1
|
Jiang L, Yang J, Yang H, Kong L, Ma H, Zhu Y, Zhao X, Yang T, Liu W. Advanced understanding of the polybrominated diphenyl ethers (PBDEs): Insights from total environment to intoxication. Toxicology 2024; 509:153959. [PMID: 39341352 DOI: 10.1016/j.tox.2024.153959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated compounds connected by ester bonds between two benzene rings. There are 209 congeners of PBDEs, classified according to the number and position of the bromine atoms. Due to their low cost and superior flame retardant properties, PBDEs have been extensively used as flame retardants in electronic products, plastics, textiles, and other materials since the 1970s. PBDEs are classified as persistent organic pollutants (POPs) under the Stockholm Convention because of their environmental persistence, bioaccumulation, and toxicity to both humans and wildlife. Due to their extensive use and significant quantities, PBDEs have been detected across a range of environments and biological organisms. These compounds are known to cause damage to the metabolic system, exhibit neurotoxicity, and pose reproductive hazards. This review investigates the environmental distribution and human exposure pathways of PBDEs. Using China-a country with significant PBDE use-as an example, it highlights substantial regional and temporal variations in PBDE concentrations and notes that certain environmental levels may pose risks to human health. The article then examines the toxic effects and mechanisms of PBDEs on several major target organs, summarizing recent research and the specific mechanisms underlying these toxic effects from multiple toxicological perspectives. This review enhances our understanding of PBDEs' environmental distribution, exposure pathways, and toxic mechanisms, offering valuable insights for further research and management strategies.
Collapse
Affiliation(s)
- Liujiangshan Jiang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Jing Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Huajie Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Lingxu Kong
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Haonan Ma
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Yapei Zhu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Xuan Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Tianyao Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| | - Wei Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
2
|
Kramer NE, Fillmore CE, Slane EG, Barnett LMA, Wagner JJ, Cummings BS. Insights into brominated flame retardant neurotoxicity: mechanisms of hippocampal neural cell death and brain region-specific transcriptomic shifts in mice. Toxicol Sci 2024; 201:282-299. [PMID: 38995820 DOI: 10.1093/toxsci/kfae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Brominated flame retardants (BFRs) reduce flammability in a wide range of products including electronics, carpets, and paint, but leach into the environment to result in continuous, population-level exposure. Epidemiology studies have correlated BFR exposure with neurological problems, including alterations in learning and memory. This study investigated the molecular mechanisms mediating BFR-induced cell death in hippocampal cells and clarified the impact of hexabromocyclododecane (HBCD) exposure on gene transcription in the hippocampus, dorsal striatum, and frontal cortex of male mice. Exposure of hippocampus-derived HT-22 cells to various flame retardants, including tetrabromobisphenol-A (current use), HBCD (phasing out), or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, phased out) resulted in time, concentration, and chemical-dependent cellular and nuclear morphology alterations, alterations in cell cycle and increases in annexin V staining. All 3 BFRs increased p53 and p21 expression; however, inhibition of p53 nuclear translocation using pifthrin-α did not decrease cell death. Transcriptomic analysis upon low (10 nM) and cytotoxic (10 μM) BFR exposure indicated that HBCD and BDE-47 altered genes mediating autophagy-related pathways. Further evaluation showed that BFR exposure increased LC3-II conversion and autophagosome/autolysosome formation, and co-exposure with the autophagy inhibitor 3-methyladenine (3-MA) attenuated cytotoxicity. Transcriptomic assessment of select brain regions from subchronically HBCD-exposed male mice demonstrated alteration of genes mediating vesicular transport, with greater impact on the frontal cortex and dorsal striatum compared with the dorsal and ventral hippocampus. Immunoblot analysis demonstrated no increases in cell death or autophagy markers, but did demonstrate increases in the SNARE binding complex protein SNAP29, specifically in the dorsal hippocampus. These data demonstrate that BFRs can induce chemical-dependent autophagy in neural cells in vitro and provide evidence that BFRs induce region-specific transcriptomic and protein expression in the brain suggestive of changes in vesicular trafficking.
