1
|
Xie F, Cai X, Li Y, Zhang Y, Lin W. Theoretical Insights into the Efficient Reduction of Nitrate to Ammonia on Crystalline Carbon Nitride. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3366-3375. [PMID: 39739904 DOI: 10.1021/acsami.4c18690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The nitrate reduction reaction (NO3RR) has emerged as a promising approach for wastewater treatment and ammonia (NH3) synthesis. Poly(triazine imide)/LiCl (PTI/LiCl), a highly crystalline carbon nitride with a well-defined structure, has shown significant potential in this field. In this study, the electronic properties and catalytic performance of PTI/LiCl for NO3RR were investigated through theoretical calculations. Band structure and projected density of states (PDOS) analyses show that the intercalation of Li+ and Cl- ions within the PTI pores enhances electronic conductivity and improves its electronic properties. The reduction of nitrate to NH3 through a series of intermediates on the PTI/LiCl (001) surface shows exothermic free energy changes for each elementary step. The catalyst demonstrates outstanding selectivity and stability, effectively suppressing the competitive hydrogen evolution reaction and byproduct formation. Charge density difference and PDOS analyses confirm the orbital interactions between absorbed NO3 and Li ions. The study highlights the potential of PTI/LiCl as a low-cost, efficient electrocatalyst for NO3RR and provides theoretical and practical insights for the design of environmentally friendly catalysts.
Collapse
Affiliation(s)
- Fangting Xie
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xu Cai
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Li
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Yongfan Zhang
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Lin
- Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
2
|
Hu J, Tang C, Bi Z, Zhou S, Kong Q, Gao S, Liu X, Zhao X, Hu G. Self-supported iron-doped cobalt-copper oxide heterostructures for efficient electrocatalytic denitrification. J Colloid Interface Sci 2024; 675:313-325. [PMID: 38972119 DOI: 10.1016/j.jcis.2024.06.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
The electrocatalytic reduction of nitrate ions (NO3-) to nitrogen gas (N2) has emerged as an effective approach for mitigating nitrate pollution in water bodies. However, the development of efficient and highly selective cathode materials remains challenging. Conventional copper-based catalysts often exhibit low selectivity because they strongly adsorb oxygen. In this study, a straightforward solvothermal and pyrolysis method was used to grow iron-doped cobalt-copper oxide heterogeneous structures on copper foam surfaces (Fe-CoO/CuO@CF). Then, the effects of the applied potential, initial NO3- concentration, Cl- concentration, electrolyte pH, and different catalysts on the catalyst performance were investigated. Compared with recently reported congeners, Fe-CoO/CuO@CF is less expensive and exhibits outstanding activity for NO3- reduction. Meanwhile, under a cathode potential of - 1.31 V vs. Ag/AgCl, Fe-CoO/CuO@CF degrades 98.6 % of NO3- in 200 min. In addition, when employing a method inspired by NH4+ removal by breakpoint chlorination, N2 selectivity over Fe-CoO/CuO@CF was raised from 10 % without Cl- to 99.7 % when supplemented with Cl-. The catalyst demonstrated excellent cyclic stability, maintaining a high electrocatalytic activity for the conversion of NO3- to N2 gas over eleven cycles. Moreover, Fe-CoO/CuO@CF enabled 63.7 % removal of NO3- from wastewater (50 mg/L NO3--N) prepared from natural water, with 100 % conversion to N2. Computational studies showed that iron doping decreased the free energy change of the intermediate of NO3- reduction reaction. This study provides an effective strategy for the electrochemical reduction of nitrate to nitrogen gas and offers good prospects for addressing nitrate pollution.
