1
|
Jiang R, Luo G, Chen G, Lin Y, Tong L, Huang A, Zheng Y, Shen Y, Huang S, Ouyang G. Boosting the photocatalytic decontamination efficiency using a supramolecular photoenzyme ensemble. SCIENCE ADVANCES 2024; 10:eadp1796. [PMID: 39259803 PMCID: PMC11389788 DOI: 10.1126/sciadv.adp1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Continuous industrialization has raised daunting environmental concerns, and there is an urgent need to develop a sustainable strategy to tackle the contamination issues. Here, we report a supramolecular photoenzyme ensemble enabling the harvest of solar energy to remove contaminations in water. The well-sourced oxidoreductase, laccase, is confined into a photoactive hydrogen-bonded organic framework (PHOF) through an in situ encapsulation method. The direct electron migration between the oxidation center in a PHOF and the reduction center in laccase facilitates synergistic photoenzyme-coupled catalysis, showing two orders of magnitude higher activity than free laccase for pollutant degradation under visible light, without the need for sacrificial agents or costly co-mediators. Such high decontamination efficiency also surpasses the reported catalysts. The structure and decontamination function of this supramolecular photoenzyme ensemble remain highly stable in complex environment matrices, presenting desirable reusability and almost 100% conversion efficiency of pollutants for real sewage samples. Our conceptual photoenzyme hybrid catalyst offers important insights into green and sustainable water decontamination.
Collapse
Affiliation(s)
- Ruifen Jiang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Gan Luo
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuhong Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Zheng
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Truong HB, Doan TTL, Hoang NT, Van Tam N, Nguyen MK, Trung LG, Gwag JS, Tran NT. Tungsten-based nanocatalysts with different structures for visible light responsive photocatalytic degradation of bisphenol A. J Environ Sci (China) 2024; 139:569-588. [PMID: 38105077 DOI: 10.1016/j.jes.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Environmental pollution, such as water contamination, is a critical issue that must be absolutely addressed. Here, three different morphologies of tungsten-based photocatalysts (WO3 nanorods, WO3/WS2 nanobricks, WO3/WS2 nanorods) are made using a simple hydrothermal method by changing the solvents (H2O, DMF, aqueous HCl solution). The as-prepared nanocatalysts have excellent thermal stability, large porosity, and high hydrophilicity. The results show all materials have good photocatalytic activity in aqueous media, with WO3/WS2 nanorods (NRs) having the best activity in the photodegradation of bisphenol A (BPA) under visible-light irradiation. This may originate from increased migration of charge carriers and effective prevention of electron‒hole recombination in WO3/WS2 NRs, whereby this photocatalyst is able to generate more reactive •OH and •O2- species, leading to greater photocatalytic activity. About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO3/WS2 NRs and 5.0 mg/L BPA at pH 7.0. Additionally, the optimal conditions (pH, catalyst dosage, initial BPA concentration) for WO3/WS2 NRs are also elaborately investigated. These rod-like heterostructures are expressed as potential catalysts with excellent photostability, efficient reusability, and highly active effectivity in different types of water. In particular, the removal efficiency of BPA by WO3/WS2 NRs reduces by only 1.5% after five recycling runs and even reaches 89.1% in contaminated lake water. This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources, which is advantageous to various applications in environmental remediation.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam, E-mail: (Hai Bang Truong); Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Thu Loan Doan
- The University of Da Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da Nang, Viet Nam
| | - Nguyen Tien Hoang
- The University of Da Nang, University of Science and Education, 459 Ton Duc Thang St., Lien Chieu, Da Nang 550000, Viet Nam
| | - Nguyen Van Tam
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam
| | - Minh Kim Nguyen
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam.
| | - Le Gia Trung
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
3
|
Zhao M, Cui H, Wang C, Song Q. Development of a 10-litre pilot scale micro-nano bubble (MNB)-enhanced photocatalytic system for wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2024:1-10. [PMID: 38471071 DOI: 10.1080/09593330.2024.2328660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
A 10-litre pilot scale micro-nano bubble (MNB)-enhanced photocatalytic degradation system was developed using ZnO as the photocatalyst and salicylic acid (SA) as the model pollutant. The effectiveness of the MNB/ZnO/UV system was systematically compared with those of MNB, UV, MNB/UV, MNB/ZnO and ZnO/UV degradation systems. The effects of process parameters, including catalyst dosage, pollutant concentration, air-intake rate, pH and salt content on the degradation of SA, were comprehensively investigated. Optimum performance was obtained at neutral conditions with a catalyst dosage of 0.3 g/L and an air-intake rate of 0.1 L/min. For the degradation of SA, a kinetic constant of 0.04126/min was achieved in the MNB/ZnO/UV system, which is 4.5 times greater than that obtained in the conventional ZnO/UV system. The substantial increase in the degradation rate can be attributed to that the air MNB not only enhanced the gas-liquid mass transfer efficiency but also elevated the concentration of dissolved oxygen. A 10-litre pilot scale MNB/ZnO/UV system was successfully applied to the purification of lake water and river water, demonstrating great application potential for wastewater treatment.