Collapse
Affiliation(s)
- Naomi E Kramer
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Courtney E Fillmore
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Elizabeth G Slane
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Lillie M A Barnett
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
| | - John J Wagner
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States
| | - Brian S Cummings
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
3
|
Zhang X, Liu Y, Sun H, Chen S, Tang P, Hu Q, He M, Tang N, Li Z, Chen D. Long-term dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) reduced feeding in common carp (Cyprinus carpio): Via the JAK-STAT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123966. [PMID: 38621451 DOI: 10.1016/j.envpol.2024.123966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huimin Sun
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Hu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Qi X, Liu Q, Wei Z, Hou X, Jiang Y, Sun Y, Xu S, Yang L, He J, Liu K. Chronic exposure to BDE-47 aggravates acute pancreatitis and chronic pancreatitis by promoting acinar cell apoptosis and inflammation. Toxicol Sci 2024; 199:120-131. [PMID: 38407484 DOI: 10.1093/toxsci/kfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.
Collapse
Affiliation(s)
- Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xuyang Hou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yuhong Jiang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yin Sun
- Institute of Pharmaceutical Pharmacology, University of South China, Hengyang, Hunan 421200, China
| | - Shu Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Leping Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
5
|
Zhang X, Huang Y, Yang L, Chen S, Liu Y, Tang N, Li Z, Zhang X, Li L, Chen D. Dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces oxidative damage promoting cell apoptosis primarily via mitochondrial pathway in the hepatopancreas of carp, Cyprinus carpio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116192. [PMID: 38461574 DOI: 10.1016/j.ecoenv.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Yujie Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Lei Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China; Yuxi Agriculture Vocation-Technical College, 41 Xiangjiazhuang Road, Yuxi, Yunnan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, Sichuan, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, Sichuan, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
7
|
Xia B, Yu R, Liu J, Liu D, Li S, Yang L, Liu N, Liang B, Zeng J, Wei J, Lin G. BDE-47 induces metabolic dysfunction-associated steatotic liver disease (MASLD) through CD36-mediated increased fatty acid uptake and PPARα-induced abnormal fatty acid oxidation in BALB/c mice. Toxicol Lett 2024; 391:100-110. [PMID: 38040069 DOI: 10.1016/j.toxlet.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
The widespread existence of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) in the environment has aroused great concern. BDE-47 induces the occurrence of metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanism has not been fully elucidated. Here, we further investigate the underlying mechanism using BALB/c mice. After BDE-47 exposure, the livers of mice enlarged, the serum levels of ALT, ALP, TG and TC enhanced, and hepatic steatosis occurred. Transcriptome sequencing identifies 2250 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis reveals that down-regulated DEGs are mainly enriched in pathways associated with lipid metabolism, particularly in fatty acid (FA) degradation. And up-regulated DEGs are mainly enriched in pathways related to lipid and FA transport. The expression levels of AhR, Pparγ and Cd36 involved in FA uptake are up-regulated, and those of PPARα and target genes including Cpt1 and Cyp4a1 related to β and ω-oxidation are inhibited. These results reveal BDE-47 could lead to metabolic dysfunction-associated steatotic liver disease (MASLD) by promoting FA uptake via upregulating Cd36 and hindering oxidative utilization by downregulating PPARα.
Collapse
Affiliation(s)
- Beibei Xia
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Rongfei Yu
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Junxiong Liu
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Dongmeng Liu
- Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shasha Li
- Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Liu Yang
- Medical School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Bosen Liang
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jiajing Zeng
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinhua Wei
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Guimiao Lin
- Marshall Laboratory of Biomedical Engineering & School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Fan Y, Zhang B, Du X, Wang B, Yan Q, Guo L, Yao W. Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling. Curr Cancer Drug Targets 2024; 24:271-287. [PMID: 37670705 DOI: 10.2174/1568009623666230904150957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.
