1
|
Lee JH, Cheon SJ, Kim CS, Joo SH, Choi KI, Jeong DH, Lee SH, Yoon JK. Nationwide evaluation of microplastic properties in municipal wastewater treatment plants in South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124433. [PMID: 38925216 DOI: 10.1016/j.envpol.2024.124433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Wastewater treatment plants (WWTPs) are considered a significant microplastic discharge source. To evaluate the amount and characteristics of microplastics discharged from WWTPs in South Korea, we selected 22 municipal WWTPs nationally and investigated microplastics at each treatment stage. The mean microplastic removal efficiency by WWTPs was >99%, and most of the microplastics were removed by sedimentation with the second clarifier during wastewater treatment. Consequently, the microplastic removal efficiency of WWTPs did not significantly differ from that of the adopted wastewater treatment technology because a second clarifier was applied in most WWTPs. However, for WWTPs operating a tertiary treatment process, the removal efficiency was enhanced compared with that of WWTPs discharging after a second clarifier. Although the microplastic removal efficiency was high by WWTP, the discharge contribution to the water environment could not be ignored because of the amount of treated wastewater, resulting in an increase of 5.8-270.9 items/m3 of microplastics in the receiving water. The characteristics of microplastics in WWTPs, including their components, shape, and size, were also evaluated. The most detected components included polytetrafluoroethylene and polyester. Most microplastics detected were categorized as fragments and fibers, while other types were hardly detected. The size of more than 70% of the microplastics detected in WWTPs was under 300 μm, implying that the size of microplastics required to control in WWTPs was much smaller than the defined size of microplastics. An evaluation of the correlation between other pollution factors and microplastic abundance did not reveal positive correlations, and microplastic occurrence was not affected by changing seasons, which may need to be evaluated with further studies. Research should also be performed on the effect of influent sources on the level of microplastic abundance and fate of ultrafine plastics in WWTPs.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - So-Jeong Cheon
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Chang-Soo Kim
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Soo-Hyun Joo
- Analysis Technical Center, Korea Institute of Ceramic Engineering & Technology, Bucheon, Gyeonggi-do, 14502, Republic of Korea
| | - Ki-In Choi
- Analysis Technical Center, Korea Institute of Ceramic Engineering & Technology, Bucheon, Gyeonggi-do, 14502, Republic of Korea
| | - Dong-Hwan Jeong
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Soo-Hyung Lee
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jeong-Ki Yoon
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| |
Collapse
|
2
|
Chen XL, Wu LJ, Miao LL, Li L, Qiu LM, Zhu HQ, Si XR, Li HF, Zhao QL, Qi PZ, Hou TT. Chronic polystyrene microplastics exposure-induced changes in thick-shell mussel (Mytilus coruscus) metaorganism: A holistic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116961. [PMID: 39208580 DOI: 10.1016/j.ecoenv.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics have emerged as a significant global concern, particularly in marine ecosystems. While extensive research has focused on the toxicological effects of microplastics on marine animals and/or their associated microorganisms as two separate entities, the holistic perspective of the adaptability and fitness of a marine animal metaorganism-comprising the animal host and its microbiome-remains largely unexplored. In this study, mussel metaorganisms subjected chronic PS-MPs exposure experienced acute mortality but rapidly adapted. We investigated the response of innate immunity, digestive enzymes and their associated microbiomes to chronic PS-MPs exposure. We found that PS-MPs directly and indirectly interacted with the host and microbe within the exposure system. The adaptation was a joint effort between the physiological adjustments of mussel host and genetic adaptation of its microbiome. The mussel hosts exhibited increased antioxidant activity, denser gill filaments and increased immune cells, enhancing their innate immunity. Concurrently, the gill microbiome and the digestive gland microbiome respective selectively enriched for plastic-degrading bacteria and particulate organic matter-utilizing bacteria, facilitating the microbiome's adaptation. The microbial adaptation to chronic PS-MPs exposure altered the ecological roles of mussel microbiome, as evidenced by alterations in microbial interactions and nutrient cycling functions. These findings provided new insights into the ecotoxicological impact of microplastics on marine organisms from a metaorganism perspective.
Collapse
Affiliation(s)
- Xing-Lu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lin-Jun Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Long-Mei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hui-Qiang Zhu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xi-Rui Si
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hong-Fei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Qiao-Ling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, Zhejiang 316000, China
| | - Peng-Zhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Ting-Ting Hou
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
3
|
Kumar A, Lakhawat SS, Singh K, Kumar V, Verma KS, Dwivedi U, Kothari SL, Malik N, Sharma PK. Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135804. [PMID: 39276741 DOI: 10.1016/j.jhazmat.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In this study, we have investigated microbial communities structure and function using high throughput amplicon sequencing and whole metagenomic sequencing of DNA extracted from different depths of a plastic-laden landfill site. With diverse taxonomic groups inhabiting the plastic-rich soil, our study demonstrates the remarkable adaptability of microbes to use this new substrate as a carbon source. FTIR spectroscopic analysis of soil indicated degradation of plastic as perceived from the carbonyl index of 0.16, 0.72, and 0.44 at 0.6, 0.9 and 1.2 m depth, respectively. Similarly, water contact angles of 108.7 degree, 99.7 degree, 62.7 degree, and 77.8 degree of plastic pieces collected at 0.3, 0.6, 0.9, and 1.2 m depths respectively showed increased wettability and hydrophilicity of the plastic. Amplicon analysis of 16S and 18 S rRNA revealed a high abundance of several plastic-degrading bacterial groups, including Pseudomonas, Rhizobiales, Micrococcaceae, Chaetomium, Methylocaldum, Micromonosporaceae, Rhodothermaceae and fungi, including Trichoderma, Aspergillus, Candida at 0.9 m. The co-existence of specific microbial groups at different depths of landfill site indicates importance of bacterial and fungal interactions for plastic. Whole metagenome analysis of soil sample at 0.9 m depth revealed a high abundance of genes encoding enzymes that participate in the biodegradation of PVC, polyethylene, PET, and polyurethane. Curation of the pathways related to the degradation of these materials provided a blueprint for plastic biodegradation in this ecosystem. Altogether, our study has highlighted the importance of microbial cooperation for the biodegradation of pollutants. Our metagenome-based investigation supports the current perception that consortia of fungi-bacteria are preferable to axenic cultures for effective bioremediation of the environment.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University Chandigarh, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | | | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India; Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
4
|
Xie S, Hamid N, Zhang T, Zhang Z, Peng L. Unraveling the nexus: Microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134324. [PMID: 38640666 DOI: 10.1016/j.jhazmat.2024.134324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
