1
|
Sun X, Jiang X, Wang Z, Li Y, Ren J, Zhong K, Li X, Tang L, Li J. Fluorescent probe for imaging N 2H 4 in plants, food, and living cells and for quantitative detection of N 2H 4 in soil and water using a smartphone. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135701. [PMID: 39217942 DOI: 10.1016/j.jhazmat.2024.135701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Hydrazine is volatile and highly toxic, causing severe harm to water, soil, air, and organisms. Therefore, real-time detection and long-term monitoring of hydrazine are crucial for environmental protection and human health. Herein, an "OFF-ON" fluorescent probe 5-((10-ethyl-2-methoxy-10 H-phenothiazin-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (MPD) for hydrazine detection through a nucleophilic addition reaction was developed. MPD could exclusively identify hydrazine through colorimetric and fluorescent dual-channel responses within 30 s, which also demonstrated high sensitivity (detection limit, 12 nM) and a wide pH range (6 -12). The sensing mechanism of MPD was confirmed using theoretical calculations, where fluorescence was emitted following the recognition of hydrazine because of the disappearance of the photoinduced electron transfer (PET) process. Using a smartphone, MPD enabled the quantitative detection of hydrazine in real water samples and sandy soil. Notably, in the process of detecting hydrazine in actual water samples, the establishment of analytical methods and the completion of rapid quantitative detection only required a smartphone and built-in apps. Additionally, we showed that MPD could recognize hydrazine in various environmental samples, including plants, food, hydrazine vapors, and cells. We believe that the fluorescent probe MPD developed in this study and the established smartphone visualization platform will provide a convenient and effective tool for detecting hydrazine in environmental monitoring, food safety assessment, biological system safety, and other fields.
Collapse
Affiliation(s)
- Xiaofei Sun
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, PR China
| | - Xin Jiang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Zengdong Wang
- Shandong Anyuan Marine Breeding Co., Ltd., Yantai 265617, PR China
| | - Yang Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Jiashu Ren
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Keli Zhong
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Xuepeng Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Lijun Tang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| | - Jianrong Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
2
|
Cai YT, Liu YC, Gu YY, Zhu YQ, Liu YH, Chen J, Yang Y, Liu MX. Red fluorescent AIE bioprobes with a large Stokes shift for droplet-specific imaging and fatty liver diagnosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125325. [PMID: 39490184 DOI: 10.1016/j.saa.2024.125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Lipid droplets (LDs) as spherical dynamic subcellular organelles, play an important role in various cellular functions such as protein degradation, lipid metabolism, energy storage, signal transduction, and membrane formation. Abnormal function of LDs will lead to a series of diseases and hence monitoring the status of LDs is particularly important. In this study, we synthesized a water-insoluble red fluorescent emitting small molecule fluorescent probe (TPE-TCF), which exhibited aggregation-induced emission (AIE) properties and enabled highly selective real-time imaging of LDs (Pearson's R value was 0.90). More interestingly, this probe was able to track the dynamic processes of LDs in living cells, including lipophagy, and monitor fatty liver disease in mice. Therefore, TPE-TCF with red fluorescence emission, good biocompatibility, large Stokes shift, AIE properties, LDs imaging, and fatty liver recognition capabilities can be practically used in more LDs-related diseases.
Collapse
Affiliation(s)
- Yu-Ting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Yan-Chao Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ya-Qi Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yong-Hong Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001 Jiangsu, China.
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China.
| | - Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Li Y, Jiang X, Yan X, Zhong K, Sun X, Li J, Tang L. A dual-channel ICT fluorescent probe assisted by smartphone for quantitative detection, and visualization of residual hydrazine in the living cells, water, soil, plant, and food samples. Anal Chim Acta 2024; 1327:343163. [PMID: 39266066 DOI: 10.1016/j.aca.2024.343163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Hydrazine (N2H4) serves as a crucial industrial raw material and finds extensive applications in the fields of medicine, pesticides, ecological environment, and textile dyes. Excessive residue of hydrazine will cause significant toxicity risks to the ecosystem and human health. Traditional detection methods often require multi-step pretreatment of samples, and complex instrumentation, and are time-consuming, which is not conducive to rapid on-site detection. Therefore, it is imperative to develop a method suitable for rapid detection of N2H4 in multiple fields. RESULTS In this study, we constructed a red emission fluorescent probe (BCM). BCM can recognize N2H4 by colorimetric and fluorescence dual-channel response with a good anti-interference ability and a low detection limitation. The fluorescence emission of BCM is attributed to the ICT effect by DFT calculations, and a new product 3H-benzo[f]chromene-2-carbaldehyde hydrazine is formed after BCM recognition of N2H4. A linear relationship was established between the ratio of red-blue (R/B) coming from the fluorescence color of BCM and the N2H4 level. Hence, a BCM-based smartphone sensing platform for detecting N2H4 was developed, and the N2H4 content can be rapidly detected with satisfactory accuracy in the lake water samples. In addition, the residues of N2H4 in soils, plants and food samples can be visualized, and BCM can image for N2H4 in living cells, as well as N2H4 vapor can be detected by using the electrospinning film loaded with BCM. SIGNIFICANCE In particular, the fluorescent probe BCM can be combined with a smartphone for the detection and visual imaging of hydrazine in environmental samples. We believe the BCM and smartphone-based sensing platforms constructed in this paper will be a powerful tool for visual quantitative detection of N2H4 in the fields of food safety assessment, bioimaging, and environmental protection.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry and Materials Engineering, Institute of Ocean, Bohai University, Jinzhou, 121013, China
| | - Xin Jiang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Institute of Ocean, Bohai University, Jinzhou, 121013, China.
| | - Xiaofei Sun
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Institute of Ocean, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
4
|
Zhang D, Liu S, Yang X, Jiang B, Ma K, Yang J, Yuan X, Yi T. An Aggregation-Induced Emissive Platinum(II) Metallacycle as the Energy Donor of Rhodols for Ratiometric Detection of Hydrazine. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39374170 DOI: 10.1021/acsami.4c12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Industry-produced hydrazine (N2H4) is released into the environment, posing a major risk to human health and the ecosystem. Therefore, it is imperative to develop an effective and convenient method for the detection of N2H4. Herein, artificial light-harvesting systems (ALHSs) for N2H4 detection were constructed by applying an aggregation-induced emission-active platinum(II) metallacycle (TPEMc) as the energy donor and rhodols (P1, P2, and P3) as the energy acceptors. The ratiometric fluorescence probes based on ALHSs for N2H4 showed obvious signal amplification and lower limits of detection compared to those of rhodols (P1, P2, P3) alone. The TPEMc-rhodols systems clearly demonstrated a noticeable increase in fluorescence intensity at 550 nm and an obvious fluorescent color shift from cyan to yellow in the presence of N2H4. Fascinatingly, N2H4 could be visually and quantitatively detected in water by the TPEMc-rhodol systems paired with smartphone RGB analysis. Therefore, the combination of platinum(II) metallacycle with rhodols is a promising strategy for simple, sensitive, and visual detection of N2H4.
Collapse
Affiliation(s)
- Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Senkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bei Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ke Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jie Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaojuan Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Ranolia A, Kiran, Priyanka, Kumar Dhaka R, Sindhu J. Real time monitoring of nerve agent mimics: Novel solid state emitter for enhanced precision and reliability. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135508. [PMID: 39182297 DOI: 10.1016/j.jhazmat.2024.135508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Chemical nerve agents are hazardous compounds that terrorists can exploit to pose a significant threat to public safety and national security. The nucleophilic behaviour of these agents enables their interaction with acetyl cholinesterase in the body, leading to paralysis and potentially fatal consequences. Therefore, developing robust and efficient detection methods for these agents is crucial for preventing their misuse. In this manuscript, (E)-12-(1-hydrazineylideneethyl)benzo[f]pyrido[1,2-a]indole-6,11-dione (HBID) is developed as a novel colorimetric and fluorometric probe for the detection of specific chemical nerve agent simulants in both liquid and vapor phase. HBID reacts rapidly with diethyl chlorophosphate (DCP), a common nerve agent simulant, leading to a significant increase in the fluorescence intensity. Under optimized conditions, HBID exhibits high sensitivity, good recyclability, fast response and low limit of detection (0.092 µM). NMR and mass spectral studies suggest that the reaction involves the nucleophilic addition of HBID to DCP, forming a phosphate ester. Additionally, the developed sensor demonstrates viscosity-sensitive AIE phenomena thus greatly expanding its potential applications in biological systems. This sensitivity enables precise detection and visualization of viscosity changes within cellular environments, making the sensor an invaluable tool for studying complex biological processes. The developed probe also detects pH within biologically relevant range (4-6). In practical applications, the probe-treated strips efficiently detected DCP vapor in real time, showing a noticeable fluorescence response. Further, the probe has a strong potential to detect the presence of DCP in the soil samples.
