1
|
Phang LY, Mingyuan L, Mohammadi M, Tee CS, Yuswan MH, Cheng WH, Lai KS. Phytoremediation as a viable ecological and socioeconomic management strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50126-50141. [PMID: 39103580 DOI: 10.1007/s11356-024-34585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Phytoremediation is an environmentally friendly alternative to traditional remediation technologies, notably for soil restoration and agricultural sustainability. This strategy makes use of marginal areas, incorporates biofortification processes, and expands crop alternatives. The ecological and economic benefits of phytoremediation are highlighted in this review. Native plant species provide cost-effective advantages and lower risks, while using invasive species to purify pollutants might be a potential solution to the dilemma of not removing them from the new habitat. Thus, strict management measures should be used to prevent the overgrowth of invasive species. The superior advantages of phytoremediation, including psychological and social improvements, make it a powerful tool for both successful cleanup and community well-being. Its ability to generate renewable biomass and adapt to a variety of uses strengthens its position in developing the bio-based economy. However, phytoremediation faces severe difficulties such as complex site circumstances and stakeholder doubts. Overcoming these challenges necessitates a comprehensive approach that balances economic viability, environmental protection, and community welfare. Incorporating regulatory standards such as ASTM and ISO demonstrates a commitment to long-term environmental sustainability, while also providing advice for unique nation-specific requirements. Finally, phytoremediation may contribute to a pleasant coexistence of human activity and the environment by navigating hurdles and embracing innovation.
Collapse
Affiliation(s)
- Lai-Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lim Mingyuan
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mitra Mohammadi
- Department of Environmental Science, Kheradgerayan Motahar Institute of Higher Education, Kosar 45, Vakil Abad Boulevard, Mashhad, Iran
| | - Chong-Siang Tee
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900, Kampar, Perak, Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Mullaivendhan J, Ahamed A, Arif IA, Raman G, Akbar I. Mushroom tyrosinase enzyme catalysis: synthesis of larvicidal active geranylacetone derivatives against Culex quinquesfasciatus and molecular docking studies. Front Chem 2024; 11:1303479. [PMID: 38268759 PMCID: PMC10806150 DOI: 10.3389/fchem.2023.1303479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
The grindstone process, which uses tyrosinase as a catalyst, was used to create analogues of geranylacetone. Tyrosinase was used to prepare the Mannich base under favourable reaction conditions, resulting in a high yield. All synthesized compounds were characterized using FTIR, Nuclear magnetic resonance, and mass spectral analyses. The active geranylacetone derivatives (1a-l) were investigated for larvicidal activity against Culex quinquefasciatus; compound 1b (LD50:20.7 μg/mL) was noticeably more effective than geranylacetone (LD50: >100 μg/mL) and permethrin (LD50: 24.4 μg/mL) lead compounds because of their ability to kill larvae and use them as pesticides. All compounds (1a-1l) were found to be low toxic, whereas compounds 1b, 1d, and 1k were screened for antifeedant screening of non -aquatic target for the toxicity measurement against marine fish Oreochromis mossambicus at 100 μg/mL caused 0% mortality in within 24 h. Molecular docking studies of synthesised compound 1b and permethrin docked with 3OGN, compound 1b demonstrated a greater binding affinity (-9.6 kcal/mol) compared to permethrin (-10.5 kcal/mol). According to these results, the newly synthesised geranylacetone derivatives can serve as lead molecules of larvicides agents.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Arif
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gurusamy Raman
- Department of Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, India
| |
Collapse
|
3
|
Zhang X, Li Z. Co-PBK: a computational biomonitoring tool for assessing chronic internal exposure to chemicals and metabolites. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2167-2180. [PMID: 37982278 DOI: 10.1039/d3em00396e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Toxic chemicals are released into the environment through diverse human activities. An increasing number of chronic diseases are associated with ambient pollution, thus posing a threat to people. Given the high consumption of resources for human biomonitoring, this study proposed coupled physiologically-based kinetic (co-PBK) modeling matrices as a biomonitoring tool for simplifying chronic internal exposure estimates of environmental chemicals and their metabolites using naphthalene (NAP) and its metabolites (i.e., 1-OHN and 2-OHN) as simulation examples. According to the simulation of the steady-state mass among various organs/tissues via the co-PBK modeling matrices, fat had the highest potential bioaccumulation of NAP and its metabolites. With respect to body fluids, 1-OHN and 2-OHN tended to bioaccumulate more in the bile than in the urine. According to the sensitivity analysis, the calculated sensitivity factors for the first-order kinetics-based rate constants imply that due to the biotransformation process, target