In recent years, aquaculture has expanded rapidly to address food scarcity and provides high-quality aquatic products. However, this growth has led to the release of significant effluents, containing emerging contaminants like antibiotics, microplastics (MPs), and antibiotic resistance genes (ARGs). This study investigated the occurrence and interactions of these pollutants in aquaculture environment. Combined pollutants, such as MPs and coexisting adsorbents, were widespread and could include antibiotics, heavy metals, resistance genes, and pathogens. Elevated levels of chemical pollutants on MPs could lead to the emergence of resistance genes under selective pressure, facilitated by bacterial communities and horizontal gene transfer (HGT). MPs acted as vectors, transferring pollutants into the food web. Various technologies, including membrane technology, coagulation, and advanced oxidation, have been trialed for pollutants removal, each with its benefits and drawbacks. Future research should focus on ecologically friendly treatment technologies for emerging contaminants in aquaculture wastewater. This review provided insights into understanding and addressing newly developing toxins, aiming to develop integrated systems for effective aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Shiyu Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tingting Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zijun Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Li NY, Zhong B, Guo Y, Li XX, Yang Z, He YX. Non-negligible impact of microplastics on wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171252. [PMID: 38423326 DOI: 10.1016/j.scitotenv.2024.171252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
There has been much concern about microplastic (MP) pollution in marine and soil environments, but attention is gradually shifting towards wetland ecosystems, which are a transitional zone between aquatic and terrestrial ecosystems. This paper comprehensively reviews the sources of MPs in wetland ecosystems, as well as their occurrence characteristics, factors influencing their migration, and their effects on animals, plants, microorganisms, and greenhouse gas (GHG) emissions. It was found that MPs in wetland ecosystems originate mainly from anthropogenic sources (sewage discharge, and agricultural and industrial production) and natural sources (rainfall-runoff, atmospheric deposition, and tidal effects). The most common types and forms of MPs identified in the literature were polyethylene and polypropylene, fibers, and fragments. The migration of MPs in wetlands is influenced by both non-biological factors (the physicochemical properties of MPs, sediment characteristics, and hydrodynamic conditions) and biological factors (the adsorption and growth interception by plant roots, ingestion, and animal excretion). Furthermore, once MPs enter wetland ecosystems, they can impact the resident microorganisms, animals, and plants. They also have a role in global warming because MPs act as unique exogenous carbon sources, and can also influence GHG emissions in wetland ecosystems by affecting the microbial community structure in wetland sediments and abundance of genes associated with GHG emissions. However, further investigation is needed into the influence of MP type, size, and concentration on the GHG emissions in wetlands and the underlying mechanisms. Overall, the accumulation of MPs in wetland ecosystems can have far-reaching consequences for the local ecosystem, human health, and global climate regulation. Understanding the effects of MPs on wetland ecosystems is essential for developing effective management and mitigation strategies to safeguard these valuable and vulnerable environments.
Collapse
Affiliation(s)
- Na-Ying Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bo Zhong
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yun Guo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xian-Xiang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Zao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi-Xin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Saygin H, Tilkili B, Kayisoglu P, Baysal A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. ENVIRONMENTAL RESEARCH 2024; 248:118349. [PMID: 38309565 DOI: 10.1016/j.envres.2024.118349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Climate change and plastic pollution are the big environmental problems that the environment and humanity have faced in the past and will face in many decades to come. Sediments are affected by many pollutants and conditions, and the behaviors of microorganisms in environment may be influenced due to changes in sediments. Therefore, the current study aimed to explore the differential effects of various microplastics and temperature on different sediments through the metabolic and oxidative responses of gram-negative Pseudomonas aeruginosa. The sediments collected from various fields including beaches, deep-sea discharge, and marine industrial areas. Each sediment was extracted and then treated with various microplastics under different temperature (-18, +4, +20 and 35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed sediment samples were incubated with Pseudomonas aeruginosa to test bacterial activity, biofilm, and oxidative characteristics. The results showed that both the activity and the biofilm formation of Pseudomonas aeruginosa increased with the temperature of microplastic treatment in the experimental setups at the rates between an average of 2-39 % and 5-27 %, respectively. The highest levels of bacterial activity and biofilm formation were mainly observed in the beach area (average rate +25 %) and marine industrial (average rate +19 %) sediments with microplastic contamination, respectively. Moreover, oxidative characteristics significantly linked the bacterial activities and biofilm formation. The oxidative indicators of Pseudomonas aeruginosa showed that catalase and glutathione reductase were more influenced by microplastic contamination of various sediments than superoxide dismutase activities. For instance, catalase and glutathione reductase activities were changed between -37 and +169 % and +137 to +144 %, respectively; however, the superoxide dismutase increased at a rate between +1 and + 21 %. This study confirmed that global warming as a consequence of climate change might influence the effect of microplastic on sediments regarding bacterial biochemical responses and oxidation characteristics.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Pinar Kayisoglu
- Deptment of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
7
|
Saygin H, Tilkili B, Karniyarik S, Baysal A. Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171103. [PMID: 38402970 DOI: 10.1016/j.scitotenv.2024.171103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Temperature changes due to climate change and microplastic contamination are worldwide concerns, creating various problems in the marine environment. Therefore, this study was carried out to discover the impact of different temperatures of seawater exposed to different types of plastic materials on culture dependent bacterial responses and oxidative characteristics. Seawater was exposed to microplastics obtained from various plastic materials at different temperature (-18, +4, +20, and +35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed seawater samples were analyzed for bacterial activity, biofilm formation and oxidative characteristics (antioxidant, catalase, glutathione, and superoxide dismutase) using Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The results showed that the activity and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus were affected through oxidative stress by catalase, glutathione, and superoxide dismutase due to the microplastic deformation by temperature changes. This study confirms that temperature changes as a result of climate change might influence microplastic degradation and their contamination impact in seawater in terms of bacterial metabolic and oxidation reactions.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Sinem Karniyarik
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
8
|
Wu W, Wang C, Jiang H. Impacts of microplastic contamination on the rheology properties of sediments in a eutrophic shallow lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123545. [PMID: 38346632 DOI: 10.1016/j.envpol.2024.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Microplastic (MP) contamination is a growing global concern, with lake sediments serving as a significant sink for MP due to both anthropogenic and natural activities. Given the increasing evidence of MP accumulation in sediments, it was crucial to assess their influence on sediment erosion resistance, which directly affected sediment resuspension. To fill this gap, this study focused on the effect of MP on the sediments rheological properties. After 60-day experiments, it was found that MP addition into sediments reduced sediment viscosity, yield stress, and flow point shear stress. Meanwhile, MPs also significantly altered sediment properties and extracellular polymer composition. MP addition reduced extracellular polymeric substances production and cation exchange capacity, which then worked together and led to a weak sediment structure. Seemingly, MPs changed fluid sediment characteristics and caused stronger fluidity under less shear force. Consequently, the accumulation of MP might facilitate the resuspension of sediments under smaller wind and wave disturbances. This study provided novel insights into the direct impact of MPs on sediment physical properties using rheology, thereby enhancing our understanding of the environmental behavior of MPs in lake ecosystems.