Collapse
Affiliation(s)
- Anju Ranolia
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | - Priyanka
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India
| | | | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar 125004, India.
| |
Collapse
|
6
|
Tan H, Wang Z, Yang X, Rao X, Zhao P, Jiang Q. Development of a ratiometric fluorescent probe based on caffeic acid for hydrazine detection and its applications in water samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125191. [PMID: 39342726 DOI: 10.1016/j.saa.2024.125191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Hydrazine (N2H4) has been extensively utilized as a highly reactive chemical reagent. However, it is also seriously harmful to human beings and ecosystem. Thus, the development of an efficient detecting method for hydrazine is desirable. Here, caffeic acid was chose as starting material to synthesize a new ratiometric fluorescent probe HPA for detecting hydrazine. This probe possessed the specific recognition ability for hydrazine over other analytes with low detection limit (0.106 µM) and extremely short time (60 s). The sensing mechanism of probe HPA for hydrazine was proved by 1H NMR titration and theoretical calculations. In addition, the probe HPA was loaded on paper strip for rapid quantitative detection of hydrazine with the aid of a software (Image J). The effective detecting performances of probe HPA for hydrazine were verified in environmental water samples as well as in living cells. Thus, HPA has great potential for detection and analysis of hydrazine in health supervision and environmental protection.
Collapse
Affiliation(s)
- Haoxue Tan
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Zhonglong Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoqin Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Qian Jiang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
7
|
Qian Q, Chen C, Zheng X, Wang Q, Gao F, Zou Z. Hierarchical CoWO 4/Ni xFe yS microspheres bearing crystalline-amorphous interface as a multifunctional platform for outperformed water splitting and sensitive hydrazine sensing. J Colloid Interface Sci 2024; 664:756-765. [PMID: 38492377 DOI: 10.1016/j.jcis.2024.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Highly efficient and multifunctional electrocatalysts are of high value in energy transformation and electrochemical sensing. Herein, hierarchically architectured cobalt tungstate/nickel iron sulfide (CoWO4/NixFeyS) microspheres with a crystalline-amorphous interface have been prepared on bimetallic substrate of nickel-iron foam (NIF) by a two-step hydrothermal method. Electrochemical characterization shows that CoWO4/NixFeyS microspheres can boost the electrocatalytic activity effectively through the synergistic effect on the crystalline-amorphous interface. When the CoWO4/NixFeyS is applied as the electrocatalysts for oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), the overpotentials at a high current density of 500 mA cm-2 are only 322.8 mV and 306.5 mV, respectively. The overall water splitting device composed of CoWO4/NixFeyS/NIF couple only needs a cell voltage of 1.80 V to reach a current density of 100 mA cm-2, and 2.19 V to reach 500 mA cm-2. The CoWO4/NixFeyS/NIF can be also utilized as an effective electrochemical platform for the sensing of toxic hydrazine in a wide range from 50 μM to 17.3 mM, with a detection limit of 46.4 μM. All these results display that the CoWO4/NixFeyS/NIF can be a high-performance multifunctional material for energy transformation and environmental pollutant monitoring.
Collapse
Affiliation(s)
- Qi Qian
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Chenxin Chen
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xuan Zheng
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Qingxiang Wang
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Feng Gao
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Zehua Zou
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
8
|
Zhu Z, Song K, Li X, Chen Y, Kong F, Mo W, Cheng Z, Yang S, Ma H. A wireless fluorescent sensing device for on-site closed-loop detection of hydrazine levels in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133809. [PMID: 38387178 DOI: 10.1016/j.jhazmat.2024.133809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Given the extensive need for the detection of hydrazine (N2H4) in the biomedical and chemical-pharmaceutical sectors, there is a necessity to devise a fast, sensitive, specific, and portable technique for precisely quantifying hydrazine at environmental levels. In our work, an "OFF-ON" type fluorescent probe namely 2-(4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)isoindole-1,3-dione (NAP), which was inspired by the "Gabriel" reaction, was synthesized. The NAP fluorescent cellulose film successfully achieved the detection of hydrazine vapor with a LOD = 0.658 ppm. Compared to previous qualitative methods for detecting hydrazine, this study successfully achieved quantitative identification of hydrazine at low concentrations. In addition, a portable sensor device based on NAP cellulose film was successfully integrated, enabling ultra-sensitive, wireless, remote, and real-time detection of N2H4 vapor. It was determined that the probe (NAP) exhibited excellent detection performance when applied to various environmental samples including distilled water, tap water, creek water, soil and plants. This study introduces a potentially effective approach for detecting hydrazine in real-world settings.