Collapse
Affiliation(s)
- Yichao Fan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Boya Zhang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bangmin Wang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Guo
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Weitao Yao
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Shu L, Du C, Zuo Y. Abnormal phosphorylation of protein tyrosine in neurodegenerative diseases. J Neuropathol Exp Neurol 2023; 82:826-835. [PMID: 37589710 DOI: 10.1093/jnen/nlad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis, are chronic disorders of the CNS that are characterized by progressive neuronal dysfunction. These diseases have diverse clinical and pathological features and their pathogenetic mechanisms are not yet fully understood. Currently, widely accepted hypotheses include the accumulation of misfolded proteins, oxidative stress from reactive oxygen species, mitochondrial dysfunction, DNA damage, neurotrophin dysfunction, and neuroinflammatory processes. In the CNS of patients with neurodegenerative diseases, a variety of abnormally phosphorylated proteins play important roles in pathological processes such as neuroinflammation and intracellular accumulation of β-amyloid plaques and tau. In recent years, the roles of abnormal tyrosine phosphorylation of intracellular signaling molecules regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in neurodegenerative diseases have attracted increasing attention. Here, we summarize the roles of signaling pathways related to protein tyrosine phosphorylation in the pathogenesis of neurodegenerative diseases and the progress of therapeutic studies targeting PTKs and PTPs that provide theoretical support for future studies on therapeutic strategies for these devastating and important neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijuan Shu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chunfu Du
- Department of Neurosurgery, Ya'an People's Hospital, Ya'an, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Dong L, Wang S, Wang X, Wang Z, Liu D, You H. Investigating the adverse outcome pathways (AOP) of neurotoxicity induced by DBDPE with a combination of in vitro and in silico approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131021. [PMID: 36821895 DOI: 10.1016/j.jhazmat.2023.131021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Current studies have shown an association between DBDPE and neurotoxicity. In this study, the adverse outcome pathway (AOP) and mechanistic analysis of DBDPE-induced neurotoxicity were explored by a combination of in vitro and in silico approaches in SK-N-SH cells. DBDPE-induced oxidative stress caused DNA strand breaks, resulting in the activation of poly (ADP-ribose) (PAR) polymerase-1 (PARP-1). Activation of PARP1 could cause toxic damage in various organ systems, especially in the nervous system. DBDPE-induced apoptosis via the caspase-dependent intrinsic mitochondrial pathway and the PARP1-dependent pathway. Activation of PARP1 by DBDPE was deemed the initiating event, thereby affecting the key downstream biochemical events (e.g., ROS production, DNA damage, membrane potential changes, and ATP reduction), which induced apoptosis. Furthermore, excessive activation of PARP1 was accompanied by the translocation of the apoptosis-inducing factor (AIF), which was associated with PARP1-dependent cell death. The inhibition of PARP1 by PJ34 reduced DBDPE-induced apoptosis and maintained cellular ATP levels. PJ34 also prevented the translocation of AIF from the mitochondria to the nucleus. These findings improve the understanding of the mechanism of DBDPE-induced neurotoxic effects and provide a theoretical basis for the ecological risk of DBDPE.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xingyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziwei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Zhuang J, Pan ZJ, Qin Y, Liang H, Zhang WF, Sun ZY, Shi HB. Evaluation of BDE-47-induced neurodevelopmental toxicity in zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54022-54034. [PMID: 36869944 DOI: 10.1007/s11356-023-26170-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
There are growing concerns about the neurodevelopmental toxicity of polybrominated diphenyl ethers (PBDEs), but the toxicological phenotypes and mechanisms are not well elucidated. Here, zebrafish (Danio rerio) were exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) from 4 to 72 h post-fertilization (hpf). The results showed that BDE-47 stimulated the production of dopamine and 5-hydroxytryptamine, but inhibited expression of Nestin, GFAP, Gap43, and PSD95 in 24 hpf embryos. Importantly, we unraveled the inhibitory effects of BDE-47 on neural crest-derived melanocyte differentiation and melanin syntheses process, evidenced by disrupted expression of wnt1, wnt3, sox10, mitfa, tyrp1a, tyrp1b, tryp2, and oca2 gene in 72 hpf embryos and decreased tyrosinase activities in embryos at 48 and 72 hpf. The transcriptional activities of myosin VAa, kif5ba, rab27a, mlpha, and cdc42 genes, which are associated with intracellular transport process, were also disturbed during zebrafish development. Ultimately, these alterations led to fast spontaneous movement and melanin accumulation deficit in zebrafish embryos upon BDE-47 exposure. Our results provide an important extension for understanding the neurodevelopmental effects of PBDEs and facilitate the comprehensive evaluation of neurotoxicity in embryos.