Collapse
Affiliation(s)
- Jiao Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Cui Tang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Zenghui Bi
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Sanshuang Gao
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
3
|
Liu Y, Zhang J, Bai R, Zhao Y, Zhou Y, Zhao X. Functional partitioning synergistically enhances multi-scenario nitrate reduction. J Colloid Interface Sci 2024; 675:526-534. [PMID: 38986326 DOI: 10.1016/j.jcis.2024.06.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The promising electrocatalytic nitrate reduction reaction (eNitRR) for distributed ammonia synthesis requires the fine design of functionally compartmentalised and synergistically complementary integrated catalysts to meet the needs of low-cost and efficient ammonia synthesis. Herein, the partitionable CoP3 and Cu3P modules were built on the copper foam substrate, and the functional differentiation promoted the catalytic performance of the surface accordion-like CoP3/Cu3P@CF for eNitRR in complex water environment. Where the ammonia yield rate is as high as 23988.2 μg h-1 cm-2, and the Faradaic efficiency is close to 100 %. With CoP3/Cu3P@CF as the core, the assembled high-performance Zn-nitrate flow battery can realize the dual function of ammonia production and power supply, and can also realize the continuous production of ammonia with high selectivity driven by solar energy. The ammonia recovery reaches 753.9 mg L-1, which shows the superiority of CoP3/Cu3P@CF in multiple application scenarios and provides important experience for the vigorous development of eNitRR. Density functional theory calculation reveal that CoP3 and Cu3P sites play a relay synergistic role in eNitRR catalyzed by CoP3/Cu3P@CF. CoP3 first promotes the activation of NO3- to *NO3H, and then continuously provides proton hydrogen for the eNitRR on the surface of Cu3P, which relays the synergistic catalytic effect to promote the efficient conversion of NO3- to NH3. This study not only develops a catalyst that can promote the efficient reduction of NO3- to ammonia through an easy-to-obtain innovative strategy, but also provides an alternative strategy for the development of eNitRR that is suitable for multiple scenarios and meets the production conditions.
Collapse
Affiliation(s)
- Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Jin Zhang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Rui Bai
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Yan Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| |
Collapse
|
4
|
Chao G, Wang J, Zong W, Fan W, Xue T, Zhang L, Liu T. Single-atom catalysts for electrocatalytic nitrate reduction into ammonia. NANOTECHNOLOGY 2024; 35:432001. [PMID: 39105490 DOI: 10.1088/1361-6528/ad64d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Ammonia (NH3) is a versatile and important compound with a wide range of uses, which is currently produced through the demanding Haber-Bosch process. Electrocatalytic nitrate reduction into ammonia (NRA) has recently emerged as a sustainable approach for NH3synthesis under ambient conditions. However, the NRA catalysis is a complex multistep electrochemical process with competitive hydrogen evolution reaction that usually results in poor selectivity and low yield rate for NH3synthesis. With maximum atom utilization and well-defined catalytic sites, single atom catalysts (SACs) display high activity, selectivity and stability toward various catalytic reactions. Very recently, a number of SACs have been developed as promising NRA electrocatalysts, but systematical discussion about the key factors that affect their NRA performance is not yet to be summarized to date. This review focuses on the latest breakthroughs of SACs toward NRA catalysis, including catalyst preparation, catalyst characterization and theoretical insights. Moreover, the challenges and opportunities for improving the NRA performance of SACs are discussed, with an aim to achieve further advancement in developing high-performance SACs for efficient NH3synthesis.
Collapse
Affiliation(s)
- Guojie Chao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
- Jiangsu Engineering Research Center of New Energy Vehicle Energy Saving and Battery Safety, WUXI Institute of Technology, Wuxi, People's Republic of China
| | - Jian Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Wei Zong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Tiantian Xue
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
5
|
Zhang X, Feng C, Wei D, Liu X, Luo W. Optimization of "sulfur-iron-nitrogen" cycle in constructed wetlands by adjusting siderite/sulfur (Fe/S) ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121336. [PMID: 38850915 DOI: 10.1016/j.jenvman.2024.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Sulfur-siderite autotrophic denitrification (SSAD) has been proved to solve the key problem of low nitrogen removal efficiency caused by the shortage of carbon source in constructed wetlands (CWs). In this study, five vertical flow constructed wetlands (VFCWs) were constructed with different Fe/S ratios (0/0, 0/1, 1/1, 2/1 and 1/2) to optimizing SSAD process, labeled S.0, S.1, S.2, S.3 and S.4. The results showed that the best NO3--N and TN removal rates were achieved with a Fe/S ratio of 2:1 (S.3), which were 96.26 ± 1.40% and 93.63 ± 3.12%, respectively. The abundance of denitrification genes (nirS, nirK and nosZ) in S.3 was significantly increased. Illumina high-throughput sequencing analysis indicated that the abundance and diversity of microorganisms involved in the "Sulfur-Iron-Nitrogen" cycle were enriched in S.3. The current study provided that the "Sulfur-Iron-Nitrogen" cycle in CWs was optimized by adjusting Fe/S ratio, and more types of denitrifying bacteria could be enriched, thereby enhancing nitrogen removal.