Collapse
Affiliation(s)
- Zihao Zhu
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ke Song
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xiaobai Li
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Yu Chen
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Fanwei Kong
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Wanqi Mo
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zhiyong Cheng
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Shilong Yang
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China.
| | - Hongwei Ma
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Xiao W, Zhang Q, You DH, Xue W, Peng F, Li NB, Zhou GM, Luo HQ. Myricetin-based fluorescence probes with AIE and ESIPT properties for detection of hydrazine in the environment and fingerprinting. Anal Chim Acta 2024; 1288:342173. [PMID: 38220304 DOI: 10.1016/j.aca.2023.342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Hydrazine (N2H4) is a highly toxic and versatile chemical raw material, which poses a serious threat to the environment and human health when used in large quantities. However, the traditional methods for the detection of N2H4 have the disadvantages of time-consuming, complicated operation and expensive instruments. In contrast, fluorescence probes have many advantages, such as simple operation, high sensitivity, good selectivity, and fast response time. Therefore, there is an urgent need for a fluorescence probe that can rapidly and accurately detect the presence of N2H4 and monitor the changes in its concentration. RESULTS For this purpose, we designed and synthesized a series of myricetin fluorescence probes 3-(substituent group)-5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxy. phenyl)-4H-chromen-4-one (Myr-R) for N2H4 detection. In the presence of N2H4, the probe 5,7-dimethoxy-3-(2,3,4,5,6-pentafluorobenzoate)-2-(3,4,5-trimethoxyphen-yl). -4H-chr-omen-4-one (Myr-3) shows significant fluorescence changes, double emission properties and a large Stokes shift (183 nm), and exhibits high selectivity and sensitivity to N2H4 (The detection limit is 93 nM). Importantly, the qualitative and quantitative analysis of N2H4 in water, soil, and air can be accomplished using fluorescence, smartphone, and UV lamps coupled with Myr-3. In addition, Myr-3 can be used for monitoring and imaging intracellular N2H4. Meanwhile, the fluorophore 3-hydroxy-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-benzopyran-4-one (Myr-Me) was applied to fingerprinting of different substrate materials due to the fact that it exhibits strong yellow fluorescence emission in the solid state and shows excellent contrast and high resolution. SIGNIFICANCE The probe Myr-3 is not only able to rapidly detect N2H4 in complex environments, but also can be used for imaging intracellular N2H4. In addition, the fluorophore Myr-Me can be used as an effective imaging agent for visual fingerprinting. These properties enable the probe Myr-3 and the fluorophore Myr-Me for a wide range of potential applications in related fields.
Collapse
Affiliation(s)
- Wei Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Dong Hui You
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, PR China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, PR China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Guang Ming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Zhang Y, Xu C, Sun H, Ai J, Ren M. A turn-on fluorescent probe for sensing N 2H 4 in living cells, zebrafishes and plant root with a large turn-on fluorescence signal. Talanta 2023; 265:124902. [PMID: 37421791 DOI: 10.1016/j.talanta.2023.124902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Hydrazine (N2H4) plays an important role in industrial production, but it is highly toxic, leaking or exposing it will pollute the environment and cause serious harm to human beings. Therefore, it is necessary to use a simple and effective method to detect N2H4 in environmental systems and organisms. Herein, a novel water-soluble fluorescent probe based on coumarin fluorophore, 2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)isoindoline-1,3-dione (C-Z1), is reported. The fluorescence intensity of the probe at 530 nm was enhanced gradually with the addition of N2H4, and the maximum enhancement was about 28 times. The probe has good selectivity and sensitivity, the detection limit of hydrazine hydrate is 1.48 × 10-7 M, and the response mechanism of the probe is proved by theoretical calculation and experiment. C-Z1 has been shown to detect N2H4 in a variety of environmental samples, including water, soil, air, cells, zebrafish and plants. In addition, C-Z1 can be made into test strips for easy portability and used for rapid quantitative detection of N2H4 in the field by its distinct change in fluorescence color. Thus, C-Z1 has great potential for the analysis and detection of environmental contaminants.