Collapse
Affiliation(s)
- Mengyu Zhao
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Haining Cui
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Chan Wang
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
4
|
Zulfiqar N, Nadeem R, Musaimi OAI. Photocatalytic Degradation of Antibiotics via Exploitation of a Magnetic Nanocomposite: A Green Nanotechnology Approach toward Drug-Contaminated Wastewater Reclamation. ACS OMEGA 2024; 9:7986-8004. [PMID: 38405456 PMCID: PMC10882661 DOI: 10.1021/acsomega.3c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
In the quest for eco-conscious innovations, this research was designed for the sustainable synthesis of magnetite (Fe3O4) nanoparticles, using ferric chloride hexahydrate salt as a precursor and extract of Eucalyptus globulus leaves as both a reducing and capping agent, which are innovatively applied as a photocatalyst for the photocatalytic degradation of antibiotics "ciprofloxacin and amoxicillin". Sugar cane bagasse biomass, sugar cane bagasse pyrolyzed biochar, and magnetite/sugar cane bagasse biochar nanocomposite were also synthesized via environmentally friendly organized approaches. The optimum conditions for the degradation of ciprofloxacin and amoxicillin were found to be pH 6 for ciprofloxacin and 5 for amoxicillin, dosage of the photocatalyst (0.12 g), concentration (100 mg/L), and irradiation time (240 min). The maximum efficiencies of percentage degradation for ciprofloxacin and amoxicillin were found to be (73.51%) > (63.73%) > (54.57%) and (74.07%) > (61.55%) > (50.66%) for magnetic nanocomposites, biochar, and magnetic nanoparticles, respectively. All catalysts demonstrated favorable performance; however, the "magnetite/SCB biochar" nanocomposite exhibited the most promising results among the various catalysts employed in the photocatalytic degradation of antibiotics. Kinetic studies for the degradation of antibiotics were also performed, and notably, the pseudo-first-order chemical reaction showed the best results for the degradation of antibiotics. Through a comprehensive and comparative analysis of three unique photocatalysts, this research identified optimal conditions for efficient treatment of drug-contaminated wastewater, thus amplifying the practical significance of the findings. The recycling of magnetic nanoparticles through magnetic separation, coupled with their functional modification for integration into composite materials, holds significant application potential in the degradation of antibiotics.
Collapse
Affiliation(s)
- Noor Zulfiqar
- Department
of Chemistry, Faculty of Science, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Raziya Nadeem
- Department
of Chemistry, Faculty of Science, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Othman AI Musaimi
- School
of Pharmacy, Faculty of Medical Sciences, Newcastle upon Tyne NE1
7RU, U.K.
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
5
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
6
|
Singh K, Nancy, Bhattu M, Singh G, Mubarak NM, Singh J. Light-absorption-driven photocatalysis and antimicrobial potential of PVP-capped zinc oxide nanoparticles. Sci Rep 2023; 13:13886. [PMID: 37620547 PMCID: PMC10449794 DOI: 10.1038/s41598-023-41103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Toxic dyes in water bodies and bacterial pathogens pose serious global challenges to human health and the environment. Zinc oxide nanoparticles (ZnO NPs) demonstrate remarkable photocatalytic and antibacterial potency against reactive dyes and bacterial strains. In this work, PVP-ZnO NPs have been prepared via the co-precipitation method using polyvinylpyrrolidone (PVP) as a surfactant. The NPs' microstructure and morphology were studied using X-ray diffraction (XRD), having a size of 22.13 nm. High-resolution transmission electron microscope (HR-TEM) and field emission scanning electron microscopy (FESEM) analysis showed spherical-shaped PVP-ZnO NPs with sizer ranging from 20 to 30 nm. Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the hybrid nature of the NPs, and UV-Vis spectroscopy showed an absorption peak at 367 nm. The PVP-ZnO NPs exhibited high photocatalytic activity, achieving 88% and nearly 95% degradation of reactive red-141 azo dye with 10 mg and 20 mg catalyst dosages, respectively. The antibacterial properties of the NPs were demonstrated against Escherichia coli and Bacillus subtilis, with inhibition zones of 24 mm and 20 mm, respectively. These findings suggest that PVP-ZnO NPs can be effectively used for water treatment, targeting both dye and pathogenic contaminants.