Collapse
Affiliation(s)
- Juan Zhuang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, 111 Changjiang West Road, Huaian, 223300, Jiangsu, China.
| | - Zheng-Jun Pan
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, 111 Changjiang West Road, Huaian, 223300, Jiangsu, China
| | - Ying Qin
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, 111 Changjiang West Road, Huaian, 223300, Jiangsu, China
| | - Hui Liang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, 111 Changjiang West Road, Huaian, 223300, Jiangsu, China
| | - Wen-Feng Zhang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, 111 Changjiang West Road, Huaian, 223300, Jiangsu, China
| | - Ze-Yu Sun
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, 111 Changjiang West Road, Huaian, 223300, Jiangsu, China
| | - Han-Bo Shi
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, 111 Changjiang West Road, Huaian, 223300, Jiangsu, China
| |
Collapse
|
12
|
Xue D, Wei J, Lu W, Xia B, Li S, Liu D, Liu N, Wang X, Lin G. BDE-47 disturbs the immune response of lymphocytes to LPS by downregulating NF-κB pathway. CHEMOSPHERE 2022; 308:136562. [PMID: 36152834 DOI: 10.1016/j.chemosphere.2022.136562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/22/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The health risks associated with 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) have become an increasing concern due to its widespread presence in the environment and biological samples. To date, the potential toxicity of BDE-47 to immune system remains unclear. In this study, we aimed to study the immunotoxicity of BDE-47 using spleen-derived lymphocytes in vitro and BALB/c mice in vivo. In vitro results showed that lymphocytes exposed to 12.5-100 μM BDE-47 exhibited unchanged cell viability but decreased release of IL-6 and TNF-α when responding to lipopolysaccharide (LPS). The expression levels of p-p65, p-IκBα, TrkA and p-Akt involved in NF-κB pathway were obviously decreased, and NF-κB activator PMA could recover the BDE-47-induced inhibitory effect on IL-6 and TNF-α release by lymphocytes in response to LPS. In vivo data showed that BDE-47 orally administered to mice (1 mg/kg, 10 mg/kg, 100 mg/kg per day, 30 days) did not significantly affect body weight, organ index and histomorphology of spleen. However, ELISA assay showed that serum IL-6 and TNF-α levels from BDE-47-treated mice after intraperitoneal injection of LPS were significantly reduced, and high-throughput mouse cytokines screening found 13 more cytokines down-regulated in the serum. Transcriptomic sequencing of spleens identified 488 differential expressed genes (DEGs). GO enrichment analysis of these DEGs suggested that the GO term of response to LPS (GO: 0032,496) was significantly involved. KEGG enrichment analysis showed that the down-regulated DEGs significantly enriched in multiple immune-related signaling pathways including the NF-κB signaling pathway (mmu04064). Overall, these data suggested that BDE-47 could negatively regulate NF-κB signaling pathways to inhibit the immune response of lymphocytes to LPS, suggesting that exposures to BDE-47 may disturb the immune balance and increase the body's susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Dahui Xue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Jinhua Wei
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Wencan Lu
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Beibei Xia
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Shasha Li
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Dongmeng Liu
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, China
| | - Xiaomei Wang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Guimiao Lin
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
13
|
Li M, Zeng Y, Ge L, Gong J, Weng C, Yang C, Yang J, Fang Y, Li Q, Zou T, Xu H. Evaluation of the influences of low dose polybrominated diphenyl ethers exposure on human early retinal development. ENVIRONMENT INTERNATIONAL 2022; 163:107187. [PMID: 35313214 DOI: 10.1016/j.envint.2022.107187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Increasing evidence in animal models has suggested that polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, can cause retinotoxicity. However, data on the influence of PBDE treatment on human retinal development are scarce due to the lack of appropriate models. In the present study, we report the utilization of human embryonic stem cell-derived retinal organoids (hESC-ROs) for toxicity assessment of the most common PBDE congener (BDE-47) during the early stages of retinal development. Exposure to BDE-47 decreased the thickness and area of the neural retina (NR) of hESC-ROs in a dose- and time-dependent manner. Abnormal retinal cell distributions, disordered NR structures, and neural rosette-like structures were found on hESC-ROs after low-level BDE-47 exposure. Moreover, BDE-47 exposure decreased cell proliferation, promoted cell apoptosis, and caused abnormal differentiation. Transcriptomic analysis demonstrated that differentially expressed genes, caused by BDE-47, were enriched in extracellular matrix organization. Metabolomic studies of hESC-ROs revealed significant changes in the metabolism of purine and glutathione after BDE-47 exposure for five weeks. This study clarifies the retinotoxicity of low-level BDE-47 treatment and highlights the powerfulness of the hESC-RO model, deepening our understanding of BDE-47-driven human early retina developmental toxicity.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|