Collapse
Affiliation(s)
- Yukun Zhang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Chen Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Hui Sun
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jindong Ai
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| |
Collapse
|
11
|
Zhai J, Huang F, Yang Y, Liu X, Luan T, Deng J. Development of a Repair Enzyme Fluorescent Probe to Reveal the Intracellular DNA Damage Induced by Benzo[a]pyrene in Living Cells. Anal Chem 2023; 95:7788-7795. [PMID: 37130082 DOI: 10.1021/acs.analchem.3c01251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pollutant exposure causes a series of DNA damage in cells, resulting in the initiation and progression of diseases and even cancers. An investigation of the DNA damage induced by pollutants in living cells is significant to evaluate the cytotoxicity, genotoxicity, and carcinogenicity of environmental exposure, providing critical insight in the exploration of the etiologies of diseases. In this study, we develop a repair enzyme fluorescent probe to reveal the DNA damage caused by an environmental pollutant in living cells by single-cell fluorescent imaging of the most common base damage repair enzyme named human apurinic/apyrimidinic endonuclease 1 (APE1). The repair enzyme fluorescent probe is fabricated by conjugation of an APE1 high affinity DNA substrate on a ZnO2 nanoparticle surface to form a ZnO2@DNA nanoprobe. The ZnO2 nanoparticle serves as both a probe carrier and a cofactor supplier, releasing Zn2+ to activate APE1 generated by pollutant exposure. The AP-site in the DNA substrate of the fluorescent probe is cleaved by the activated APE1, releasing fluorophore and generating fluorescent signals to indicate the position and degree of APE1-related DNA base damage in living cells. Subsequently, the developed ZnO2@DNA fluorescent probe is applied to investigate the APE1-related DNA base damage induced by benzo[a]pyrene (BaP) in living human hepatocytes. Significant DNA base damage by BaP exposure is revealed, with a positive correlation of the damage degree with exposure time in 2-24 h and the concentration in 5-150 μM, respectively. The experimental results demonstrate that BaP has a significant effect on the AP-site damage, and the degree of DNA base damage is time-dependent and concentration-dependent.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fanglin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Xiaoxin Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Zeng C, Xu Z, Song C, Qin T, Jia T, Zhao C, Wang L, Liu B, Peng X. Naphthalene-based fluorescent probe for on-site detection of hydrazine in the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130415. [PMID: 36455322 DOI: 10.1016/j.jhazmat.2022.130415] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The widespread occurrence of hydrazine residues in the environment, including in water, soil, and organisms, is a potential health threat to humans. Therefore, the development of an efficient method for the detection of hydrazine in environmental samples is highly desirable although it poses a significant challenge. In this study, we designed and synthesized a series of naphthalene-based fluorescent dyes through structural engineering and developed a novel probe for hydrazine detection. The probe could provide a distinct fluorescence response toward hydrazine in aqueous solution with high sensitivity and selectivity. Moreover, paper-based test strips can be easily fabricated using this probe, enabling the portable on-site detection of hydrazine with the aid of a smartphone. Furthermore, we demonstrated that this probe is capable of recognizing hydrazine in various environmental samples, including water, soil, plants, and zebrafish embryos. This research provides a promising tool for the detection of hydrazine in the environment.