Collapse
Affiliation(s)
- Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xinlin Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Wancheng Luo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
6
|
Wei J, Li Y, Lin H, Lu X, Zhou C, Li YY. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100383. [PMID: 38304117 PMCID: PMC10830547 DOI: 10.1016/j.ese.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Chucheng Zhou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ya-yun Li
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
7
|
Zhou S, Dai Y, Song Q, Lu L, Yu X. Efficient Electrochemical Nitrate Removal by Ordered Ultrasmall Intermetallic AuCu 3 via Enhancing Nitrate Adsorption. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38605516 DOI: 10.1021/acsami.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Developing a high-performance electrocatalyst for synthesizing ammonia from nitrate represents a promising solution for addressing wastewater pollution and achieving sustainable ammonia production. However, it remains a formidable challenge. Herein, an intermetallic AuCu3 electrocatalyst with high-density active sites is designed and prepared for an efficient nitrate electroreduction to generate ammonia. Remarkably, the Faraday efficiency and yield rate of ammonia at -0.9 V are 97.6% and 75.9 mg h-1 cm-2, respectively. More importantly, after 10 cycles of testing, the removal rate of nitrate can still reach 95.2%. Electrochemical in situ Fourier transform infrared analysis indicates that AuCu3 IM can promote the adsorption of nitrate and enhance ammonia production from nitrate. *NH3, *NO, and *NO2 have been proven to be active intermediates. Theoretical and experimental studies show that the Au site can provide a large amount of *H for nitrate reduction, and the Cu site is conducive to the reduction of nitrate to produce nitrogen-containing products. Meanwhile, AuCu3 intermetallic compounds (AuCu3 IM) can inhibit the dimerization of *H. The power density and ammonia yield of the assembled Zn-nitrate battery reached 2.17 mW cm-2 and 71.2 mg h-1 cm-2, respectively.
Collapse
Affiliation(s)
- Shuanglong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Yu Dai
- School of Foreign Languages, Qingdao City University, Qingdao 266042, China
| | - Qiang Song
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lina Lu
- School of Business, Shandong University of Technology, Zibo 255000, China
| | - Xiao Yu
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
8
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Zhao T, Zhou J, Zhang D, Wang Y, Zhou S, Chen J, Hu G. Self-supported P-doped NiFe 2O 4 micro-sheet arrays for the efficient conversion of nitrite to ammonia. J Colloid Interface Sci 2023; 650:143-150. [PMID: 37399750 DOI: 10.1016/j.jcis.2023.06.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
The nitrite reduction reaction (NO2-RR) is an important process for eliminating toxic nitrites from water while simultaneously producing high-value ammonia under ambient conditions. For the aim to improve the NO2-RR efficiency, we designed a new synthetic strategy to prepare a phosphorus-doped three-dimensional NiFe2O4 catalyst loaded onto a nickel foam in-situ and evaluated its performance for the reduction of NO2- to NH3. The catalyst achieved a high Faradaic efficiency (FE) of 95.39%, and an ammonia (NH3) yield rate of 34788.51 µg h-1 cm-2 at - 0.45 V vs. RHE. A high NH3 yield rate and FE were maintained after 16 cycles at - 0.35 V vs. RHE in an alkaline electrolyte. This study provides a new direction for the rational design of highly stable electrocatalysts for the conversion of NO2- to NH3.
Collapse
Affiliation(s)
- Tiantian Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jun Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yin Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
10
|
Luo H, Li S, Wu Z, Liu Y, Luo W, Li W, Zhang D, Chen J, Yang J. Modulating the Active Hydrogen Adsorption on Fe─N Interface for Boosted Electrocatalytic Nitrate Reduction with Ultra-Long Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304695. [PMID: 37488087 DOI: 10.1002/adma.202304695] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Indexed: 07/26/2023]
Abstract
The electrocatalytic reduction of nitrate (NO3 - ) to nitrogen (N2 ) is an environmentally friendly approach for efficient N-cycle management (toward a nitrogen-neutral cycle). However, poor catalyst durability and the competitive hydrogen evolution reaction significantly impede its practical application. Interface-chemistry engineering, utilizing the close relationship between the catalyst surface/interface microenvironment and electron/proton transfer process, has facilitated the development of catalysts with high intrinsic activity and physicochemical durability. This study reports the synthesis of a nitrogen-doped carbon-coated rice-like iron nitride (RL-Fe2 N@NC) electrocatalyst with excellent electrocatalytic nitrate-reduction reaction activity (high N2 selectivity (≈96%) and NO3 - conversion (≈86%)). According to detailed mechanistic investigations by in situ tests and theoretical calculations, the strong hydrogenation ability of iron nitride and enhanced nitrate enrichment of the system synergistically contribute to the rapid hydrogenation of nitrogen-containing species, increasing the intrinsic activity of the catalyst and reducing the occurrence of the competing hydrogen-evolution side reaction. Moreover, RL-Fe2 N@NC shows excellent stability, retaining good NO3 - -to-N2 electrocatalysis activity for more than 40 cycles (one cycle per day). This paper could guide the interfacial design of Fe-based composite nanostructures for electrocatalytic nitrate reduction, facilitating a shift toward nitrogen neutrality.