organs/tissues (e.g., liver and kidneys) would be continuously exposed to more NAP metabolites under chronic exposure. Meanwhile, 1-OHN may be more stably transported to the urine than 2-OHN for further human biomonitoring during long-term internal exposure. According to the case study of simulating population chronic exposure to NAP in Shenzhen, the co-PBK modeling estimated the population exposure to NAP with an intake rate of 8.77 × 10-2 mg d-1 and the aggregated urinary concentration of NAP metabolites of 2.60 μg L-1. Furthermore, the accuracy of the urinary levels between the real-world data and the values simulated by the co-PBK modeling was assessed and the root-mean-square error of c1-OHN,urine was found to be lower than that of c2-OHN,urine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Li R, Wang J, Deng J, Peng G, Wang Y, Li T, Liu B, Zhang Y. Selective enrichments for color microplastics loading of marine lipophilic phycotoxins. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132137. [PMID: 37499500 DOI: 10.1016/j.jhazmat.2023.132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Microplastics (MPs) and marine lipophilic phycotoxins (MLPs) are two classes of emerging contaminants. Together, they may exacerbate the negative impacts on nearshore marine ecosystems. Herein, the loading of 14 representative MLPs, closely related to toxin-producing algae, on MPs and their relations with colorful MPs have been explored for the first time based on both field and lab data. The objectives of our study are to explore the roles of multiple factors (waterborne MLPs and MP characteristics) in the loading of MLPs by MPs with the applications of various statistical means, and to further explore the role of the color of MP in the loading of specific MLPs through lab simulation experiments. Our results demonstrated that MPs color determined the loading of some specific MLPs on MPs and green MPs can load much more than other colorful fractions (p < 0.05). These interesting phenomena illustrated that the color effects on the loading processes of MLPs on MPs are a dynamic process, and it can be well explained by the shading effect of MP color, which may affect the growth and metabolism of the attached toxic-producing algae on MPs and hence the production of specific MLPs. Furthermore, loading of MLPs on MPs can be considered as the comprehensive physicochemical and biological processes. Our results caution us that special attention should be paid to explore the real-time dynamic color shading effects on all kinds of bio-secreted contaminants loading on MPs, and highlight the necessary to comprehensive investigate the interaction between biota, organic contaminants and MPs.
Collapse
Affiliation(s)
- Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jiuming Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Environmental Science Research Center, Xiamen University, Xiamen 361102, China
| | - Jun Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Gen Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tiezhu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Beibei Liu
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Environmental Science Research Center, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Silva LFO, Bodah BW, Lozano LP, Oliveira MLS, Korcelski C, Maculan LS, Neckel A. Nanoparticles containing hazardous elements and the spatial optics of the Sentinel-3B OLCI satellite in Amazonian rivers: a potential tool to understand environmental impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27617-7. [PMID: 37193793 DOI: 10.1007/s11356-023-27617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The Amazon River is the longest river in the world. The Tapajós River is a tributary to the Amazon. At their junction, a marked decrease in water quality is evident from negative impacts from the constant activity of clandestine gold mining in the Tapajós River watershed. The accumulation of hazardous elements (HEs), capable of compromising environmental quality across large regions is evident in the waters of the Tapajós. Sentinel-3B OLCI (Ocean Land Color Instrument) Level-2 satellite imagery with Water Full Resolution (WFR) of 300 m was utilized to detect the highest potential for the absorption coefficient of detritus and gelbstoff in 443 m-1 (ADG443_NN), chlorophyll-a (CHL_NN) and total suspended matter concentration (TSM_NN), at 25 points in the Amazon and Tapajós rivers (in 2019 and 2021). Physical samples of riverbed sediment collected in the field at the same locations were analyzed for NPs and ultra-fine particles to verify the geospatial findings. The riverbed sediment samples collected in the field were studied by Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), with selected area electron diffraction (SAED), following laboratory analytical procedures. The Sentinel-3B OLCI images, based on the Neural Network (NN) were calibrated by the European Space Agency (ESA), with a standard average normalization of 0.83 µg/mg, containing a maximum error of 6.62% applied to the sampled points. The analysis of the riverbed sediment samples revealed the presence of the following hazardous elements: As, Hg, La, Ce, Th, Pb, Pd, among several others. The Amazon River has significant potential to transport ADG443_NN (55.475 m-1) and TSM_NN (70.787 gm-3) in sediments, with the possibility of negatively impacting marine biodiversity, in addition to being harmful to human health over very large regions.
