1
|
Guo X, Wang Y, Xiao C, Yao Y, Qi J, Zhou Y, Yang Y, Zhu Z, Li J. Excellent bisphenol A removal performance triggered by electron-transfer regime on cobalt phosphide embedded in nitrogen, sulfur-doped carbon/MXene. J Colloid Interface Sci 2025; 679:1171-1180. [PMID: 39423683 DOI: 10.1016/j.jcis.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The non-radical pathway dominated by the electron transfer process (ETP) has gained considerable attention for the removal of organic contaminants in persulfate-based advanced oxidation processes. Rationally designing new catalysts with optimized composition and structural merits and further elucidating the enhanced removal mechanism are of great importance. In this work, we successfully synthesized a nitrogen-sulfur co-doped carbon encapsulated cobalt phosphide (Co2P) on both sides of MXene nanosheets (MZPC) to degrade bisphenol A (BPA) from organic wastewater. The results indicated that BPA was degraded by 98.2 % in a mere 5 min using 0.1 g L-1 of peroxymonosulfate (PMS) and 0.05 g L-1 of the optimized catalyst (MZPC-9), exhibiting an excellent pseudo-first-order kinetics rate constant (k = 1.485 min-1). Uniformly dispersed Co2P nanoparticles (approximately 9.4 nm, calculated using the Scherrer equation) on both sides of MXene exhibited enhanced binding affinity with PMS, forming the MZPC-9-PMS* metastable complexes with potent oxidative capability. The resultant MZPC-9-PMS* complexes induced the polymerization reaction of BPA and achieved 81 % total organic carbon (TOC) removal. This study offers a novel perspective on the design of metal active centers to enhance the ETP-dominated non-radical pathway for pollutant degradation.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunlong Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Wen L, Li X, Na Y, Chen H, Liu M, Yang S, Ding D, Wang G, Liu Y, Chen Y, Chen R. Surface reconstructed Fe@C 1000 for enhanced Fenton-like catalysis: Sustainable ciprofloxacin degradation and toxicity reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123534. [PMID: 38342432 DOI: 10.1016/j.envpol.2024.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
The Fe-based catalysts typically undergo severe problems such as deactivation and Fe sludge emission during the peroxymonosulfate (PMS) activation, which commonly leads to poor operation and secondary pollution. Herein, an S-doped Fe-based catalyst with a core-shell structure (Fe@CT, T = 1000°C) was synthesized, which can solve the above issues via the dynamic surface evolution during the reaction process. Specifically, the Fe0 on the surface of Fe@C1000 could be consumed rapidly, leaving numerous pores; the Fe3C from the core would subsequently migrate to the surface of Fe@C1000, replenishing the consumed active Fe species. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses demonstrated that the reaction surface reconstructed during the PMS activation, which involved the FeIII in-situ reduction by S species as well as the depletion/replenishment of effective Fe species. The reconstructed Fe@C1000 achieved near-zero Fe sludge emission (from 0.59 to 0.08-0.23 mg L-1) during 5 cycles and enabled the dynamic evolution of dominant reactive oxygen species (ROS) from SO4·- to FeIVO, sustainably improving the oxidation capacity (80.0-92.5% in following four cycles) to ciprofloxacin (CIP) and reducing the toxicity of its intermediates. Additionally, the reconstructed Fe@C1000/PMS system exhibited robust resistance to complex water matrix. This study provides a theoretical guideline for exploring surface reconstruction on catalytic activity and broadens the application of Fe-based catalysts in the contaminants elimination.
