1
|
Naderi N, Ganjali F, Eivazzadeh-Keihan R, Maleki A, Sillanpää M. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120670. [PMID: 38531142 DOI: 10.1016/j.jenvman.2024.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
2
|
Abuhatab S, Pal S, Roberts EPL, Trifkovic M. Electrochemical Regeneration of Highly Stable and Sustainable Cellulose/Graphene Adsorbent Saturated with Dissolved Organic Dye. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38316141 DOI: 10.1021/acs.langmuir.3c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Electrochemical regeneration of adsorbents presents a cost-effective and environmentally friendly approach. Yet, its application to 3D structured adsorbents such as cellulose/graphene-based aerogels remains largely unexplored. This study introduces a method for producing these aerogels, highlighting their significant adsorption capacity for dissolved organic pollutants and resilience during electrochemical regeneration. By adjusting the ratio of hydrophobized cellulose nanofibers to graphene, the aerogels demonstrate a tunable adsorption capacity, ranging from 56 to 228 mg/g. Hydrophobization using oleic acid is vital for maintaining the aerogels' structural stability in water. Notably, the aerogels maintain structural integrity and efficiency over at least 18 electrochemical regeneration cycles, underscoring their potential for long-term environmental applications. The increase in adsorption capacity observed after regeneration cycles, approximately 10-20% by the fifth cycle, is attributed to electrochemical surface roughening and the creation of new adsorption sites. The tunability and durability of these aerogels offer a sustainable solution for adsorption with electrochemical regeneration technology.
Collapse
Affiliation(s)
- Saqr Abuhatab
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Sucharita Pal
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Edward P L Roberts
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
3
|
Sun W, Li R, Liu W, Liu X. Carbon dot-based molecularly imprinted fluorescent nanopomegranate for selective detection of quinoline in coking wastewater. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121770. [PMID: 36067622 DOI: 10.1016/j.saa.2022.121770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Quinoline, as a refractory and toxic organic pollutant in coking wastewater, causes great harm to the environment and human health even in trace amount. To realize the selective and sensitive detection of quinoline in coking wastewater, a novel molecularly imprinted fluorescent nanopomegranate with carbon dots (CDs) as seeds and fluorescence source (CD-MIP) was prepared, using quinoline as the template, and N-(β-aminoethyl)-γ-aminopropyl trimethoxysilane (KH792) as the monomer. The preparation and detection conditions of CD-MIP were systematically optimized. The structure and detection performance of CD-MIP were investigated in detail. The resulting CD-MIP exhibits excellent photoluminescence performance, high detection sensitivity, good selectivity and reproducibility towards quinoline. Under the optimized conditions, the fluorescence intensity of CD-MIP shows a satisfying linearity with quinoline concentration in the range of 20-200 mg/L with a detection limit of 6.7 mg/L. Owing to the existence of imprinted cavities that highly match with quinoline, a high imprinting factor (3.46) for CD-MIP was obtained. In addition, CD-MIP represents a greater affinity towards quinoline than towards other analogues, as well as an outstanding anti-interference capability. For trace analysis in real coking wastewater, CD-MIP also gives satisfactory results. Therefore, CD-MIP shows promising application in the selective detection of trace quinoline in wastewater.
Collapse
Affiliation(s)
- Wenjin Sun
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
| | - Ruizhen Li
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
| | - Weifeng Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuguang Liu
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China.
| |
Collapse
|
4
|
Wang W, Lai X, Yan S, Zhu L, Yao Y, Ding L. Synergistic Treatment of Dye Wastewater by the Adsorption-Degradation of a Bifunctional Aerogel. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a23010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Jawahar MJ, Neshaanthini JP, Saravanan R. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. CHEMOSPHERE 2022; 307:135713. [PMID: 35843436 DOI: 10.1016/j.chemosphere.2022.135713] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Freshwater has been incessantly polluted by various activities such as rapid industrialization, fast growth of population and agricultural activities. Water pollution is considered as one the major threatens to human health and aquatic bodies which causes various severe harmful diseases including gastrointestinal disorders, asthma, cancer, etc. The polluted wastewater could be treated by different conventional and advanced methodologies. Amongst them, adsorption is the most utilized low cost, efficient technique to treat and remove the harmful pollutants from the wastewater. The efficiency of adsorption mainly depends on the surface properties such as functional group availability and surface area of the adsorbents used. Since various waste-based carbon derivatives are utilized as adsorbents for harmful pollutants removal; nanomaterials are employed as effective adsorbents in recent times due to its excellent surface properties. This review presents an overview of the different types of nanomaterials such as nano-particles, nanotubes, nano-sheets, nano-rods, nano-spheres, quantum dots, etc. which have been synthesized by different chemical and green synthesis methodologies using plants, microorganisms, biomolecules and carbon derivatives, metals and metal oxides and polymers. By concentrating on potential research difficulties, this study offers a new viewpoint on fundamental field of nanotechnology for wastewater treatment applications. This review paper critically reviewed the synthesis of nanomaterials more importantly green synthesis and their applications in wastewater treatment to remove the harmful pollutants such as heavy metals, dyes, pesticides, polycyclic aromatic hydrocarbons, etc.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, 603110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - Marie Jyotsna Jawahar
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - J P Neshaanthini
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
6
|
Efficient recovery of aromatic compounds from the wastewater of styrene monomer and propylene oxide co-production plant via hypercrosslinked aryl-rich starch-β-cyclodextrin polymeric sorbent. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Wen Q, Chen H, Wei J, Chen Y, Ma D, Li J, Xie Y, Sun X, Shen J. Preparation of nitrogen-doped porous carbon by urea–formaldehyde resin for the construction of membrane adsorption reactor to remove refractory pollutant. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Cui Y, Kang W, Hu J. Construction of a carbon nanosphere aerogel with magnetic response for efficient oil/water separation. NEW J CHEM 2022. [DOI: 10.1039/d2nj04450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A magnetic carbon nanosphere aerogel with high adsorption capacity was synthesized, which could realize positioning adsorption and rapid recovery.
Collapse
Affiliation(s)
- Yan Cui
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Weiwei Kang
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030024, China
| | - Jifan Hu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|