Collapse
Affiliation(s)
- Hongxia Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Ziyang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environmental, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Xiang T, Liang Y, Zeng Y, Deng J, Yuan J, Xiong W, Song B, Zhou C, Yang Y. Transition Metal Single-Atom Catalysts for the Electrocatalytic Nitrate Reduction: Mechanism, Synthesis, Characterization, Application, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303732. [PMID: 37300329 DOI: 10.1002/smll.202303732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Excessive accumulation of nitrate in the environment will affect human health. To combat nitrate pollution, chemical, biological, and physical technologies have been developed recently. The researcher favors electrocatalytic reduction nitrate reaction (NO3 RR) because of the low post-treatment cost and simple treatment conditions. Single-atom catalysts (SACs) offer great activity, exceptional selectivity, and enhanced stability in the field of NO3 RR because of their high atomic usage and distinctive structural characteristics. Recently, efficient transition metal-based SACs (TM-SACs) have emerged as promising candidates for NO3 RR. However, the real active sites of TM-SACs applied to NO3 RR and the key factors controlling catalytic performance in the reaction process remain ambiguous. Further understanding of the catalytic mechanism of TM-SACs applied to NO3 RR is of practical significance for exploring the design of stable and efficient SACs. In this review, from experimental and theoretical studies, the reaction mechanism, rate-determining steps, and essential variables affecting activity and selectivity are examined. The performance of SACs in terms of NO3 RR, characterization, and synthesis is then discussed. In order to promote and comprehend NO3 RR on TM-SACs, the design of TM-SACs is finally highlighted, together with the current problems, their remedies, and the way forward.
Collapse
Affiliation(s)
- Tianyi Xiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuntao Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
12
|
Hamsa AP, Arulprakasam M, Unni SM. Electrochemical nitrogen fixation on single metal atom catalysts. Chem Commun (Camb) 2023; 59:10689-10710. [PMID: 37584339 DOI: 10.1039/d3cc02229c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The electrochemical reduction of nitrogen (eNRR) offers a promising alternative to the Haber-Bosch (H-B) process for producing ammonia under moderate conditions. However, the inertness of dinitrogen and the competing hydrogen evolution reaction pose significant challenges for eNRR. Thus, developing more efficient electrocatalysts requires a deeper understanding of the underlying mechanistic reactions and electrocatalytic activity. Single atom catalysts, which offer tunable catalytic properties and increased selectivity, have emerged as a promising avenue for eNRR. Carbon and metal-based substrates have proven effective for dispersing highly active single atoms that can enhance eNRR activity. In this review, we explore the use of atomically dispersed single atoms on different substrates for eNRR from both conceptual and experimental perspectives. The review is divided into four sections: the first section describes eNRR mechanistic pathways, the second section focuses on single metal atom catalysts (SMACs) with metal atoms dispersed on carbon substrates for eNRR, the third section covers SMACs with metal atoms dispersed on non-carbon substrates for eNRR, and the final section summarizes the remaining challenges and future scope of eNRR for green ammonia production.