Collapse
Affiliation(s)
- Conghui Zeng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhongyong Xu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Chao Song
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianyi Qin
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianhao Jia
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Chen Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lei Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Bin Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiaojun Peng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
13
|
Wang Y, Yan Q, Wang Z, Xu H. A flavonol-derived fluorescent probe for highly specific and sensitive detection of hydrazine in actual environmental samples and living zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122132. [PMID: 36442340 DOI: 10.1016/j.saa.2022.122132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Hydrazine (N2H4) is a significant chemical reagent and widely applied in industrial field, which can bring potential risk to environmental safety and human health due to its high toxicity and potential carcinogenicity. In this paper, a flavonol-derived fluorescent probe named TB-N2H4 was rationally developed for detecting N2H4 based on the excited intramolecular proton transfer (ESIPT) principle. TB-N2H4 exhibited a remarkable fluorescence turn-on response toward N2H4 with a large Stokes shift of 191 nm. Moreover, TB-N2H4 could selectively recognize N2H4 over other competitive analytes, and displayed high sensitivity toward N2H4 with a low detection limit of 0.117 μM. The sensing mechanism of the probe TB-N2H4 for N2H4 was confirmed by theoretical calculation and HRMS analysis. This probe was able to quantitatively determine N2H4 in environmental water and soil samples. Additionally, TB-N2H4 was also successfully utilized for real-time tracking of the distribution of N2H4 in living zebrafish.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhonglong Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
14
|
Chen Y, Zhao C, Liu X, Zhang Q, Jiang Y, Shen J. Multi-scene visual hydrazine hydrate detection based on a dibenzothiazole derivative. Analyst 2023; 148:856-862. [PMID: 36648296 DOI: 10.1039/d2an02045a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrazine (N2H4) produced by industries is distributed into different environments, and seriously threatens ecology and human security. Hence, it is important to develop probes that detect N2H4 in various environments. In this study, a novel N2H4 fluorescent probe was prepared based on a dibenzothiazole derivative (DBTD). The obtained DBTD probe demonstrated a strong ratio of colorimetric detection of N2H4, a rapid response, and good selectivity and sensitivity (detection limit 0.438 μM). Based on its good performance, the DBTD probe was successfully applied for the determination of trace N2H4 in water, cells, and zebrafish. In addition, the results of the fluorescence colocalization experiment demonstrated the lysosomal-targetable ability of DBTD.
Collapse
Affiliation(s)
- Yingshuang Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chuanfeng Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xinyi Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Qian Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
15
|
Rahman H, Rafi M, Putra BR, Wahyuni WT. Electrochemical Sensors Based on a Composite of Electrochemically Reduced Graphene Oxide and PEDOT:PSS for Hydrazine Detection. ACS OMEGA 2023; 8:3258-3269. [PMID: 36713748 PMCID: PMC9878640 DOI: 10.1021/acsomega.2c06791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 05/27/2023]
Abstract
In this study, hydrazine sensors were developed from a composite of electrochemically reduced graphene oxide (ErGO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), deposited onto a glassy carbon electrode (GCE). The structural properties, electrochemical characterization, and surface morphologies of this hydrazine sensor were characterized by Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). In addition, the proposed hydrazine sensor also demonstrates good electrochemical and analytical performance when investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry techniques under optimal parameters. Using these investigated parameters, DPV and amperometry were chosen as techniques for hydrazine measurements and showed a linear range of concentration in the range of 0.2-100 μM. The obtained limits of detection and limits of quantitation for hydrazine measurements were 0.01 and 0.03 μM, respectively. In addition, the proposed sensor demonstrated good reproducibility and stability in hydrazine measurements in eight consecutive days. This fabricated hydrazine sensor also exhibited good selectivity against interference from Mg2+, K+, Zn2+, Fe2+, Na+, NO2 -, CH3COO-, SO4 2-, Cl-, ascorbic acid, chlorophenol, and triclosan and combined interferences, as well as it depicted %RSD values of less than 5%. In conclusion, this proposed sensor based on GCE modified with ErGO/PEDOT:PSS displays exceptional electrochemical performance for use in hydrazine measurements and have the potential to be employed in practical applications.