Collapse
Affiliation(s)
- Lanxuan Wen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Na
- Qinghai Provincial Ecological Environment Planning and Environmental Protection Technology Center, No. 116, Nanshan East Road, Xining, 810007, China
| | - Huanyu Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gen Wang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shanxi, 710055, China
| | - Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Shi Y, Zhang Y, Song G, Sun Y, Ding G. Efficient removal of organic pollutants by activation of peroxydisulfate with the magnetic CoFe 2O 4/carbon nanotube composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6835-6846. [PMID: 38153579 DOI: 10.1007/s11356-023-31567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
A magnetic composite of CoFe2O4 and carbon nanotube (CNT) was prepared using the solvothermal approach and then employed for the activation of peroxydisulfate (PDS) to degrade reactive black 5 (RB5) and other organic pollutants. Characterization results of the composite catalyst revealed the successful loading of spherical CoFe2O4 particles on CNTs, possessing abundant porosity as well as magnetic separation capability. Under the degradation conditions of 0.2 g/L CoFe2O4-CNT dosage and 4 mM PDS dosage, the removal efficiencies of 10 mg/L RB5 and other pollutants were in the range of 94.5 to ~ 100%. The effects of pH, co-existing ions/humic acid, and water matrices as well as the reusability of the catalyst were also investigated in detail. Furthermore, the degradation mechanism and pathway were proposed based on quenching experiments, LC-MS analysis, and density functional theory (DFT) calculations, and the toxicity of the degradation products was evaluated in the quantitative structure-activity relationship approach.
Collapse
Affiliation(s)
- Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
4
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
5
|
Qian L, Li H, Zhang D, Guo L, Pan W, Zhang J, Xiang M. Prussian blue analogues derived magnetic FeCo@GC material as high-performance metallic peroxymonosulfate activators to degrade tetrabromobisphenol A over a wide pH range. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105897-105911. [PMID: 37718365 DOI: 10.1007/s11356-023-29840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Metal-organic frame (MOF) materials can effectively degrade organic pollutants, whereas the MOF is rapidly hydrolysed in water and has poor stability and low reusability. However, in the current advanced oxidation process (AOP) system, the removal effect of pollutants under alkaline condition is not ideal. In this study, a magnetic composite material derived from MOF was synthesised and used as a new catalyst for rapid degradation of tetrabromobisphenol A (TBBPA). Compared to precarbonisation, FeCo@GC formed a conductive graphite carbon skeleton, retained the complete rhombododecahedron structure, had a larger specific surface area and provided more active sites for peroxymonosulfate (PMS) activation. The target pollutant TBBPA (20 mg/L) was completely degraded within 30 min, and the mineralisation rate reached 40.98% in the FeCo@GC (150 mg/L) and PMS (1 mM) systems, owing to the synergistic interaction between Fe, Co and graphite carbon. The reactive oxygen species (ROS) involved in the reaction were determined to be SO4•-, ·OH, 1O2 and O2•- by electron paramagnetic resonance and free radical scavenging experiments, and the 1O2 played a dominant role. Based on the results of LC-MS analysis results, the main degradation pathways of TBBPA involve three mechanisms: the debromination reaction, hydroxylation and cleavage of the benzene ring. In addition, compared with previous AOP systems, FeCo@GC/PMS overcomes the disadvantage of poor degradation effect of TBPPA under alkaline conditions, has a wide range pH (3-11) application and has the best effect on TBBPA degradation under alkaline conditions. FeCo@GC has an excellent cycle performance, with a removal rate of re-calcined material of 88.52% after five cycles. Therefore, FeCo@GC can be used as a promising and efficient catalyst for removing environmental organic pollutants.