Collapse
Affiliation(s)
- Ashida P Hamsa
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muraliraj Arulprakasam
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute Madras Unit, CSIR Madras Complex, Taramani, Chennai 600113, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Wang Y, Cao Y, Hai Y, Wang X, Su S, Ding W, Liu Z, Li X, Luo M. Metal-organic framework-derived Cu nanoparticle binder-free monolithic electrodes with multiple support structures for electrocatalytic nitrate reduction to ammonia. Dalton Trans 2023; 52:11213-11221. [PMID: 37522833 DOI: 10.1039/d3dt01412f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Electrocatalytic nitrate reduction to ammonia, which removes nitrates from aquatic ecosystems, is a potential alternative to the classical Haber-Bosch process. Nevertheless, the selectivity of ammonia is often affected by the toxic by-product nitrite. Here, the polyhedral-supported Cu nanoparticle binder-free monolithic electrode (Cu-BTC-Cu) is synthesized by the in situ electroreduction of Cu metal-organic framework (Cu-MOF) precursors. The Cu-BTC-Cu displays a high ammonia yield of 4.00 mg h-1 cm-2cat and a faradaic efficiency of 83.8% in 0.05 M K2SO4 (pH = 7), greatly outperforming the rod-supported (Cu-BTEC-Cu) and unsupported (Cu-BDC-Cu) Cu nanoparticle monolithic electrodes. Impressively, the Cu-BTC-Cu can inhibit significantly the release of by-product NO2- and present favourable stability after 10 consecutive cycles. These preeminent properties can be attributed to the polyhedral structure, which enables better dispersion of Cu nanoparticles and brings more active sites. Moreover, the reaction mechanism of Cu-BTC-Cu is analysed by electrochemical in situ characterization and several key intermediates are captured. This work provides new insights into the modification of the electrocatalytic nitrate reduction activity of Cu-based catalysts and ideas for the design of high-efficiency electrodes.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Yan Hai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Xinyan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| |
Collapse
|
14
|
Pu S, Zhou M, Tang T, Cheng H, Yan X, Hu G. Boron-cluster-based porous BCN material modified electrode for electrochemical determination of morphine in serum. Mikrochim Acta 2023; 190:307. [PMID: 37466749 DOI: 10.1007/s00604-023-05881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023]
Abstract
Porous highly boron-doped BCN (p-BCN) was produced by using a boron cluster salt (closo-[B12H12]2-) as the boron-based precursor and SiO2 as a hard template. The synthesized p-BCN was used in an electrochemical sensor for the ultrasensitive and highly selective detection of morphine (MOP). The optimal conditions for MOP detection were determined by optimizing the experimental conditions. Under these optimal conditions, the p-BCN-based sensor exhibited excellent MOP detection performance (working potential of 0.2 V). Specifically, it showed a detection range of 0.05 to 200 μM and a detection limit of 17.8 nM. Notably, the p-BCN-based electrochemical sensor was successfully applied to the determination of MOP in human blood, and the results showed satisfactory recovery and accuracy. Therefore, this sensor can be used as an effective platform for the detection of MOP in human blood samples.
Collapse
Affiliation(s)
- Shunhua Pu
- The Affiliated Hospital of Yunnan University, School of Ecology and Environmental Science, Yunnan University, Kunming, 650032, China
| | - Menglin Zhou
- The Affiliated Hospital of Yunnan University, School of Ecology and Environmental Science, Yunnan University, Kunming, 650032, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Xiao Yan
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Guangzhi Hu
- The Affiliated Hospital of Yunnan University, School of Ecology and Environmental Science, Yunnan University, Kunming, 650032, China.
| |
Collapse
|
15
|
Cui Y, Dong A, Zhou Y, Qu Y, Zhao M, Wang Z, Jiang Q. Interfacially Engineered Nanoporous Cu/MnO x Hybrids for Highly Efficient Electrochemical Ammonia Synthesis via Nitrate Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207661. [PMID: 36720010 DOI: 10.1002/smll.202207661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical reduction of nitrate to ammonia (NH3 ) not only offers a promising strategy for green NH3 synthesis, but also addresses the environmental issues and balances the perturbed nitrogen cycle. However, current electrocatalytic nitrate reduction processes are still inefficient due to the lack of effective electrocatalysts. Here 3D nanoporous Cu/MnOx hybrids are reported as efficient and durable electrocatalysts for nitrate reduction reaction, achieving the NH3 yield rates of 5.53 and 29.3 mg h-1 mgcat. -1 with 98.2% and 86.2% Faradic efficiency in 0.1 m Na2 SO4 solution with 10 and 100 mm KNO3 , respectively, which are higher than those obtained for most of the reported catalysts under similar conditions. Both the experimental results and density functional theory calculations reveal that the interface effect between Cu/MnOx interface could reduce the free energy of rate determining step and suppress the hydrogen evolution reaction, leading to the enhanced catalytic activity and selectivity. This work provides an approach to design advanced materials for NH3 production via electrochemical nitrate reduction.