Collapse
Affiliation(s)
- Hemas
Arif Rahman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java16680, Indonesia
| | - Mohamad Rafi
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java16680, Indonesia
- Tropical
Biopharmaca Research Center, Institute of
Research and Community Empowerment, IPB University, Bogor, West Java16680, Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research
and Innovation Agency (BRIN), PUSPIPTEK Area, Building No. 470, Setu Regency, South Tangerang, Banten15314, Indonesia
| | - Wulan Tri Wahyuni
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java16680, Indonesia
- Tropical
Biopharmaca Research Center, Institute of
Research and Community Empowerment, IPB University, Bogor, West Java16680, Indonesia
| |
Collapse
|
16
|
adir Mahieddine A, Adnane-Amara L. Constructing and electrochemical performance of NiCo-LDHs@h-Ni NWs core-shell for hydrazine detection in environmental samples. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Almutairi EM, Ghanem MA, Al-Warthan A, Kuniyil M, Adil SF. Hydrazine High-Performance Oxidation and Sensing Using a Copper Oxide Nanosheet Electrocatalyst Prepared via a Foam-Surfactant Dual Template. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:129. [PMID: 36616039 PMCID: PMC9823773 DOI: 10.3390/nano13010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This work demonstrates hydrazine electro-oxidation and sensing using an ultrathin copper oxide nanosheet (CuO-NS) architecture prepared via a versatile foam-surfactant dual template (FSDT) approach. CuO-NS was synthesised by chemical deposition of the hexagonal surfactant Brij®58 liquid crystal template containing dissolved copper ions using hydrogen foam that was concurrently generated by a sodium borohydride reducing agent. The physical characterisations of the CuO-NS showed the formation of a two-dimensional (2D) ultrathin nanosheet architecture of crystalline CuO with a specific surface area of ~39 m2/g. The electrochemical CuO-NS oxidation and sensing performance for hydrazine oxidation revealed that the CuO nanosheets had a superior oxidation performance compared with bare-CuO, and the reported state-of-the-art catalysts had a high hydrazine sensitivity of 1.47 mA/cm2 mM, a low detection limit of 15 μM (S/N = 3), and a linear concentration range of up to 45 mM. Moreover, CuO-NS shows considerable potential for the practical use of hydrazine detection in tap and bottled water samples with a good recovery achieved. Furthermore, the foam-surfactant dual template (FSDT) one-pot synthesis approach could be used to produce a wide range of nanomaterials with various compositions and nanoarchitectures at ambient conditions for boosting the electrochemical catalytic reactions.
Collapse
Affiliation(s)
| | - Mohamed A. Ghanem
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
18
|
Zuo K, Zhang J, Zeng L. A smartphone-adaptable chromogenic and fluorogenic sensor for rapid visual detection of toxic hydrazine in the environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121765. [PMID: 35998425 DOI: 10.1016/j.saa.2022.121765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Hydrazine is an essential chemical in industries, but its high toxicity poses great threats to human health and environmental safety. Hence, it is of great significance to monitor the hydrazine in environment. In this work, we presented a chromogenic and fluorogenic dual-mode sensor RA for the detection of hydrazine based on nucleophilic substitution reaction. A linear relationship was obtained between the fluorescence intensity and the concentrations of N2H4 ranging from 0 to 35 μM (R2 = 0.9936). The sensor can determine hydrazine with fast response (within 12 min), low limit of detection (0.129 μM) and high selectivity. RA was successfully used to detect N2H4 in real water samples with good recoveries and the results corresponded to the standard method. Furthermore, the sensor-coated portable test papers were fabricated, which can visually quantify hydrazine solutions with obvious fluorescence transformation from colorless to red. Moreover, RA-loaded papers were used to create a smartphone-adaptable RGB values analytical method for quantitative N2H4 detection.
Collapse
Affiliation(s)
- Ke Zuo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jin Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Chemistry and Materials Science, Hubei Engineering University, Hubei, Xiaogan 432000, China.
| |
Collapse
|
19
|
Liu P, Wu WN, Wang Y, Fan YC, Xu ZH. A dual-ratiometric mitochondria-targeted fluorescent probe to detect hydrazine in soil samples and biological imaging. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129713. [PMID: 35944434 DOI: 10.1016/j.jhazmat.2022.129713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Hydrazine (N2H4) is carcinogenic, extremely toxic, and induces serious environmental contamination and physiological dysfunction; however, it is widely used as an industrial material. Hence, the development of a simple and effective analytical method to detect N2H4 detection in both environmental and biological sectors is warranted. In this work, an intramolecular charge transfer (ICT)-based fluorescent probe 1, namely (Z)- 1-(4-acetoxybenzyl)- 4-(1-cyano-2-(7-(diethylamino)- 2-oxo-2 H-chromen-3-yl)vinyl)pyridin-1-ium, was designed for dual-excitation (420 and 600 nm, excitation separations >160 nm), near infrared (NIR)-emissive, and ratiometric fluorescent detection of N2H4. The sensing behavior of probe 1 for N2H4 detection was shown to be available over a wide pH range, and detection limits of 68 nM and 569 nM were achieved at excitation wavelengths of 420 and 600 nm, respectively. In addition, probe 1 was successfully used to image mitochondrial N2H4 in living cells and zebrafish. Furthermore, the probe was also capable of determining hydrazine signals in test strips and environmental soil.