Collapse
Affiliation(s)
- Luis F O Silva
- CDLAC - Coleta de Dados Análises Laboratoriais E Científicas LTDA, Nova Santa Rita , 92480-000, Brazil
- Programa de Pós-Graduação Doutorado Em Sociedade Natureza E Desenvolvimento, Universidade Federal Do Oeste Do Pará, UFOPA, Paraná, 68040-255, Brazil
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Brian William Bodah
- Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA
- Yakima Valley College, Workforce Education & Applied Baccalaureate Programs, South16th Avenue & Nob Hill Boulevard, Yakima, WA, 98902, USA
- ATITUS Educação, Passo Fundo, RS, 30499070-220, Brazil
| | - Liliana P Lozano
- Programa de Pós-Graduação Doutorado Em Sociedade Natureza E Desenvolvimento, Universidade Federal Do Oeste Do Pará, UFOPA, Paraná, 68040-255, Brazil
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Marcos L S Oliveira
- CDLAC - Coleta de Dados Análises Laboratoriais E Científicas LTDA, Nova Santa Rita , 92480-000, Brazil
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina-UFSC, Florianópolis, 88040-900, Brazil
| | - Cleiton Korcelski
- ATITUS Educação, Passo Fundo, RS, 30499070-220, Brazil
- Universidade Do Minho, UMINHO, 4710-057, Braga, Portugal
| | | | | |
Collapse
|
6
|
Zhu M, Liu Y, Xu J, He Y. Compound-specific stable isotope analysis for characterization of the transformation of γ-HCH induced by biochar. CHEMOSPHERE 2023; 314:137729. [PMID: 36603676 DOI: 10.1016/j.chemosphere.2022.137729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The role of biochar as the redox catalyst in the removal of reductive pollutants from soil and water system has been extensively studied recently, but there is still a lack of qualitative description of its specific mechanisms in redox processes. In this study, the mechanism of biochar in the transformation process of γ-HCH under anoxic condition was revealed by the compound-specific isotope analysis. The concentration and carbon isotopic composition (δ13C) of γ-HCH were detected in the treatments with different initial concentrations of γ-HCH and biochar materials with different redox properties and varied doses. The surface functional groups and electrochemical properties of biochar before and after the reaction were also characterized. The addition amount of biochar could affect the reduction of γ-HCH concentration, which were 59.1%, 34.6% and 22.4% in treatments with the addition of 5%, 1% and 0.2% biochar, respectively. Meanwhile, the δ13C value of γ-HCH also increased from -26.6 ± 0.2‰ to -23.8 ± 0.2‰ with the addition amount of biochar, especially in the treatment with 5% biochar. As evidenced by X-ray diffraction analysis and electrochemical analysis, biochar promoted the adsorption and transformation of γ-HCH simultaneously, and the oxygen-containing functional groups on the surface of biochar played an important role in the redox process. The isotopic fractionation value (εC) of γ-HCH transformation by biochar was first reported as -3.4 ± 0.4‰. The results will enable the quantitative description of the transformation degree of organic pollutants induced by biochar, and provide a new approach for evaluating the in-situ remediation effects of biochar in a complex environment.
Collapse
Affiliation(s)
- Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Rivas-Sanchez A, Cruz-Cruz A, Gallareta-Olivares G, González-González RB, Parra-Saldívar R, Iqbal HMN. Carbon-based nanocomposite materials with multifunctional attributes for environmental remediation of emerging pollutants. CHEMOSPHERE 2022; 303:135054. [PMID: 35613636 DOI: 10.1016/j.chemosphere.2022.135054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Carbon-based materials are among the most biosynthesized nanocomposites with excellent tunability and multifunctionality features, that other materials fail to demonstrate. Naturally occurring materials, such as alginate (Alg), can be combined and modified by linking the active moieties of various carbon-based materials of interest, such as graphene oxide (GO), carbon nanotubes (CNTs), and mesoporous silica nanocomposite (MSN), among others. Thus, several types of robust nanocomposites have been fabricated and deployed for environmental remediation of emerging pollutants, such as pharmaceutical compounds, toxic dyes, and other environmentally hazardous contaminants of emerging concern. Considering the above critiques and added features of carbon-based nanocomposites, herein, an effort has been made to spotlight the synergies of GO, CNTs, and MSN with Alg and their role in mitigating emerging pollutants. From the information presented in this work, it can be concluded that Alg is a material that has excellent potential. However, its use still requires further tests in different areas and other materials to carry out a holistic investigation that exploits its versatility for environmental remediation purposes.