Collapse
Affiliation(s)
- Wenbin Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
9
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
10
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
11
|
Zhou X, Xiao C, Zhang B, Chen T, Yang X. Effects of microplastics on carbon release and microbial community in mangrove soil systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133152. [PMID: 38056259 DOI: 10.1016/j.jhazmat.2023.133152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Mangrove ecosystems are major carbon sink biomes and also a sink of microplastics (MPs). The final enrichment of MPs in sediments may have a significant impact on the microbial community and carbon turnover in the soil. However, the effects of MP pollution on the mangrove soil microbial communities and carbon release remain unknown. Here, we conducted a manipulative incubation experiment by adding MPs to soil at different soil depths to examine the effect of enriched MPs on soil microorganisms and its function (i.e., decomposition of soil carbon). The results showed that the addition of MPs had no significant effect on the microbial diversity and CO2 cumulative emission in the topsoil but significantly increased CO2 release from the subsoil. The promoting effect of polylactide (PLA) on the release of CO2 from the subsoil was stronger than that of polyethylene (PE) and aging PE. In the subsoil, the activity of soil extracellular enzymes related to N acquisition increased with the MP addition, indicating an increase in microbial N deficiency. The subsoil was more sensitive to MPs because of the exacerbated nitrogen limitation. MP addition reduced the microbial diversity of the subsoil and altered soil microbial interactions. The increasing abundance of some microbial taxa, especially bacteria related to the sulfur cycle, indicated more active electron transfer and organic carbon mineralization in the subsoil. Our findings suggest that MP contamination has potential effects on microbial communities, nutrient cycling, and carbon release in mangrove soils that vary depending on soil depth.
Collapse
Affiliation(s)
- Xu Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Bingwei Zhang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Tao Chen
- MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou).
| |
Collapse
|
12
|
Chen X, Wu XN, Feng JC, Wang Y, Zhang XC, Lin YL, Wang B, Zhang S. Nonlinear differential equations and their application to evaluating the integrated impacts of multiple parameters on the biochemical safety of drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120493. [PMID: 38452624 DOI: 10.1016/j.jenvman.2024.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
The present study aimed to narrow such gaps by applying nonlinear differential equations to biostability in drinking water. Biostability results from the integrated dynamics of nutrients and disinfectants. The linear dynamics of biostability have been well studied, while there remain knowledge gaps concerning nonlinear effects. The nonlinear effects are explained by phase plots for specific scenarios in a drinking water system, including continuous nutrient release, flush exchange with the adjacent environment, periodic pulse disinfection, and periodic biofilm development. The main conclusions are, (1) The correlations between the microbial community and nutrients go through phases of linear, nonlinear, and chaotic dynamics. Disinfection breaks the chaotic phase and returns the system to the linear phase, increasing the microbial growth potential. (2) Post-disinfection after multiple microbial peaks produced via metabolism can increase disinfection efficiency and decrease the risks associated with disinfectant byproduct risks. This can provide guidelines for optimizing the disinfection strategy, according to the long-term water safety target or a short management. Limited disinfection and ultimate disinfection may be more effective and have low chemical risk, facing longer stagnant conditions. (3) Periodic biofilm formation and biofilm detachment increase the possibility of uncertainty in the chaotic phase. For future study, nonlinear differential equation models can accordingly be applied at the molecular and ecological levels to further explore more nonlinear regulation mechanisms.
Collapse
Affiliation(s)
- Xiao Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Nan Wu
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jing-Chun Feng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yi Wang
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China.
| | - Xiao-Chun Zhang
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yi-Lei Lin
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bin Wang
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Xu M, Chen M, Pan C, Xu RZ, Gao P, Chen HQ, Shen XX. Microplastics shape microbial interactions and affect the dissemination of antibiotic resistance genes in different full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168313. [PMID: 38007128 DOI: 10.1016/j.scitotenv.2023.168313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Wastewater treatment plants (WWTPs) pose a potential threat to the environment because of the accumulation of antibiotic resistance genes (ARGs) and microplastics (MPs). However, the interactions between ARGs and MPs, which have both indirect and direct effects on ARG dissemination in WWTPs, remain unclear. In this study, spatiotemporal variations in different types of MPs, ten ARGs (sul1, sul2, tetA, tetO, tetM, tetX, tetW, qnrS, ermB, and ermC), class 1 integron integrase (intI1) and transposon Tn916/1545 in three typical WWTPs were characterized. Sul1, tetO, and sul2 were the predominant ARGs in the targeted WWTPs, whereas the intI1 and transposon Tn916/1545 were positively correlated with most of the targeted ARGs. Saccharimonadales (4.15 %), Trichococcus (2.60 %), Nitrospira (1.96 %), Candidatus amarolinea (1.79 %), and SC-I-84 (belonging to phylum Proteobacteria) (1.78 %) were the dominant genera. Network and redundancy analyses showed that Trichococcus, Faecalibacterium, Arcobacter, and Prevotella copri were potential hosts of ARGs, whereas Candidatus campbellbacteria and Candidatus kaiserbacteria were negatively correlated with ARGs. The potential hosts of ARGs had a strong positive correlation with polyethylene terephthalate, silicone resin, and fluor rubber and a negative correlation with polyurethane. Candidatus campbellbacteria and Candidatus kaiserbacteria were positively correlated with polyurethane, whereas potential hosts of ARGs were positively correlated with polypropylene and fluor rubber. Structural equation modeling highlighted that intI1, transposon Tn916/1545 and microbial communities, particularly microbial diversity, dominated the dissemination of ARGs, whereas MPs had a significant positive correlation with microbial abundance. Our study deepens the understanding of the relationships between ARGs and MPs in WWTPs, which will be helpful in designing strategies for inhibiting ARG hosts in WWTPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Mengkai Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Chengyu Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| |
Collapse
|
14
|
Wu XN, Feng JC, Chen X, Li CR, Zhang S. Exploring carbon content variation in microplastics sequestrated from seawater to sediment in the Haima cold seep area. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132742. [PMID: 37871440 DOI: 10.1016/j.jhazmat.2023.132742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
In the decades since plastic has become widely used, deep-sea areas, specifically cold seeps, have developed into plastic sinks. Cold seeps contain clean energy natural gas hydrates and act as a barrier reducing methane migration to the upper water column. However, the impacts of microplastics (MPs) on the carbon content in the cold seep remain unclear. In this study, we explored spatial changes in the MPs' carbon content (MPC) selecting the Haima cold seep (HCS) as the study area. The main conclusions are as follows: (1) For active seepage areas, the mass abundance of the MPs increases with the methane seepage strength in all water columns and sediment of strong seepage areas. It decreases with the seepage strength in the sediment cores in other areas. (2)The MPC is positively correlated with the depth of the water column in the non-seepage area, while it is negatively correlated in the sediment core. (3) The surface roughness of the MPs was greater in the middle of the water column and the sediment core at ROV1. In the high-pressure and oligotrophic cold seep, the amount and method of microbial utilization of carbon from the MPs deserve greater attention.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China
| | - Jing-Chun Feng
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China.
