inversely dose-response association between Cd concentration and TERT in COPD patients. Elevated TERT obviously mediated 29.53 %, 37.50 % and 19.48 % of Cd-evoked FVC, FEV1, and FEV1 % declines in COPD patients, respectively. CONCLUSION Blood Cd concentration is strongly associated with the decline of pulmonary function and telomerase activity among COPD patients. Telomere attrition partially mediates Cd-induced pulmonary function decline, suggesting an underlying mechanistic role of telomere attrition in pulmonary function decline from Cd exposure in COPD patients.
Collapse
Affiliation(s)
- Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chun-Lan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhu-Xia Tan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ling Zheng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, China
| | - Ling Liu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Yingshang, Fuyang, Anhui 236000, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Dong-Xu Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
12
|
Yang L, Yang Y, Yu Y, Wang Z, Tian W, Tian K, Huang B, You W. Potential use of hydroxyapatite combined with hydrated lime or zeolite to promote growth and reduce cadmium transfer in the soil-celery-human system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12714-12727. [PMID: 36114975 DOI: 10.1007/s11356-022-23029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Although hydroxyapatite (HAP) can prominently lower Cd uptake by celery from Cd-polluted soil, its high application rates in reality may lead to high cost and potential environmental risk. Therefore, we aimed to clarify whether combined amendments of HAP and another low-cost material (hydrated lime, corn straw-derived biochar, or zeolite) with reduced application rate of each single amendment could significantly decrease Cd transfer in soil-celery-human system without side effect on celery growth through a pot experiment. Results revealed that adding biochar, HAP, zeolite, or combined amendments had no obvious side effect on celery growth, while adding 0.3% hydrated lime significantly decreased fresh edible celery yield by 69.0%. Conversely, adding 0.5% HAP + 0.05% hydrated lime increased fresh edible celery yield by 39.8%. Additionally, adding HAP, zeolite, or hydrated lime rather than adding biochar effectively decreased total and bioaccessible Cd in edible celery. Similarly, HAP + hydrated lime and HAP + zeolite were much more efficient than HAP + biochar in lowering Cd transfer in soil-celery-human system. The total and bioaccessible Cd in edible celery were even reduced by over 50.0% after adding HAP + hydrated lime or HAP + zeolite at low rates. Considering the effects on celery growth and Cd transfer, HAP + hydrated lime and HAP + zeolite have the potential in remediating soil Cd contamination.
Collapse
Affiliation(s)
- Lanqin Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Yunxi Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuechen Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zehao Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Wenfei Tian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Kang Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Wenhua You
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
13
|
Huang G, Huang K, Wang X, Shu W, Ren W, Wang P, Zhang H, Nie M, Ding M. Potential of granular complexes of lime and montmorillonite for stabilizing soil cadmium and the underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120623. [PMID: 36356883 DOI: 10.1016/j.envpol.2022.120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contaminated soils were widely remediated by alkaline materials in powder, while the effects of granular materials are still unknown. This study was conducted to prepare granular materials based on hydrated lime and montmorillonite with ratios of 1:1, 1:2, and 1:3 (LM1, LM2, and LM3); their effects and mechanisms on stabilizing Cd in hydroponic, pot, and field conditions were further explored. The results showed that powdery materials caused intense pH elevations within 30-60 min and dissolved-Cd reductions within 8-100 min. However, granular materials significantly delayed these effects; the highest solution pH and lowest dissolved-Cd occurred after 250 min. The LM1 granules induced a much higher reduction of dissolved-Cd (99.8%) than that in the LM2 (53.6%) and LM3 granules (14.3%) due to the generation of more cadmium carbonate precipitates. Additionally, the soil pH gradually decreased after an intense elevation induced by powdery materials, but the LM1 granules maintained the soil pH at approximately 7.0, resulting in a lower level of CaCl2-extractable Cd (0.03 mg kg-1) than the LM1 powder (0.22 mg kg-1) after 30 d of cultivation. Similar to lime powder, a small spatial variation (Std. of 3.45) of DGT (diffusive gradient in thin films) extractable Cd in soil profile was observed in the LM1 granules, revealing a homogeneous stabilization effect induced by the LM1 granules. Accordingly, the LM1 granules induced a higher reduction in brown rice Cd (50.9%) than that in the LM1 powders (35.1%). Thus, the granular material of hydrated lime and montmorillonite (1:1) h the potential to replace lime powder in the remediation of Cd-contaminated field.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Keyi Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Wuxing Shu