Collapse
Affiliation(s)
- Andrea Rivas-Sanchez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Angelica Cruz-Cruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
8
|
Sharma P, Singh SP, Iqbal HMN, Tong YW. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. ENVIRONMENTAL RESEARCH 2022; 211:113102. [PMID: 35300964 DOI: 10.1016/j.envres.2022.113102] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023]
Abstract
Non-degradable pollutants have emerged as a result of industrialization, population growth, and lifestyle changes, endangering human health and the environment. Bioremediation is the process of clearing hazardous contaminants with the help of microorganisms, and cost-effective approach. The low-cost and environmentally acceptable approach to removing environmental pollutants from ecosystems is microbial bioremediation. However, to execute these different bioremediation approaches successfully, this is imperative to have a complete understanding of the variables impacting the development, metabolism, dynamics, and native microbial communities' activity in polluted areas. The emergence of new technologies like next-generation sequencing, protein and metabolic profiling, and advanced bioinformatic tools have provided critical insights into microbial communities and underlying mechanisms in environmental contaminant bioremediation. These omics approaches are meta-genomics, meta-transcriptomics, meta-proteomics, and metabolomics. Moreover, the advancements in these technologies have greatly aided in determining the effectiveness and implementing microbiological bioremediation approaches. At Environmental Protection Agency (EPA)-The government placed special emphasis on exploring how molecular and "omic" technologies may be used to determine the nature, behavior, and functions of the intrinsic microbial communities present at pollution containment systems. Several omics techniques are unquestionably more informative and valuable in elucidating the mechanism of the process and identifying the essential player's involved enzymes and their regulatory elements. This review provides an overview and description of the omics platforms that have been described in recent reports on omics approaches in bioremediation and that demonstrate the effectiveness of integrated omics approaches and their novel future use.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
9
|
ACTIVATED CARBON MANUFACTURING VIA ALTERNATIVE MEXICAN LIGNOCELLULOSIC BIOMASS AND THEIR APPLICATION IN WATER TREATMENT: PREPARATION CONDITIONS, SURFACE CHEMISTRY ANALYSIS AND HEAVY METAL ADSORPTION PROPERTIES. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Waqas MR, Nadeem SM, Khan MY, Ahmad Z, Ali L, Asghar HN, Khalid A. Phycoremediation of textile effluents with enhanced efficacy of biodiesel production by algae and potential use of remediated effluent for improving growth of wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46118-46126. [PMID: 35165842 DOI: 10.1007/s11356-022-19140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The uncontrolled industrialization and unrestricted textile production combined with inappropriate effluent treatment services in developing countries like Pakistan have multiplied the number of harmful effluent discharge. These effluents are enriched with dyes, heavy metal ions, and other hazardous materials that are poisonous and carcinogenic to living organisms. For that reason, the utilization of economic and efficient control techniques against such pollutants is imperative to protect natural resources. The triple algal role for phycoremediation of textile effluent was utilized in this study to make it suitable for irrigation and higher biofuel production. Locally isolated two strains, CKW1 (Spirogyra sp.) and PKS33 (Cladophora sp.), were used to treat the effluent collected from the direct outlets of the textile industries. The treated effluent was then tested for its toxicity and applied to wheat at initial stage grown under axenic conditions to check its effect on wheat (Triticum aestivum L.) vegetative growth and development. Finally, the algal biomass obtained after treatment was subjected to trans-esterification for predicting the amount of biodiesel production. Study outcomes revealed that the algal strains were able to decolorize the effluent entirely within 96-120 h. Compared to un-treated textile effluent, the phycoremediated wastewater application to wheat plants enhanced the plant biomass by 80%. Lastly, the production of biodiesel from algal biomass attained after phycoremediation was 35% less to algal biomass obtained under normal growth conditions. It can be concluded that the algal use helps to treat the contaminated effluent and marks them re-usable for irrigating plants and producing biomass which could be utilized for biodiesel production.
Collapse
Affiliation(s)
| | | | - Muhammad Yahya Khan
- University of Agriculture Faisalabad, Sub-Campus Burewala, Faisalabad, Pakistan.