| | - Xiao Chen
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China
| | - Can-Rong Li
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China
| | - Si Zhang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangzhou 510006, China
| |
Collapse
|
15
|
Lo LSH, Liu X, Qian PY, Häggblom MM, Cheng J. Microbial colonization and chemically influenced selective enrichment of bacterial pathogens on polycarbonate plastic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8061-8071. [PMID: 38175506 DOI: 10.1007/s11356-023-31752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plastic pollution in aquatic environments poses significant concerns due to its potential to serve as a refuge for aquatic pathogens. However, the role of plastic surfaces and microbial biofilm interfaces in facilitating pathogen development remains poorly understood. In this study, a microcosm setup was employed to investigate the interactions between plastics and the microbial community and examine the differences in bacterial community composition and potential pathogen occurrences between the plastisphere-biofilm and surrounding seawater. Community composition analysis combined with SEM observations over time indicated that biofilm extracellular polymeric substance formation over 14 days had a link with the relative abundance and succession patterns of pathogen taxa. Colony clusters were observed on biofilms from day 7 and coincided with higher bacterial pathogen dominance. On day 14, pathogen abundance overall decreased with a potentially degrading biofilm. Pseudomonas and Pseudoalteromonas were the dominant potential pathogen groups observed in the microcosm. When further subjected to chemical treatment as an imposed environmental stress over time, biofilm-associated Psuedoalteromonas sharply increased in abundance after three days of exposure, but quickly diminished by 14 days in favor of genera such as Acinetobacter, Pseudomonas, and Staphylococcus. These results suggest that environmental plastisphere-biofilms can promote the early selection, enrichment, and spread of pathogenic bacteria in the aquatic environment and could be later worsened under chemical and long-term pressure. This study provided new insights into the succession of pathogens in plastisphere biofilms, contributing to the understanding of pathogen risks involved in emerging plastisphere biofilms in light of global plastic pollution.
Collapse
Affiliation(s)
- Linus Shing Him Lo
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xuan Liu
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Pei-Yuan Qian
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ, 08901-8525, USA
| | - Jinping Cheng
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China.
| |
Collapse
|
16
|
Fu D, Wu H, Wang Z, Huang S, Zheng Z. Effects of microplastics/nanoplastics on Vallisneria natans roots and sediment: Size effect, enzymology, and microbial communities. CHEMOSPHERE 2023; 341:140052. [PMID: 37660790 DOI: 10.1016/j.chemosphere.2023.140052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Microplastics/nanoplastics (MNPs) pollution in different environmental media and its adverse effects on organisms have received increasing attention from researchers. This paper compares the effects of natural concentrations of three different sizes (20 nm, 200 nm, and 2 μm) of MNPs on Vallisneria natans and sediments. MNPs with smaller sizes adhere more readily to V. natans roots, further promoting root elongation. In addition, the larger the particle size of MNPs, the higher the reactive oxygen species level in the roots, and the malondialdehyde level increased accordingly. In the sediment, 20 nm, and 200 nm MNPs increased the activity of related enzymes, including acid phosphatase, urease, and nitrate reductase. In addition, the dehydrogenase content in the treated sediments increased, and the content changes were positively correlated with the size of MNPs. Changes in microorganisms were only observed on the root surface. The addition of MNPs reduced the abundance of Proteobacteria and increased the abundance of Chloroflexi. In addition, at the class level of species composition on the root surface, the abundance of Gammaproteobacteria under the 20 nm, 200 nm, and 2 μm MNP treatments decreased by 21.19%, 16.14%, and 17.03%, respectively, compared with the control group, while the abundance of Anaerolineae increased by 44.63%, 26.31%, and 62.52%, respectively. These findings enhance the understanding of the size effects of MNPs on the roots of submerged plants and sediment.
Collapse
Affiliation(s)
- Danliang Fu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
17
|
Nguyen TLH, Duong TL, Nguyen THT, Dang TQ, Nguyen TH, Dao NN, Nguyen KT, Duong CD, Pham NN, Nguyen BQ. Microplastics and trace metals in river sediment: Prevalence and correlation with multiple factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165145. [PMID: 37385491 DOI: 10.1016/j.scitotenv.2023.165145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Microplastics (MPs), which are ubiquitous, are no longer novel emerging pollutants, yet our knowledge of them is insufficient. This study investigates the prevalence of MPs and trace metals in sediment belonging to Ma River, Vietnam, and their interaction with various parameters, including nutrients such as total carbon (TC), total nitrogen (TN), and total phosphorus (TP), grain sizes, and MPs in surface water. The study revealed that the abundance of MPs in sediment (MPs/S) is relatively high (i.e., 1328.3 ± 1925.5 items.kg-1 dry weight), while the concentration of MPs in surface water (MPs/W) was relatively low (i.e., 57.3 ± 55.8 items.m-3) compared to other areas. Notably, the study found that arsenic and cadmium concentrations exceeded baseline levels, indicating their anthropogenic origin. To interpret the relationship between MPs/S, metals, and the aforementioned parameters, principal component analysis and Pearson correlation analyses were employed. The results demonstrated a significant correlation between metals and nutrients, as well as small grain sizes such as clay and silt. It was observed that the majority of metals displayed co-occurrence with one another but showed weak associations with the levels of MPs present in both water and sediment. Additionally, a weak correlation was observed between MPs/W and MPs/S. In conclusion, these findings suggest that the distribution and behavior of MPs and trace metals in aquatic systems are influenced by multiple factors, including nutrient levels, grain size, and other chemical and physical characteristics of the environment. While certain metals may have natural sources, others may result from human activities such as mining, industrial discharge, and wastewater treatment plants. As a result, understanding the sources and aspects of metal contamination are critical for determining their relationship with MPs and developing effective strategies for mitigating their impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Thi Lan Huong Nguyen
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Thi Lim Duong
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Thi Huong Thuy Nguyen
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Tran Quan Dang
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Thi Hue Nguyen
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Ngoc Nhiem Dao
- Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Kien Trung Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Cong Dien Duong
- Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi 100000, Viet Nam
| | - Ngo Nghia Pham
- Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam
| | - Bac Quang Nguyen
- Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam.