- Agricultural and Rural Grain Bureau of Yujiang District, Yingtan, 335200, China
| | - Wenjing Ren
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Peng Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Hua Zhang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Minghua Nie
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China
| | - Mingjun Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
14
|
Yang L, Yang Y, Tian W, Xia X, Lu H, Wu X, Huang B, Hu W. Anthropogenic activities affecting metal transfer and health risk in plastic-shed soil-vegetable-human system via changing soil pH and metal contents. CHEMOSPHERE 2022; 307:136032. [PMID: 35977571 DOI: 10.1016/j.chemosphere.2022.136032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Accumulation and concomitant risk of metals in plastic-shed soil (PSS)-vegetable system around industrial areas have attracted growing public concern recently, while limited studies have focused on human bioaccessible metals in various plastic-shed vegetables and health risk calculated using bioaccessible metals. Previous studies showed that intensive farming and industrial activities could prominently affect metal migration from PSS to vegetables via altering PSS pH, total and bioavailable metal contents. In contrast, whether changes in PSS pH and metal contents control bioaccessible metals in vegetables and health risk is still unknown. For PSS management and sustainable plastic-shed vegetable production in the areas with rapid industrialization, 41 PSS and 32 plastic-shed vegetable samples were sampled from the industrial areas of Yangtze River Delta, China to systematically clarify the specific connections among anthropogenic activities, soil pH and metal contents, and metal transfer and health risk in PSS-vegetable-human system. The results indicated that Cr and Cd contents in 15.6% and 9.38% of vegetable samples exceeded the allowable limits in China. Tolerable cancer risk existed and was mainly induced by bioaccessible Cr in vegetables. Decreased PSS pH mainly caused by heavy use of nitrogen fertilizers increased bioavailable Ni, Cd, Zn, Pb, and Cu in PSS and subsequently enhanced their total and bioaccessible contents in vegetables. Prominent Cr accumulation in PSS induced by industrial wastewater irrigation exacerbated Cr uptake by vegetables, which increased bioaccessible Cr in vegetables and contributed greatly to cancer risk. To reduce transfer and health risk especially of Cd and Cr in the food chain, some appropriate measures related to source control and remediation should be proposed for preventing and mitigating PSS acidification and Cr accumulation.
Collapse
Affiliation(s)
- Lanqin Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Yunxi Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wenfei Tian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xingyi Xia
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Haiying Lu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| |
Collapse
|
15
|
Jiang X, Fang W, Tong J, Liu S, Wu H, Shi J. Metarhizium robertsii as a promising microbial agent for rice in situ cadmium reduction and plant growth promotion. CHEMOSPHERE 2022; 305:135427. [PMID: 35750231 DOI: 10.1016/j.chemosphere.2022.135427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 05/27/2023]
Abstract
The toxic chemical element cadmium (Cd) in paddy fields triggered increasing problems of growth inhibition and food security in rice consistently. In this study, we found Metarhizium robertsii, which is widely used as a bioinsecticide and biofertilizer in agriculture and recently found to be resistant to Cd, developed intraradical and extraradical symbiotic hyphae in rice seedlings, and successfully colonized in the rice rhizosphere soil to more than 103 CFUs g-1 soil at harvesting. M. robertsii colonization significantly reduced Cd accumulations in both hydroponically cultured seedlings and the matured rice cultured in Cd contaminated potting soil (2 ppm). Notably, Cd accumulation reduction of the roots, stems, leaves, husks and grains of the matured rice induced by the fungus were 44.3%, 32.1%, 35.3%, 31.9% and 24.7%, respectively. It was caused by the M. robertsii-induced suppression of Cd intake transporter gene osNramp5 in the rice roots, and the chemical stabilizing of Cd to the residual fraction in the rhizosphere soil. In addition, the colonization of M. robertsii significantly promoted the growth characters and the photosynthesis of the rice plants. This is achieved by the increase of endogenous hormone levels of indole-3-acetic, gibberellin A3 and brassinolide induced by M. robertsii. Furthermore, the fungus enhanced the antioxidative capacities via increasing enzyme activities of catalase, peroxidase and the production of glutathione, ascorbic acid, proline in the rice plants. Our work provides theoretical basis for expanding the use of M. robertsii as in situ Cd accumulation reduction and detoxification agents for rice in contaminated paddy fields.