Collapse
Affiliation(s)
- Liu Qian
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Dengsong Zhang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lin Guo
- Institute for Shanghai Academy of Environmental Sciences, No. 508 Qinzhou Road, Xuhui District, Shanghai, People's Republic of China
| | - Wenxue Pan
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jin Zhang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Minghui Xiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
6
|
Geng FL, Chi HY, Zhao HC, Wan JQ, Sun J. Stability performance analysis of Fe based MOFs for peroxydisulfates activation to effectively degrade ciprofloxacin. Front Bioeng Biotechnol 2023; 11:1205911. [PMID: 37576985 PMCID: PMC10421748 DOI: 10.3389/fbioe.2023.1205911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Fe-based metal-organic frameworks (MOFs) show high activity toward the activation of peroxodisulfate (PDS) for the removal of organic micropollutants (OMPs) in wastewater treatment. However, there is a phenomenon of Fe ion dissolution in the Fe-based MOFs' active PDS system, and the reasons and influencing factors that cause Fe ion dissolution are poorly understood. In this study, we synthesized four types of Fe-based MOFs and confirmed their crystal structure through characterization. All types of Fe-based MOFs were found to activate PDS and form sulfate radicals (SO4 -), which effectively remove OMPs in wastewater. During the process of Fe-based MOFs activating PDS for CIP removal, activated species, oxidant reagent, and pH negatively impact the stability performance of the MOFs' structure. The coordination bond between Fe atom and O atom can be attacked by water molecules, free radicals, and H+, causing damage to the crystal structure of MOFs. Additionally, Fe (II)-MOFs exhibit the best stability performance, due to the enhanced bond energy of the coordination bond in MOFs by the F ligands. This study summarizes the influencing factors of Fe-based MOFs' damage during PDS activation processes, providing new insights for the future development of Fe-based MOFs.
Collapse
Affiliation(s)
- Fang-Lan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Hua-Chao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jin-Quan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jian Sun
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Han M, Wang H, Jin W, Chu W, Xu Z. The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation. J Environ Sci (China) 2023; 128:181-202. [PMID: 36801034 DOI: 10.1016/j.jes.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/18/2023]
Abstract
Many studies have successfully built iron-mediated materials to activate or catalyze Fenton-like reactions, with applications in water and wastewater treatment being investigated. However, the developed materials are rarely compared with each other regarding their performance of organic contaminant removal. In this review, the recent advances of Fenton-like processes in homogeneous and heterogeneous ways are summarized, especially the performance and mechanism of activators including ferrous iron, zero valent iron, iron oxides, iron-loaded carbon, zeolite, and metal organic framework materials. Also, this work mainly compares three O-O bond containing oxidants including hydrogen dioxide, persulfate, and percarbonate, which are environmental-friendly oxidants and feasible for in-situ chemical oxidation. The influence of reaction conditions, catalyst properties and benefits are analyzed and compared. In addition, the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed. This work can help understand the mechanistic insights of variable Fenton-like reactions, the role of emerging iron-based materials, and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.
Collapse
Affiliation(s)
- Mengqi Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Chi HY, Zhou XX, Wu MR, Shan WY, Liu JF, Wan JQ, Yan B, Liu R. Regulating the reaction pathway of nZVI to improve the decontamination performance through magnetic spatial confinement effect. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130799. [PMID: 36680900 DOI: 10.1016/j.jhazmat.2023.130799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Nanoscale zero-valent iron (nZVI) shows high effectiveness in the catalyzed removal of contaminants in wastewater treatment. However, the uncontrolled interfacial electron transfer behavior and formation of surface iron oxide (FeOx) layer led to severe electron wasting and occasionally form highly toxic intermediates. Here, we constructed magnetic mesoporous SiO2 shell on surface of nZVI to stimulate a magnetic spatial confinement effect and regulate the electron transfer pattern. Therein, Fe atom facilely spread out from the nZVI core, orderly release electron to surface adsorbed H2O molecule, which is efficiently transformed into active hydrogen (H*). Meanwhile, in-situ Raman revealed that Fe atoms were involved in the formation of penetrable γ-FeOOH rather than FeOx layer, enabling the continuous inward diffusion of H2O and outward diffusion of H* . Employing the catalyzed removal of halogenated phenols as demo reaction, the presence of magnetic mesoporous SiO2 shell utilized the reaction between electrons and H2O to switch the reaction pathway from the reduction/oxidation hybrid process to hydrodehalogantion, and increased the conversion of halogenated phenols-to-phenols by 5.53 times. This study shows the forehand of improving the decontamination performance of nZVI through sophisticated designed surface coating, as well as fine regulating the environmental behavior of magnetic material via micro-magnetic field.