| |
Collapse
|
18
|
Saygin H, Soyocak A, Baysal A, Saridag AM. Characterizing the interaction between micro(nano)plastics and simulated body fluids and their impact on human lung epithelial cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:855-868. [PMID: 37550869 DOI: 10.1080/10934529.2023.2243190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Micro(nano)plastics are considered an emerging threat to human health because they can interact with biological systems. In fact, these materials have already been found in the human body, such as in the lungs. However, limited data are available on the behavior of these materials under biological conditions and their impact on human cells, specifically on alveolar epithelial cells. In this study, micro(nano)plastics were exposed to various simulated biological fluids (artificial lysosomal fluids and Gamble's solution) for 2-80 h. Pristine and treated plastic particles were characterized based on their surface chemistry, zeta potentials, and elemental composition. Various toxicological endpoints (mitochondrial membrane potential, lactate dehydrogenase, protein, and antioxidant levels) were examined using A549 lung carcinoma cells. The surface characteristics of the treated micro(nano)plastics and the toxicological endpoints of A549 cells were found to be influenced by the simulated biological media, specifically with high concentrations of the treated micro(nano)plastics and increasing exposure under biological conditions. Moreover, the toxicological endpoints were strongly linked to the chemistry of plastics and included multiple processes in response to the plastics; different biological pathways were obtained in artificial lysosomal fluid and Gamble's solution.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Istanbul Aydin University, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | | |
Collapse
|
19
|
Duong TH, Kim SY, Chung SY, Son H, Oh S, Maeng SK. Biomass formation and organic carbon migration potential of microplastics from a PET recycling plant: Implication of biostability. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131645. [PMID: 37207483 DOI: 10.1016/j.jhazmat.2023.131645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
The growth of the polyethylene terephthalate (PET) mechanical recycling industry has resulted in the challenge of generating microplastics (MPs). However, little attention has been given to investigating the release of organic carbon from these MPs and their roles in promoting bacterial growth in aquatic environments. In this study, a comprehensive method is proposed to access the potential of organic carbon migration and biomass formation of MPs generated from a PET recycling plant, and to understand its impact on the biological systems of freshwater habitats. Various MPs sizes from a PET recycling plant were selected to conduct a series of tests, including the organic carbon migration test, biomass formation potential test, and microbial community analysis. The MPs smaller than 100 µm, which are difficult to remove from the wastewater, exhibited greater biomass in the observed samples (1.05 × 1011 bacteria per gram MPs). Moreover, PET MPs altered the microbial diversity, with Burkholderiaceae becoming the most abundant, while Rhodobacteraceae was eliminated after being incubated with MPs. This study partly revealed that organic matter adsorbed on the surface of MPs was a significant nutrient source that increased biomass formation. PET MPs acted not only as carriers for microorganisms but also for organic matter. As a result, it is crucial to develop and refine recycling methods in order to decrease the production of PET MPs and minimize their adverse effects on the environment.
Collapse
Affiliation(s)
- Thi Huyen Duong
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sang-Yeob Kim
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sang-Yeop Chung
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea; Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Busan Water Authority, Busan 50804, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
20
|
Adomako MO, Yu FH. Potential effects of micro- and nanoplastics on phyllosphere microorganisms and their evolutionary and ecological responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163760. [PMID: 37120023 DOI: 10.1016/j.scitotenv.2023.163760] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution is among the most urgent environmental and social challenges of the 21st century, and their influxes in the environment have altered critical growth drivers in all biomes, attracting global concerns. In particular, the consequences of microplastics on plants and their associated soil microorganisms have gained a large audience. On the contrary, how microplastics and nanoplastics (M/NPs) may influence the plant-associated microorganisms in the phyllosphere (i.e., the aboveground portion of plants) is nearly unknown. We, therefore, summarize evidence that may potentially connect M/NPs, plants, and phyllosphere microorganisms based on studies on other analogous contaminants such as heavy metals, pesticides, and nanoparticles. We show seven pathways that may link M/NPs into the phyllosphere environment, and provide a conceptual framework explaining the direct and indirect (soil legacy) effects of M/NPs on phyllosphere microbial communities. We also discuss the adaptive evolutionary and ecological responses, such as acquiring novel resistance genes via horizontal gene transfer and microbial degradation of plastics of the phyllosphere microbial communities, to M/NPs-induced threats. Finally, we highlight the global consequences (e.g., disruption of ecosystem biogeochemical cycling and impaired host-pathogen defense chemistry that can lead to reduced agricultural productivity) of altered plant-microbiome interactions in the phyllosphere in the context of a predicted surge of plastic production and conclude with pending questions for future research priorities. In conclusion, M/NPs are very likely to produce significant effects on phyllosphere microorganisms and mediate their evolutionary and ecological responses.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
21
|
Wang Z, Hu X, Kang W, Qu Q, Feng R, Mu L. Interactions between dissolved organic matter and the microbial community are modified by microplastics and heat waves. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130868. [PMID: 36709740 DOI: 10.1016/j.jhazmat.2023.130868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic matter (DOM) exists widely in natural waters and plays an important role in river carbon cycles and greenhouse gas emissions through microbial interactions. However, information on DOM-microbe associations in response to environmental stress is limited. River environments are the main carriers of microplastic (MP) pollution, and global heat waves (HWs) are threatening river ecology. Here, through MP exposure and HW simulation experiments, we found that DOM molecular weight and aromaticity were closely related to initial microbial communities. Moreover, MP-derived DOM regulated microbial community abundance and diversity, influenced microorganism succession trajectories as deterministic factors, and competed with riverine DOM for microbial utilization. SimulatedHWs enhanced the MP-derived DOM competitive advantage and drove the microbial community to adopt a K-strategy for effective recalcitrant carbon utilization. Relative to single environmental stressor exposure, combined MP pollution and HWs led to a more unstable microbial network. This study addresses how MPs and HWs drive DOM-microbe interactions in rivers, contributes to an in-depth understanding of the fate of river DOM and microbial community succession processes, and narrows the knowledge gap in understanding carbon sinks in aquatic ecosystems influenced by human activities and climate change.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China.