Collapse
Affiliation(s)
- Xiaohan Jiang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianhao Tong
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Shuxing Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Guo L, Chen A, Li C, Wang Y, Yang D, He N, Liu M. Solution chemistry mechanisms of exogenous silicon influencing the speciation and bioavailability of cadmium in alkaline paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129526. [PMID: 35999739 DOI: 10.1016/j.jhazmat.2022.129526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The mechanism of silicon (Si) influencing cadmium (Cd) speciation and bioavailability in alkaline paddy soil solution remains unclear. Therefore, this study sought to elucidate the effect of Si on Cd by combining chemical analysis and rice pot experiments. In this work, the effects of Na2SiO3 alkalinity and the differences in Na+ were eliminated in all treatments, and the Cd speciation in soil solutions was determined in-situ using a Field-Donnan membrane technology (DMT) cell. Additionally, rice yields and the Cd content in various parts of the rice plant were studied. The results showed that Si application significantly increased rice biomass by 32% (P < 0.05) while significantly reduced the Cd content in brown rice by 52% (P < 0.01) and the free Cd2+ concentration in the soil solution. Further analysis of the interaction of Si and Cd using Fourier transform-infrared spectroscopy (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS) indicated that a Si-Cd complex was formed by Cd and Si-O groups. In summary, Si changed the chemical speciation of Cd in the alkaline soil solution and formed a water-soluble Si-Cd complex that the rice could not absorb, consequently reducing Cd bioavailability.
Collapse
Affiliation(s)
- Lei Guo
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Aiting Chen
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Cai Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Yaojing Wang
- College of Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Dan Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Na He
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
17
|
Liu J, Zhao L, Kong K, Abdelhafiz MA, Tian S, Jiang T, Meng B, Feng X. Uncovering geochemical fractionation of the newly deposited Hg in paddy soil using a stable isotope tracer. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128752. [PMID: 35364530 DOI: 10.1016/j.jhazmat.2022.128752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The newly deposited mercury (Hg) is more readily methylated to methylmercury (MeHg) than native Hg in paddy soil. However, the biogeochemical processes of the newly deposited Hg in soil are still unknown. Here, a field experimental plot together with a stable Hg isotope tracing technique was used to demonstrate the geochemical fractionation (partitioning and redistribution) of the newly deposited Hg in paddy soils during the rice-growing period. We showed that the majority of Hg tracer (200Hg, 115.09 ± 0.36 μg kg-1) was partitioned as organic matter bound 200Hg (84.6-89.4%), followed by residual 200Hg (7.6-8.1%), Fe/Mn oxides bound 200Hg (2.8-7.2%), soluble and exchangeable 200Hg (0.05-0.2%), and carbonates bound 200Hg (0.04-0.07%) in paddy soils. Correlation analysis and partial least squares path modeling revealed that the coupling of autochthonous dissolved organic matter and poorly crystalline Fe (oxyhydr)oxides played a predominant role in controlling the redistribution of the newly deposited Hg among geochemical fractions (i.e., fraction changes). The expected aging processes of the newly deposited Hg were absent, potentially explaining the high bioavailability of these Hg in paddy soil. This study implies that other Hg pools (e.g., organic matter bound Hg) should be considered instead of merely soluble Hg pools when evaluating the environmental risks of Hg from atmospheric depositions.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Kun Kong
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Shanyi Tian
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|