Collapse
Affiliation(s)
- Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Min-Rong Wu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wan-Yu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jin-Quan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
9
|
Shi H, He Y, Li Y, Luo P. 2D MOF derived cobalt and nitrogen-doped ultrathin oxygen-rich carbon nanosheets for efficient Fenton-like catalysis: Tuning effect of oxygen functional groups in close vicinity to Co-N sites. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130345. [PMID: 36444076 DOI: 10.1016/j.jhazmat.2022.130345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/16/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Developing highly efficient catalysts for peroxymonosulfate (PMS) activation is an important issue in advanced oxidation processes (AOPs) technology. In this work, cobalt and nitrogen-doped ultrathin oxygen-rich carbon nanosheets derived from 2D metal-organic framework (MOF) were successfully fabricated. The as-prepared catalyst can effectively degrade tetracycline (TC) with a high reaction constant (0.088 min-1). Quenching test, electron paramagnetic resonance (EPR) technology, and the electrochemical test indicate that the radical pathway plays a minor role in the degradation process, the 1O2 based nonradical pathway dominates the reaction. Experimental and density functional theory (DFT) studies revealed that the Co-N sites on the carbon structure serve as the dominant active sites, and the oxygen functional groups in close vicinity to Co-N sites can dramatically influence local electronic structure and its interaction with PMS molecule, a high correlation between the reaction constant and hydroxy groups content could be due to the Co-N sites close to hydroxyl groups has a moderate PMS adsorption energy. This work provides new insight into the design of highly efficient Fenton-like catalysts.
Collapse
Affiliation(s)
- Heng Shi
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China
| | - Yi He
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China; State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, PR China.
| | - Yubin Li
- School of New Energy and Materials, Southwest Petroleum University, Sichuan 610500, PR China
| | - Pingya Luo
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China
| |
Collapse
|
10
|
Luo Y, Huang G, Li Y, Yao Y, Huang J, Zhang P, Ren S, Shen J, Zhang Z. Removal of pharmaceutical and personal care products (PPCPs) by MOF-derived carbons: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159279. [PMID: 36209883 DOI: 10.1016/j.scitotenv.2022.159279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the increasing demand for pharmaceuticals and personal care products (PPCPs) has resulted in the uncontrolled release of large amounts of PPCPs into the environment, which poses a great challenge to the existing wastewater treatment technologies. Therefore, novel materials for efficient treatment of PPCPs need to be developed urgently. MOF-derived carbons (MDCs), have many advantages such as high mechanical strength, excellent water stability, large specific surface area, excellent electron transfer capability, and environmental friendliness. These advantages give MDCs an excellent ability to remove PPCPs. In this review, the effects of different substances on the properties and functions of MDCs are discussed. In addition, representative applications of MDCs and composites for the removal of PPCPs in the field of adsorption and catalysis are summarized. Finally, the future challenges of MDCs and composites are foreseen.
Collapse
Affiliation(s)
- Yifei Luo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guohe Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China; Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Yongping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yao Yao
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jing Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peng Zhang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Shen
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zixin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Xi G, Chen S, Zhang X, Xing Y, He Z. Mechanism analysis of efficient degradation of carbamazepine by chalcopyrite-activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13197-13209. [PMID: 36125685 DOI: 10.1007/s11356-022-23023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, natural chalcopyrite (NCP) was used to activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) oxidatively. Before and after the NCP reaction, the physical and chemical properties were characterized by SEM-EDS, XRD, XPS, XRF, and VSM. The effects of the amount of NCP and PMS, the initial pH value, and the reaction temperature on the catalytic performance of NCP were systematically studied. The research results show that the degradation efficiency of the NCP/PMS system for CBZ can reach 82.34% under the optimal reaction conditions, and the degradation process follows a pseudo-second-order kinetic model. The results of the radical quenching experiment and EPR analysis show that the active species in the system are OH·, SO4-·, and 1O2, of which SO4-· is the main active species. In addition, this study shows that the NCP/PMS system can degrade CBZ with high efficiency of 90.73% only with the assistance of 0.15 g/L Fe0. This study determined the optimal reaction conditions for natural chalcopyrite to activate PMS to degrade CBZ and clarified the activation mechanism, which broadened the application of natural ores in the field of water treatment.