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| |
Collapse
|
22
|
Fournier E, Ratel J, Denis S, Leveque M, Ruiz P, Mazal C, Amiard F, Edely M, Bezirard V, Gaultier E, Lamas B, Houdeau E, Engel E, Lagarde F, Etienne-Mesmin L, Mercier-Bonin M, Blanquet-Diot S. Exposure to polyethylene microplastics alters immature gut microbiome in an infant in vitro gut model. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130383. [PMID: 36444070 DOI: 10.1016/j.jhazmat.2022.130383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Infants are characterized by an immaturity of the gut ecosystem and a high exposure to microplastics (MPs) through diet, dust and suckling. However, the bidirectional interactions between MPs and the immature infant intestinal microbiota remain unknown. Our study aims to investigate the impact of chronic exposure to polyethylene (PE) MPs on the gut microbiota and intestinal barrier of infants, using the new Toddler mucosal Artificial Colon coupled with a co-culture of epithelial and mucus-secreting cells. Gut microbiota composition was determined by 16S metabarcoding and microbial activities were evaluated by gas, short chain fatty acid and volatolomics analyses. Gut barrier integrity was assessed via evaluation of intestinal permeability, inflammation and mucus synthesis. Exposure to PE MPs induced gut microbial shifts increasing α-diversity and abundance of potentially harmful pathobionts, such as Dethiosulfovibrionaceae and Enterobacteriaceae. Those changes were associated to butyrate production decrease and major changes in volatile organic compounds profiles. In contrast, no significant impact of PE MPs on the gut barrier, as mediated by microbial metabolites, was reported. For the first time, this study indicates that ingestion of PE MPs can induce perturbations in the gut microbiome of infants. Next step would be to further investigate the potential vector effect of MPs.
Collapse
Affiliation(s)
- Elora Fournier
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France; Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Jeremy Ratel
- INRAE, UR QuaPA, MASS Team, F-63122 Saint-Genès-Champanelle, France
| | - Sylvain Denis
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Mathilde Leveque
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Carine Mazal
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Frederic Amiard
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Mathieu Edely
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Valerie Bezirard
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Gaultier
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Bruno Lamas
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Eric Houdeau
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France
| | - Erwan Engel
- INRAE, UR QuaPA, MASS Team, F-63122 Saint-Genès-Champanelle, France
| | - Fabienne Lagarde
- Le Mans Université, IMMM UMR-CNRS 6283, Avenue Olivier Messiaen, F-72085 Cedex 9 Le Mans, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Muriel Mercier-Bonin
- Toxalim, Research Centre in Food Toxicology, INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, F-31000 Toulouse, France.
| | | |
Collapse
|
23
|
Wang Z, Hu X, Qu Q, Hao W, Deng P, Kang W, Feng R. Dual regulatory effects of microplastics and heat waves on river microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129879. [PMID: 36084464 DOI: 10.1016/j.jhazmat.2022.129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Rivers play a critical role in the global carbon cycle, but the processes can be affected by widespread microplastic (MP) pollution and the increasing frequency of heat waves (HWs) in a warming climate. However, little is known about the role of river microbes in regulating the carbon cycle under the combined action of MP pollution and HWs. Here, through seven-day MP exposure and three cycles of HW simulation experiments, we found that MPs inhibited the thermal adaptation of the microbial community, thus regulating carbon metabolism. The CO2 release level increased, while the carbon degradation ability and the preference for stable carbon were inhibited. Metabonomic, 16 S rRNA and ITS gene analyses further revealed that the regulation of carbon metabolism was closely related to the microbial r-/K- strategy, community assembly and transformation of keystone taxa. The random forest model revealed that dissolved oxygen and ammonia-nitrogen were important variables influencing microbial carbon metabolism. The above findings regarding microbe-mediated carbon metabolism provide insights into the effect of climate-related HWs on the ecological risks of MPs.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weidan Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
24
|
Chen X, Lian XY, Wang Y, Chen S, Sun YR, Tao GL, Tan QW, Feng JC. Impacts of hydraulic conditions on microplastics biofilm development, shear stresses distribution, and microbial community structures in drinking water distribution pipes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116510. [PMID: 36265230 DOI: 10.1016/j.jenvman.2022.116510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both microplastic and biofilm are contamination sources in drinking water, but their integrated impacts on water quality have been rarely studied, especially in drinking water distribution pipes with complex hydraulic conditions. This study explored the impacts of hydraulic conditions (0-2 m/s) on microplastic biofilm (MP-BM) development, shear stresses distribution, and microbial community structures. The research was conducted for two weeks using a pilot test device to simulate practical water pipes. The following were the primary conclusions: (1) According to morphology analysis, clusters (>5 μm) significantly increased in the plastisphere when the flow velocity ranged from 0.55 m/s to 0.95 m/s, and average size of clusters decreased when the flow velocity ranged from 1.14 m/s to 1.40 m/s (2) Characteristics of MP-BM impact shear stress on both plastisphere and pipe wall biofilm. Shear stresses were positively correlated with flow velocity, number of MP-BM, and size of MP-BM, while negatively correlated with diameters of pipes. (3) 31 genera changed strictly and monotonously with the fluid velocity, accounting for 15.42%. Opportunistic pathogens in MP-BM such as Sediminibacterium, Curvibacter, and Flavobacterium were more sensitive to hydraulic conditions. Moreover, microplastics (<100 μm) deserve more attention to avoid human ingestion and to prevent mechanical damage and bio-chemical risks.
Collapse
Affiliation(s)
- Xiao Chen
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China; South Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Ying Lian
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China
| | - Yi Wang
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China.
| | - Sheng Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yi-Ran Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guo-Lin Tao
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing, 210007, China
| | - Qiao-Wen Tan
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Jing-Chun Feng
- South Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Rosato A, Barone M, Negroni A, Brigidi P, Fava F, Biagi E, Candela M, Zanaroli G. Bacterial colonization dynamics of different microplastic types in an anoxic salt marsh sediment and impact of adsorbed polychlorinated biphenyls on the plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120411. [PMID: 36240963 DOI: 10.1016/j.envpol.2022.120411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Plastic debris dispersed into the environment provide a substrate for microbial colonization, constituting a new human-made ecosystem called "plastisphere", and altering the microbial species distribution in aquatic, coastal and benthic ecosystems. The study aims at exploring the interaction among microplastics (MPs) made of different polymers, a persistent organic contaminant (polychlorinated biphenyls, PCBs), and the environmental microbial communities, in an anoxic marine sediment. Plastic pellets were incubated in the field in a salt marsh anoxic sediment, to observe the stages of plastisphere formation, by quantitative PCR and 16S rRNA gene sequencing, and PCB dechlorination activity on the MPs surface. Microbes from the sediment rapidly colonized the different microplastics types, with PVC recruiting a peculiar community enriched in sulfate-reducing bacteria. The composition of the plastisphere varied along the 1-year incubation possibly in response either to warmer temperatures in spring-summer or to microhabitat's changes due to the progressive plastic surface weathering. Even if PCB contaminated MPs were able to recruit potentially dehalogenating taxa, actual dechlorination was not detectable after 1 year. This suggests that the concentration of potentially dehalorespiring bacteria in the natural environment could be too low for the onset of the dechlorination process on MP-sorbed contaminants. Our study, which is among very few available longitudinally exploring the plastisphere composition in an anoxic sediment context, is the first exploring the fate and possible biodegradation of persistent organic pollutants sorbed on MPs reaching the seafloor.