Collapse
Affiliation(s)
- Yuhuan Cui
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Anqi Dong
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yitong Zhou
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yanbin Qu
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Ming Zhao
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zhili Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
16
|
Zheng X, Yan Y, Li X, Liu Y, Yao Y. Theoretical insights into dissociative-associative mechanism for enhanced electrochemical nitrate reduction to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130679. [PMID: 36580786 DOI: 10.1016/j.jhazmat.2022.130679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The development of electrochemical nitrate reduction reaction (NO3RR) is a "two birds-one stone" method, which can not only remove NO3- pollutant, but also produce valuable ammonia (NH3). However, a mechanistic understanding of the nitrate reduction process remains very limited. Herein, we highlighted a dissociative-associative mechanism for the NO3RR, in which the N-O bond of nitrate is initially broken to form *O and *NO2 intermediate adsorbed on two active sites (dissociation process) and then subsequently hydrogenated and reduced to ammonia (association process). By taking a series of diatomic site catalysts (CuTM/g-CN and CuTM/N6C, TM= Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as models, we systematically investigate the dissociative-associative mechanism for the NO3RR and compared with the Cu-based single-atom catalysts which follows the traditional directly associative mechanism. Density functional theory (DFT) calculations show that dissociative-associative mechanism is energetically favorable on seven catalysts (CuTi/g-CN, CuV/g-CN, CuMn/g-CN, CuCo/g-CN, CuV/N6C, CuCr/N6C and CuFe/N6C) with the significantly reduced limiting potential of - 0.14 V to - 0.47 V. Specifically, an efficiently screening strategy was proposed to determine the dissociative-associative or directly associative mechanism for NO3RR. This work can provide useful guideline for the rational design and development of NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Xiaonan Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China; College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yu Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xiaoxiao Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yang Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
17
|
Zhao X, Chen J, Bi Z, Chen S, Feng L, Zhou X, Zhang H, Zhou Y, Wågberg T, Hu G. Electron Modulation and Morphology Engineering Jointly Accelerate Oxygen Reaction to Enhance Zn-Air Battery Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205889. [PMID: 36683169 PMCID: PMC10015884 DOI: 10.1002/advs.202205889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Combining morphological control engineering and diatomic coupling strategies, heteronuclear FeCo bimetals are efficiently intercalated into nitrogen-doped carbon materials with star-like to simultaneously accelerate oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The half-wave potential and kinetic current density of the ORR driven by FeCoNC/SL surpass the commercial Pt/C catalyst. The overpotential of OER is as low as 316 mV (η10 ), and the mass activity is at least 3.2 and 9.4 times that of mononuclear CoNC/SL and FeNC/SL, respectively. The power density and specific capacity of the Zn-air battery with FeCoNC/SL as air cathode are as high as 224.8 mW cm-2 and 803 mAh g-1 , respectively. Morphologically, FeCoNC/SL endows more reactive sites and accelerates the process of oxygen reaction. Density functional theory reveals the active site of the heteronuclear diatomic, and the formation of FeCoN5C configuration can effectively tune the d-band center and electronic structure. The redistribution of electrons provides conditions for fast electron exchange, and the change of the center of the d-band avoids the strong adsorption of intermediate species to simultaneously take into account both ORR and OER and thus achieve high-performance Zn-air batteries.