Collapse
Affiliation(s)
- GaoYang Xi
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuxun Chen
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xuhang Zhang
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu Xing
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhengguang He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
12
|
Shi Y, Zhang Y, Song G, Tong L, Sun Y, Ding G. Efficient degradation of organic pollutants using peroxydisulfate activated by magnetic carbon nanotube. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2611-2626. [PMID: 36450676 DOI: 10.2166/wst.2022.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The magnetic composite of Fe3O4 and carbon nanotube (MCNT) was fabricated in a facile one-pot solvothermal method and employed to activate peroxydisulfate (PDS) for degradation of Rhodamine B (RhB) and other pollutants. The effects of operational factors including MCNT dosage and PDS dosage were studied, and high removal efficiencies of 84.2-99.5% were achieved for these pollutants with 0.3 g/L MCNT and 4 mM PDS. The effects of environmental factors including initial pH, inorganic cations, inorganic anions, humic acid and water matrix were also studied. Reusability test showed that the removal efficiency declined in four consecutive runs, which was attributed to the adsorbed oxidation products on the catalyst surface. Based on quenching experiments, solvent exchange (H2O to D2O), inductively coupled plasma and open circuit potential tests, it was concluded that radicals of ·OH/SO4·- and the non-radical electron-transfer pathway were involved in the MCNT/PDS system, and the contributions of O2·-, 1O2, high-valent iron-oxo species and homogenous activation were insignificant. Moreover, the orbital-weighted Fukui functions of RhB were calculated by density functional theory, and its plausible degradation pathway was proposed based on the calculation results. Finally, toxicity evaluation of the degradation products was performed in the quantitative structure-activity relationship approach.
Collapse
Affiliation(s)
- Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Yi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Liya Tong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China E-mail:
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China E-mail:
| |
Collapse
|
13
|
Zheng K, Xiao L. Iron and nitrogen co-doped porous carbon derived from natural cellulose of wood activating peroxymonosulfate for degradation of tetracycline: Role of delignification and mechanisms. Int J Biol Macromol 2022; 222:2041-2053. [DOI: 10.1016/j.ijbiomac.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/17/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
14
|
Zhang Y, Mei Y, Ma S, Yang Y, Deng X, Guan Y, Zhao T, Jiang B, Yao T, Yang Q, Wu J. A simple and green method to prepare non-typical yolk/shell nanoreactor with dual-shells and multiple-cores: Enhanced catalytic activity and stability in Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129234. [PMID: 35739754 DOI: 10.1016/j.jhazmat.2022.129234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, non-typical yolk/shell structure has drawn much attentions due to the better catalytic performance than traditional counterparts (one yolk/one shell). In this study, ZIF-67 @Co2SiO4/SiO2 yolk/shell structure was prepared in one-step at room temperature, in which ZIF-67 was served as the hard-template, H2O was served as etchant and tetraethyl orthosilicat was served as the raw material for Co2SiO4/SiO2. After calcination, the non-typical CoxOy @Co2SiO4/SiO2 yolk/shell nanoreactor with Co2SiO4/SiO2 dual-shells and CoxOy multiple-cores was obtained. On the one hand, more active sites were exposed on multiple-cores surface and better protection were provided by dual-shells. On the other hand, the sheet-like Co2SiO4 inner shell not only extended the travel path and retention time of pollutants trapped in cavity, but also separated the multiple-cores from aggregation. Therefore, the nanoreactor displayed the outstanding catalytic activity and recyclability in Fenton-like reaction. Metronidazole (20 mg/L) was completely degraded after 30 min, rhodamine B (50 mg/L) and methyl orange (20 mg/L) were removed even within 5.0 min. Catalytic mechanism indicated that 1O2 greatly contributed to the pollutant degradation. This paper presented a simple, versatile, green and energy-saving method for non-typical yolk/shell nanoreactor, and it could inspire to prepare other catalysts with high activity and stability for environmental remediation.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuqing Mei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shouchun Ma