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Zeeshan Ahmad
- University of Agriculture Faisalabad, Sub-Campus Burewala, Faisalabad, Pakistan
| | - Liaqat Ali
- University of Agriculture Faisalabad, Sub-Campus Burewala, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Azeem Khalid
- Department of Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
11
|
Nguyen NT, Vo VT, Nguyen THP, Kiefer R. Isolation and optimization of a glyphosate-degrading Rhodococcus soli G41 for bioremediation. Arch Microbiol 2022; 204:252. [PMID: 35411478 DOI: 10.1007/s00203-022-02875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
Abstract
A widely used herbicide for controlling weeds, glyphosate, is causing environmental pollution. It is necessary to remove it from environment using a cost-effective and eco-friendly method. The aims of this study were to isolate glyphosate-degrading bacteria and to optimize their degradative conditions required for bioremediation. Sixteen bacterial strains were isolated through enrichment and one strain, Rhodococcus soli G41, demonstrated a high removal rate of glyphosate than other strains. Response surface methodology was employed to optimize distinct environmental factors on glyphosate degradation of G41 strain. The optimal conditions for the maximum glyphosate degradation were found to have the NH4Cl concentration of 0.663% and glyphosate concentration of 0.115%, resulting in a maximum degradation of 42.7% after 7 days. Bioremediation analysis showed 47.1% and 40% of glyphosate in unsterile soil and sterile soil was removed by G41 strain after 14 days, respectively. The presence of soxB gene in G41 strain indicates that the glyphosate is degraded via the eco-friendly sarcosine pathway. The results indicated that G41 strain has the potential to serve as an in-situ candidate for bioremediation of glyphosate polluted environments.
Collapse
Affiliation(s)
- Ngoc Tuan Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho St., Tan Phong Ward, Dist. 7, Ho Chi Minh City, Vietnam.
| | - Van Tam Vo
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho St., Tan Phong Ward, Dist. 7, Ho Chi Minh City, Vietnam
| | - The Hong Phong Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho St., Tan Phong Ward, Dist. 7, Ho Chi Minh City, Vietnam
| | - Rudolf Kiefer
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho St., Tan Phong Ward, Dist. 7, Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Rizwan K, Rahdar A, Bilal M, Iqbal HMN. MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. CHEMOSPHERE 2022; 291:132820. [PMID: 34762881 DOI: 10.1016/j.chemosphere.2021.132820] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Fabricating new biosensing constructs with high selectivity and sensitivity is the most needed environmental detection tool. In this context, several nanostructured materials have been envisaged to construct biosensors to achieve superior selectivity and sensitivity. Among them, MXene is regarded as the most promising to develop biosensors due to its fascinating attributes, like high surface area, excellent thermal resistance, good hydrophilicity, unique layered topology, high electrical conductivity, and environmentally-friendlier properties. MXenes-based materials have emerged as a prospective for catalysis, energy storage, electronics, and environmental sensing and remediation applications thanks to the above-mentioned exceptional characteristics. This review elaborates on the contemporary and state-of-the-art advancements in MXene-based electrochemical and biosensing tools to detect toxic elements, pharmaceutically active residues, and pesticide contaminants from environmental matrices. At first, the surface functionalization/modification of MXenes is discussed. Afterwards, a particular focus has been devoted to exploiting MXene to construct electrochemical (bio) sensors to detect various environmentally-related pollutants. Lastly, current challenges in this arena accompanied by potential solutions and directions are also outlined.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 35856-98613, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
13
|
Parra-Arroyo L, González-González RB, Castillo-Zacarías C, Melchor Martínez EM, Sosa-Hernández JE, Bilal M, Iqbal HMN, Barceló D, Parra-Saldívar R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151879. [PMID: 34826476 DOI: 10.1016/j.scitotenv.2021.151879] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The pervasive manifestation and toxicological influence of hazardous pesticides pose adverse consequences on various environmental matrices and humans, directly via bioaccumulation or indirectly through the food chain. Due to pesticide residues' continuous presence above permissible levels in multiple forms, much attention has been given to re-evaluating to regulate their usage practices without harming or affecting the environment. However, there are regulations in place banning the use of multiple hazardous pesticides in the environment. Thus, efforts must be made to achieve robust detection and complete mitigation of pesticides, possibly through a combination of new and conventional methods. The complex nature of pesticides helps them to react differently across different environmental matrices. Therefore, highly hazardous pesticides are a risk to human well-being and the environment through enzymatic inhibition and the induction of oxidative stress. Consequently, developing fast, sensitive sensing strategies is essential to detect and quantify multiple pesticides and remove the pesticides present in the specific matrix without creating harmful derivatives. Additionally, the technology should be available worldwide to eliminate pesticide residuals from the environment. There are regulations, in practice, that limit the selling, storage, use of pesticides, and their concentration in the environment, although such regulations must be revised. However, the existing literature lacks regulatory, analytical detection, and mitigation considerations for pesticide remediation. Furthermore, the enforcement of such regulations and strict monitoring of pesticides in developing countries are needed. This review spotlights various analytical detection, regulatory, and mitigation considerations for efficiently removing hazardous pesticides.
Collapse
Affiliation(s)
- Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H(2)O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | | |
Collapse
|