Collapse
Affiliation(s)
- Xue Zhao
- National Engineering Research Center for Marine AquacultureMarine Science and Technology CollegeZhejiang Ocean UniversityZhoushan316004China
| | - Jianbing Chen
- Research Academy of Non‐metallic Mining Industry DevelopmentMaterials and Environmental Engineering CollegeChizhou UniversityChizhou247000China
| | - Zenghui Bi
- Institute for Ecological Research and Pollution Control of Plateau LakesSchool of Ecology and Environmental ScienceYunnan UniversityKunming650504China
| | - Songqing Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ligang Feng
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xiaohai Zhou
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Haibo Zhang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Yingtang Zhou
- National Engineering Research Center for Marine AquacultureMarine Science and Technology CollegeZhejiang Ocean UniversityZhoushan316004China
| | | | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau LakesSchool of Ecology and Environmental ScienceYunnan UniversityKunming650504China
| |
Collapse
|
18
|
Wang C, Zhang Y, Luo H, Zhang H, Li W, Zhang WX, Yang J. Iron-Based Nanocatalysts for Electrochemical Nitrate Reduction. SMALL METHODS 2022; 6:e2200790. [PMID: 36103612 DOI: 10.1002/smtd.202200790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Nitrate has a high level of stability and persistence in water, endangering human health and aquatic ecosystems. Due to its high reliability and efficiency, the electrochemical nitrate reduction reaction (NO3 RR) is regarded as the best available option for mitigating excess nitrate in water and wastewater, especially for the removal of trace levels of nitrate. One of the most critical factors in the electrochemical reduction are the catalysts, which directly affect the reaction efficiency of nitrate removal. Iron-based nanocatalysts, which have the advantages of nontoxicity, wide availability, and low cost, have emerged as a promising electrochemical NO3 RR material in recent years. This review covers major aspects of iron-based nanocatalysts for electrochemical NO3 RR, including synthetic methods, structural design, performance enhancement, electrocatalytic nitrate reduction test, and reduction mechanism. The recent progress of iron-based nanocatalysts for electrochemical NO3 RR and the mechanism of functional advantages for modified structures are reviewed from the perspectives of loading, doping, and assembly strategies, in order to realize the conversion from pollutant nitrate to harmless nitrogen or ammonia and other sustainable products. Finally, challenges and future directions for the development of low-cost and highly-efficient iron-based nanocatalysts are explored.
Collapse
Affiliation(s)
- Chuqi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingbing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hongxia Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Wei-Xian Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
19
|
Zhao X, Jia X, Zhang H, Zhou X, Chen X, Wang H, Hu X, Xu J, Zhou Y, Zhang H, Hu G. Atom-dispersed copper and nano-palladium in the boron-carbon-nitrogen matric cooperate to realize the efficient purification of nitrate wastewater and the electrochemical synthesis of ammonia. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128909. [PMID: 35452986 DOI: 10.1016/j.jhazmat.2022.128909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical nitrate reduction reaction (NIRR) driven by sustainable energy is not only expected to realize the green production of ammonia under ambient conditions, but also a promising way to purify nitrate wastewater. The ammonia yield rate and Faradaic efficiency of NIRR catalyzed by Pd10Cu/BCN constructed with structural constraints and pre-embedded reducing agent strategies were as high as 102,153 μg h-1 mgcat.-1 and 91.47%, respectively. Pd10Cu/BCN can remove nearly 100% of 50 mg L-1 NO3- without NO2- residue within 10 h, and the realization of this effect does not require the participation of any chloride. Control experiments and DFT calculations explain the efficient operation mechanism of NIRR on Pd10Cu/BCN, where the Pd and CuN4 sites play the role of synergistic catalysis. Compared with the reported literature, Pd10Cu/BCN with good biocompatibility has become an outstanding representative of NIRR catalyst, which provides an alternative way for the green production of ammonia and the purification of nitrate wastewater.
Collapse
Affiliation(s)
- Xue Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaohai Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
20
|
Peng Y, Li M, Jia X, Su J, Zhao X, Zhang S, Zhang H, Zhou X, Chen J, Huang Y, Wågberg T, Hu G. Cu Nanoparticle-Decorated Boron-Carbon-Nitrogen Nanosheets for Electrochemical Determination of Chloramphenicol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28956-28964. [PMID: 35704422 DOI: 10.1021/acsami.2c06729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present work, irregular Cu nanoparticle-decorated boron-carbon-nitrogen (Cu-BCN) nanosheets were successfully synthesized. A Cu-BCN dispersion was deposited on a bare glassy carbon electrode (GCE) to prepare an electrochemical sensor (Cu-BCN/GCE) for the detection of chloramphenicol (CAP) in the environment. Cu-BCN was characterized using high-resolution scanning transmission electron microscopy (HRSTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). The performance of the Cu-BCN/GCE was studied using electrochemical impedance spectroscopy (EIS), and its advantages were proven by electrode comparison. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions, including the amount of Cu-BCN deposited, enrichment potential, deposition time, and pH of the electrolyte. A linear relationship between the CAP concentration and current response was obtained under the optimized experimental conditions, with a wide linear range and a limit of detection (LOD) of 2.41 nmol/L. Cu-BCN/GCE exhibited high stability, reproducibility, and repeatability. In the presence of various organic and inorganic species, the influence of the Cu-BCN-based sensor on the current response of CAP was less than 5%. Notably, the prepared sensor exhibited excellent performance in real-water samples, with satisfactory recovery.