Collapse
Affiliation(s)
- Pan Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, 461000, PR China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
20
|
Xing M, Han Y, Zhu Y, Sun Y, Shan Y, Wang KN, Liu Q, Dong B, Cao D, Lin W. Two Ratiometric Fluorescent Probes Based on the Hydroxyl Coumarin Chalcone Unit with Large Fluorescent Peak Shift for the Detection of Hydrazine in Living Cells. Anal Chem 2022; 94:12836-12844. [PMID: 36062507 DOI: 10.1021/acs.analchem.2c02798] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrazine is widely used in industrial and agricultural production, but excessive hydrazine possesses a serious threat to human health and environment. Here two new ratiometric fluorescence probes, DDP and DDC, with the hydroxyl coumarin chalcone unit as the sensing site are developed, which can achieve colorimetric and ratiometric recognition for hydrazine with good sensitivity, excellent selectivity, and anti-interference. The calculated fluorescence limits of detections are 0.26 μM (DDC) and 0.14 μM (DDP). The ratiometric fluorescence response to hydrazine is realized through the adjustment of donor and receptor units in coumarin conjugate structure terminals, accompanied by fluorescence peak shift about 200 nm (DDC, 188 nm; DDP, 229 nm). Stronger electropositivity in the carbon-carbon double bond is helpful to the first phase addition reaction between the probe and hydrazine. Higher phenol activity in the hydroxyl coumarin moiety will facilitate the following dihydro-pyrazole cyclization reaction. In addition, both of these probes realized the convenient detection of hydrazine vapor. The probes were also successfully applied to detect hydrazine in actual water samples, different soils, and living cells.
Collapse
Affiliation(s)
- Miaomiao Xing
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Han
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yilin Zhu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yatong Sun
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Shan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kang-Nan Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qiuxin Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baoli Dong
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Weiying Lin
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
21
|
Wang E, Ma H, Lu J, Wang F, Ren J. Recent progress in the fluorescent probes for hydrazine detection. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Nde DT, Jhung SH, Lee HJ. Electrocatalytic Determination of Hydrazine Concentrations with Polyelectrolyte Supported AuCo Nanoparticles on Carbon Electrodes. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Miao CF, Guo XZ, Zhang XT, Lin YN, Han WD, Huang ZJ, Weng SH. Ratiometric fluorescence assay based on carbon dots and Cu 2+-catalyzed oxidation of O-phenylenediamine for the effective detection of deferasirox. RSC Adv 2021; 11:34525-34532. [PMID: 35494749 PMCID: PMC9042915 DOI: 10.1039/d1ra07078a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
The monitoring of deferasirox (DEF) has important clinical roles in patients who need iron excretion. However, analytical methods with practicability and simplicity are limited. Moreover, ratiometric fluorescence strategies based on Förster resonance energy transfer (FRET) from carbon dots (CDs) as a donor are rarely reported as a drug monitor. In this work, CDs with an appropriate emitting wavelength at 480 nm and excitation around 370 nm were prepared by hydrothermal approach and HCl post-treatment. O-Phenylenediamine (OPD) can be oxidized by Cu2+ to produce yellow fluorescent 2,3-diaminophenazine (oxOPD) in the system of Cu2+ and OPD (Cu-OPD). Correspondingly, a remarkable FRET from CDs to oxOPD in the system of CDs, Cu2+ and OPD (CDs-Cu-OPD) was fabricated with the quenching illustration of CDs, but emitting property of oxOPD. Attributed to the chelation ability of DEF on Cu2+, the inhibitory effects of DEF on the Cu2+-triggered oxidative capability reduced the FRET system by the decreased oxOPD. Thus, the recovered CDs at F 480 and decreased oxOPD at F 560 were found through a ratiometric mode by the addition of DEF in CDs-Cu-OPD for the DEF assay. The FRET behavior of CDs and oxOPD in CDs-Cu-OPD was proved clearly through the calculation of the association constant, binding constant, number of binding sites, and the distance between the donor and acceptor. Furthermore, this ratiometric method exhibited promising analytical performance for DEF with the application in real samples. The implementation of this work expands the application field of CDs and OPD oxidation in drug monitoring, and even other biological analyses through ratiometric strategy.
Collapse
Affiliation(s)
- Chen-Fang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Xian-Zhong Guo
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University Fuzhou Fujian 350005 P. R. China
| | - Xin-Tian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Yin-Ning Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Wen-Di Han
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University Fuzhou Fujian 350005 P. R. China
| | - Zheng-Jun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Shao-Huang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| |
Collapse
|