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Yang
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianhe Deng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yina Guan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Tingting Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Tongjie Yao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
15
|
Tang Y, Wang M, Liu J, Li S, Kang J, Wang J, Xu Z. Electro-enhanced sulfamethoxazole degradation efficiency via carbon embedding iron growing on nickel foam cathode activating peroxymonosulfate: Mechanism and degradation pathway. J Colloid Interface Sci 2022; 624:24-39. [PMID: 35660892 DOI: 10.1016/j.jcis.2022.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
The combination of peroxymonosulfate (PMS) activation by hetero-catalysis and electrolysis (EC) attracted incremental concerns as an efficient antibiotics degradation method. In this work, carbon embedding iron (C@Fe) catalysts growing on nickel foam (NF) composite cathode (C@Fe/NF) was prepared via in-situsolvothermal growth and carbonization method and used to activate PMS toward sulfamethoxazole (SMX) degradation. The EC-[C@Fe/NF(II)]-PMS system exhibited an excellent PMS activation, with 100% SMX removal efficiency achieving within 30 min. Reactive oxygen species (ROS) generation and their roles in SMX degradation were confirmed by quenching experiments and electron paramagnetic resonance. It was found that singlet oxygen (1O2) and surface-bound radicals were responsible for SMX degradation, and 1O2 contributed the most. Furthermore, the possible SMX degradation pathways were proposed on the base of the detected degradation intermediates and density functional theory (DFT) calculation. Toxicity changes were also assessed by the Ecological Structure Activity Relationships (ESAR). This work provides a practicable strategy for synergistically enhancing PMS activation efficiency and promoting antibiotics removal.
Collapse
Affiliation(s)
- Yiwu Tang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Min Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China.
| | - Jiayun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Siyan Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jin Kang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jiadian Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Zhenqi Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| |
Collapse
|
16
|
Shi Y, Wang H, Song G, Zhang Y, Tong L, Sun Y, Ding G. Efficient degradation of organic dyes using peroxymonosulfate activated by magnetic graphene oxide. RSC Adv 2022; 12:21026-21040. [PMID: 35919837 PMCID: PMC9301559 DOI: 10.1039/d2ra03511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetic graphene oxide (MGO) was prepared and used as a catalyst to activate peroxymonosulfate (PMS) for degradation of Coomassie brilliant blue G250 (CBB). The effects of operation conditions including MGO dosage, PMS dosage and initial concentration of CBB were studied. CBB removal could reach 99.5% under optimum conditions, and high removals of 98.4–99.9% were also achieved for other organic dyes with varied structures, verifying the high efficiency and wide applicability of the MGO/PMS catalytic system. The effects of environmental factors including solution pH, inorganic ions and water matrices were also investigated. Reusability test showed that CBB removals maintained above 90% in five consecutive runs, indicating the acceptable recyclability of MGO. Based on quenching experiments, solvent exchange (H2O to D2O) and in situ open circuit potential (OCP) test, it was found that ˙OH, SO4˙− and high-valent iron species were responsible for the efficient degradation of CBB in the MGO/PMS system, while the contributions of O2˙−, 1O2 and the non-radical electron-transfer pathway were limited. Furthermore, the plausible degradation pathway of CBB was proposed based on density functional theory (DFT) calculations and liquid chromatography-mass spectrometry (LC-MS) results, and toxicity variation in the degradation process was evaluated by computerized structure–activity relationships (SARs) using green algae, daphnia, and fish as indicator species. Efficient degradation of organic dyes with PMS and magnetic graphene oxide.![]()
Collapse
Affiliation(s)
- Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haonan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Liya Tong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|