Collapse
Affiliation(s)
- Yan Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Meng Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jianru Su
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xue Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohai Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Yimin Huang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| |
Collapse
|
21
|
Wang G, Shen P, Luo Y, Li X, Li X, Chu K. A vacancy engineered MnO 2-x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Trans 2022; 51:9206-9212. [PMID: 35662293 DOI: 10.1039/d2dt01431a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NO3- reduction reaction (NO3RR) has recently emerged as a potential approach for sustainable and efficient NH3 production, whereas exploring high-performance NO3RR electrocatalysts is highly desirable yet challenging. Herein, we attempted to construct O-vacancies (OVs) on MnO2 nanosheets and the resulting OV-rich MnO2-x showed a high NH3 yield of 3.34 mg h-1 cm-2 (at -1.0 V vs. RHE) and an excellent FE of 92.4% (at -0.9 V vs. RHE), together with the outstanding stability. DFT calculations reveal that OVs on MnO2 serve as catalytic centers to enhance NO3- adsorption and dissociation, reduce the energy barriers of hydrogenation steps and thus promote NO3--to-NH3 conversion.
Collapse
Affiliation(s)
- Guohui Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Yaojing Luo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
22
|
Chen K, Luo Y, Shen P, Liu X, Li X, Li X, Chu K. Boosted nitrate electroreduction to ammonia on Fe-doped SnS 2 nanosheet arrays rich in S-vacancies. Dalton Trans 2022; 51:10343-10350. [PMID: 35708159 DOI: 10.1039/d2dt01542k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) not only holds great potential for the removal of NO3- contaminants from the environment, but also potentially provides a renewable-energy-driven NH3 synthesis method to replace the Haber-Bosch process. Herein, we report that Fe-doped SnS2 nanosheets enriched with S-vacancies can be used as an efficient NO3RR catalyst, showing a high NH3 yield of 7.2 mg h-1 cm-2 (at -0.8 V) and a faradaic efficiency of 85.6% (at -0.7 V). Density functional theory (DFT) calculations revealed that S-vacancies on Fe-SnS2 serve as the main active sites for the NO3RR and the Fe-doping can further regulate the electronic structure of S-vacancies to optimize the binding energies of NO3RR intermediates, resulting in reduced energy barriers and enhanced NO3RR activity.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Yaojing Luo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaoxu Liu
- College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
23
|
Xu M, Xie Q, Duan D, Zhang Y, Zhou Y, Zhou H, Li X, Wang Y, Gao P, Ye W. Atomically Dispersed Cu Sites on Dual-Mesoporous N-Doped Carbon for Efficient Ammonia Electrosynthesis from Nitrate. CHEMSUSCHEM 2022; 15:e202200231. [PMID: 35384362 DOI: 10.1002/cssc.202200231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The industrial Haber-Bosch process for ammonia synthesis is extremely important in modern society. However, it is energy intensive and leads to severe pollution, which has motivated eco-friendly NH3 synthesis research. Electroreduction of contaminant nitrate ions back to NH3 is an effective complement but is still limited by low NH3 yields and nitrate-to-NH3 selectivities. In this study, the electrochemical nitrate reduction reaction (NTRR) is carried out over a single-atom Cu catalyst. Atomically dispersed Cu sites anchored on dual-mesoporous N-doped carbon framework display excellent NTRR performance with NH3 production rate of 13.8 mol NH 3 gcat -1 h-1 and NO3 - -to-NH3 faradaic efficiency (FE) of 95.5 % at -1.0 V. Cu-N-C catalyst can sustain continuous 120 h NTRR test in the simulated NH3 synthesis scenarios with large current density (about 200 mA cm-2 ) and amplified volume of NO3 - solution (9 times). Theoretical calculations reveal that atomically dispersed Cu1 -N4 sites reduce the energy barrier of potential-determining step in NTRR and promote the decomposition of primary intermediate in NO3 - -to-N2 process. These findings provide a guideline for the rational design of highly active, selective and durable electrocatalysts for the NTRR.
Collapse
Affiliation(s)
- Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Qifan Xie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Delong Duan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ye Zhang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Yuhu Zhou
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Haiqiao Zhou
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Xiaoyu Li
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|