Collapse
Affiliation(s)
- Antonella Rosato
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Monica Barone
- Dept. of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy; Dept. of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Patrizia Brigidi
- Dept. of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Marco Candela
- Dept. of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy.
| |
Collapse
|
26
|
Wang X, Xing Y, Lv M, Zhang T, Ya H, Jiang B. Recent advances on the effects of microplastics on elements cycling in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157884. [PMID: 35944635 DOI: 10.1016/j.scitotenv.2022.157884] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (<5 mm) are an emerging pollutant which have received increasing concern in recent years. Microplastics pose a serious hazard and potential risk to the environment due to their migration, transformation, adsorption and degradation properties. The effects of different types of microplastics on the elemental cycles (carbon, nitrogen and phosphorus cycles) in ecosystems were comprehensively summarized. The impacts of microplastics on the element cycle occur mainly in the soil environment and to less extent in other environments. Microplastics affect carbon sources, carbon dioxide (CO2) emissions, and carbon conversion processes, mainly by affecting plant and animal activities, changing gene abundance, enzyme activity, and microbial community composition. Microplastics can affect nitrogen sources, nitrogen fixation, ammonification, nitrification and denitrification processes by changing gene abundance, enzyme activity and microbial community composition. Microplastics can also influence phosphorus content and phosphorus conversion processes by stimulating enzyme activity and changing the composition of microbial communities. Future research needs to analyze the coupling of multiple microplastics and influencing factors on elemental cycling processes. This work provides a better view of the impacts of microplastics on element cycles and the interaction between microplastics and organisms.
Collapse
Affiliation(s)
- Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; Zhejiang Development & Planning Institute, Hangzhou 310030, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| |
Collapse
|
27
|
Chang J, Fang W, Liang J, Zhang P, Zhang G, Zhang H, Zhang Y, Wang Q. A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. CHEMOSPHERE 2022; 306:135573. [PMID: 35797912 DOI: 10.1016/j.chemosphere.2022.135573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The pollution of microplastics (MPs) in soil has become a global environmental problem. Due to high sorption capacity and persistence in environment, the MPs exhibit combined effects with organic pollutants in soil, thereby posing a potential risk to soil ecology and human health. However, limited reviews are available on this subject. Therefore, in response to this issue, this review provides an in-depth account of interaction of MPs with organic contaminants in soil and the combined risks to soil environment. The sorption of organic contaminants onto MPs is mainly through hydrophobic and π-π interactions, hydrogen bonding, pore filling and electrostatic and van der Waals forces. The intrinsic characteristics of MPs, organic contaminants and soil are the key factors influencing the sorption of organic pollutants onto MPs. Importantly, the presence of MPs changes the sorption, degradation and transport behaviors of organic contaminants in soil, and affects the toxic effects of organic contaminants on soil organisms including animals, plants and soil microorganisms through synergistic or antagonistic effects. Source control, policy implementation and plastic removal are the main preventive and control measures to reduce soil MPs pollution. Finally, priorities for future research are proposed, such as field investigations of co-pollution, contribution of plastisphere to organic contaminant degradation, and mechanisms of MPs effects on organic contaminant toxicity.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
28
|
Li Y, Huang R, Hu L, Zhang C, Xu X, Song L, Wang Z, Pan X, Christakos G, Wu J. Microplastics distribution in different habitats of Ximen Island and the trapping effect of blue carbon habitats on microplastics. MARINE POLLUTION BULLETIN 2022; 181:113912. [PMID: 35870383 DOI: 10.1016/j.marpolbul.2022.113912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Sediments are considered to be important sinks of microplastics, but the enrichment process of microplastics by blue carbon ecosystems is poorly studied. This study analyzed the spatial distribution and temporal changes, assessed the polymer types and morphological characteristics of microplastics in sediments of five ecosystems, i.e. forests, paddy fields, mangroves, saltmarshes and bare beaches on Ximen Island, Yueqing Bay, China. The trapping effect of blue carbon (mangrove and saltmarsh) sediments on microplastic was further explored. Temporal trends in microplastic abundance showed a significant increase over the last 20 years, with the enrichment of microplastics in mangrove and saltmarsh sediments being 1.7 times as high as that in bare beach, exhibiting blue carbon vegetations have strong enrichment effect on microplastics. The dominant color, shape, size, and polymer type of microplastics in sediments were transparent, fibers and fragments, <1 mm, and polyethylene, respectively. Significant differences in the abundance and characteristics of microplastics between intertidal sediments and terrestrial soils reveal that runoff input is the main source of microplastics. This study provided the evidence of blue carbon habitats as traps of microplastics.
Collapse
Affiliation(s)
- Yaxin Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Runqiu Huang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangrong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhiyin Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
29
|
Chen X, Tao G, Wang Y, Wei W, Lian X, Shi Y, Chen S, Sun Y. Interactive impacts of microplastics and chlorine on biological stability and microbial community formation in stagnant water. WATER RESEARCH 2022; 221:118734. [PMID: 35714469 DOI: 10.1016/j.watres.2022.118734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Possibility of human exposure to microplastics (MPs) in water environment has been escalating, and subsequent challenges of MPs to biostability and biosafety in drinking water deserve more attention, especially in stagnant water. The present study explored the integrated impacts of MPs and chlorine on disinfection kinetics, microbial growth, and microbial community formation in drinking water, by setting MPs or microplastic-biofilm (MP-BM) under different disinfection conditions. The following were the primary conclusions: (1) The presence of MP and MP-BM led to the deterioration of water indices (especially turbidity) when chlorine was less than 1 mg/L. (2) MP/MP-BM accelerated the decay of disinfectants and MP-BM consumed more rapidly. Meanwhile, chlorine contributed to the level of BRP, ranging from 4.78 × 105 CFU/mL to 1.42 × 107 CFU/mL. (3) MP/MP-BM and chlorine integrally shaped microbial communities in water samples and biofilm samples. Microbial dissimilarity between isolated and hybrid MP-BM indicated manners of microbial field or non-contact communication. Microbial abundance and OPs were effectively controlled when chlorine was over 1 mg/L. (4) According to time-lag differential equations simulation, impulsive chlorination contributed to controlling microbial risks and DBPs induced by MP/MP-BM and water stagnation.
Collapse
Affiliation(s)
- Xiao Chen
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Guolin Tao
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Yi Wang
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China.
| | - Weizhi Wei
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China.
| | - Xiaoying Lian
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Yue Shi
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Sheng Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiran Sun
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
30
|
Saygin H, Baysal A. Single and combined effects of antibiotics and nanoplastics from surgical masks and plastic bottles on pathogens. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109340. [PMID: 35381365 DOI: 10.1016/j.cbpc.2022.109340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Over the last decade, pollution of plastics and antibiotics has increased in its threat to the environment and human health. However, very limited information is available concerning impact of co-presence of plastics and antibiotics on environment and human health. Moreover, the potential ingestion and inhalation of nano(micro)plastics due to the disposable materials has dramatically increased. With the outbreak and spread of the COVID-19 in the world, disposable surgical masks and plastic bottles have been widely used by the public, and their rapid use and improper dispensing can cause to increase plastic pollution risk on human. However, impacts of co-presence of nano(micro)plastics and antibiotics on pathogens have yet been demonstrated. Therefore, this study aims to investigate the impact the individual and combined influences of nano-sized plastics (surgical mask and plastic bottles) and antibiotics (amoxicillin and spiramycin) towards the main susceptible bacterium (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa) by microbial activity, biofilm formation and their biochemical characteristics. The results showed that antimicrobial efficiencies of the tested antibiotics were reduced (approximately 10-98%) with the plastics. Moreover, the biochemical pathways of the microbial activity changed by the plastics entrance. Polymer structure and sorption play the role on the reduction in the inhibition of pathogens. In the meantime, the biofilm formation changed and characteristic of the extracellular polymeric substance with the co-presence of plastics and antibiotics mostly depended on the polymer structure, exposure time and sorption.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Asli Baysal
- Health Services Vocational School of Higher Education, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey.
| |
Collapse
|
31
|
Chen MM, Nie FH, Qamar A, Zhu DH, Hu Y, Zhang M, Song QL, Lin HY, Chen ZB, Liu SQ, Chen JJ. Effects of Microplastics on Microbial Community in Zhanjiang Mangrove Sediments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:867-877. [PMID: 35039887 DOI: 10.1007/s00128-021-03429-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Microplastics are easily consumed by marine animals, thereby entering the food chain and endangering animal health. However, there are few studies focusing on the effects of microplastics in mangrove sediments on microbial communities. In order to study the influence of microplastics on microorganisms, microplastics and microorganisms were extracted from Zhanjiang (Guangdong Province, China) mangrove sediments and analyzed. The results showed that there were differences in Shannon and Simpson indices of the microbial community in microplastics (p < 0.05), and there were also differences between JG30_KF_CM45 and Natranaerovirga at the genus level, indicating that microplastics may affect the diversity and composition of microorganisms in sediments. In addition, FAPROTAX function prediction analysis showed that microplastics may affect the nitrification of microbial communities. The results from this study indicate that microplastics affected the diversity and richness of microorganisms in mangrove sediments, which provides an experimental basis for the relationship between microplastics and microorganisms.
Collapse
Affiliation(s)
- Meng-Meng Chen
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Fang-Hong Nie
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Aftab Qamar
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Di-Hua Zhu
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Yao Hu
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Min Zhang
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Qing-Lang Song
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Hong-Ying Lin
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Zhi-Bao Chen
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Su-Qing Liu
- Zhanjiang Wangmu Ecological Agriculture Technology Co., Ltd, Zhanjiang, 5240883, Guangdong, China
| | - Jin-Jun Chen
- Department of Veterinary Medicine, College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.
| |
Collapse
|
32
|
Wang S, Xu M, Jin B, Wünsch UJ, Su Y, Zhang Y. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. WATER RESEARCH 2022; 211:118046. [PMID: 35030360 DOI: 10.1016/j.watres.2022.118046] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Exoelectrogenic biofilm and the associated microbial electrochemical processes have recently been intensively studied for water treatment, but their response to and interaction with polyethylene (PE) microplastics which are widespread in various aquatic environments has never been reported. Here, we investigated how and to what extent PE microplastics would affect the electrochemistry and microbiology of exoelectrogenic biofilm in both microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). When the PE microplastics concentration was increased from 0 to 75 mg/L in the MECs, an apparent decline in the maximum current density (from 1.99 to 0.74 A/m2) and abundance of electroactive bacteria (EAB) in the exoelectrogenic biofilm was noticed. While in the MFCs, the current output was not significantly influenced and the abundance of EAB lightly increased at 25 mg/L microplastics. In addition, PE microplastics restrained the viability of the exoelectrogenic biofilms in both systems, leading to a higher system electrode resistance. Moreover, the microbial community richness and the microplastics-related operational taxonomic units decreased with PE microplastics. Furthermore, the electron transfer-related genes (e.g., pilA and mtrC) and cytochrome c concentration decreased after adding microplastics. This study provides the first glimpse into the influence of PE microplastics on the exoelectrogenic biofilm with the potential mechanisms revealed at the gene level, laying a methodological foundation for the future development of efficient water treatment technologies.
Collapse
Affiliation(s)
- Song Wang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Urban J Wünsch
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kongens Lyngby 2800, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, Valby 2500, Denmark.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
33
|
Zhou Y, Sun Y, Liu J, Ren X, Zhang Z, Wang Q. Effects of microplastics on humification and fungal community during cow manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150029. [PMID: 34525714 DOI: 10.1016/j.scitotenv.2021.150029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The effect of microplastics (MPs) on the biological treatment of organic waste has been extensively studied, but little is known about the influence of different MPs on composting humification and the fungal community. In this study, PE, PVC, and PHA MPs were individually mixed with cow dung and sawdust and then composted. The results showed that different MPs had various influences on humification, and the humic acid to fulvic acid ratio of all MP-added treatments (0.44-0.83) was lower than that of the control (0.91). During the composting process, Ascomycota (26.32-89.14%) and Basidiomycota (0.47-4.78%) are the dominant phyla in all treatments and all microplastics decreased the diversity and richness of the fungal community at the thermophilic stage of composting. Exposure to MPs had an obvious effect on the fungal community at the genus level, and the addition of PHA and PE MPs increased the relative abundance of phytopathogenic fungi. LEfSe and network analysis indicated that MPs reduced the number of biomarkers and led to a simpler and more unstable fungal community structure compared to the control. This study has important implications for assessing microplastic pollution and organic waste disposal.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yue Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jili Liu
- College of Ecology and Environment, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agrienvironment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|