Collapse
Affiliation(s)
- Karanpal Singh
- Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Nancy
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Gurjinder Singh
- Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India.
- Department of Electrical and Electronics & Communication Engineering, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
7
|
Raja A, Son N, Kang M. Graphene-based strontium niobate-zinc oxide heterojunction photocatalyst for effective reduction of hexavalent chromium. CHEMOSPHERE 2023; 331:138781. [PMID: 37119926 DOI: 10.1016/j.chemosphere.2023.138781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
A hydrothermal technique was employed to synthesize a Sr2Nb2O7-rGO-ZnO (SNRZ) ternary nanocatalyst, in which ZnO and Sr2Nb2O7 were deposited on reduced graphene oxide (rGO) sheets. The surface morphologies, optical properties, and chemical states, of the photocatalysts were characterized to understand their properties. The SNRZ ternary photocatalyst was superior over the reduction of Cr (VI) to harmless Cr (III) compared to the efficiencies obtained using bare, binary, and composite catalysts. The effects of various parameters, including the solution pH and weight ratio, on the photocatalytic reduction of Cr (VI) were investigated. The highest photocatalytic reduction performance (97.6%) was achieved at pH 4 and a reaction time of 70 min. Photoluminescence emission measurements were used to confirm efficient charge migration and separation across the SNRZ, which improved the reduction of Cr (VI). A feasible reduction mechanism for the SNRZ photocatalyst is proposed. This study presents an effective, inexpensive, non-toxic, and stable catalyst, for the reduction of Cr (VI) to Cr (III) using SNRZ ternary nanocatalysts.
Collapse
Affiliation(s)
- Annamalai Raja
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
8
|
Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. WATER, AIR, AND SOIL POLLUTION 2023; 234:349. [PMID: 37275322 PMCID: PMC10212744 DOI: 10.1007/s11270-023-06359-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Water pollution is a global issue as a consequence of rapid industrialization and urbanization. Organic compounds which are generated from various industries produce problematic pollutants in water. Recently, metal oxide (TiO2, SnO2, CeO2, ZrO2, WO3, and ZnO)-based semiconductors have been explored as excellent photocatalysts in order to degrade organic pollutants in wastewater. However, their photocatalytic performance is limited due to their high band gap (UV range) and recombination time of photogenerated electron-hole pairs. Strategies for improving the performance of these metal oxides in the fields of photocatalysis are discussed. To improve their photocatalytic activity, researchers have investigated the concept of doping, formation of nanocomposites and core-shell nanostructures of metal oxides. Rare-earth doped metal oxides have the advantage of interacting with functional groups quickly because of the 4f empty orbitals. More precisely, in this review, in-depth procedures for synthesizing rare earth doped metal oxides and nonocomposites, their efficiency towards organic pollutants degradation and sources have been discussed. The major goal of this review article is to propose high-performing, cost-effective combined tactics with prospective benefits for future industrial applications solutions.
Collapse
Affiliation(s)
- Harita Kumari
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Sonia
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rohit Ranga
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, 248009 India
| | - Seema Devi
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sourabh Sharma
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sandeep Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Parmod Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Suresh Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Ashok Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajesh Parmar
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
9
|
Akhter P, Shafiq I, Ali F, Hassan F, Rehman R, Shezad N, Ahmed A, Jamil F, Hussain M, Park YK. Montmorillonite-Supported BiVO4 nanocomposite: Synthesis, interface characteristics and enhanced photocatalytic activity for Dye-contaminated wastewater. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
10
|
Devi P, Singh J, Rehmaan H, Kaushik RD. Novel Aloe-Vera and allyl methacrylate-based antimicrobial copolymer nanoemulsion for coating: an in-situ approach. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
12
|
Jakhrani MA, Tahira A, Bhatti MA, Shah AA, Shaikh NM, Mari RH, Vigolo B, Emo M, Albaqami MD, Nafady A, Ibupoto ZH. A green approach for the preparation of ZnO@C nanocomposite using agave americana plant extract with enhanced photodegradation. NANOTECHNOLOGY 2022; 33:505202. [PMID: 36103847 DOI: 10.1088/1361-6528/ac91d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The present study demonstrates the crucial role of agave americana extract in enhancing the optical properties of zinc oxide (ZnO) through thermal treatment method. Various analytical and surface science techniques have been used to identify the morphology, crystalline structure, chemical composition, and optical properties, including scanning electron microscopy, x-ray diffraction, high resolution transmission electron microscopy (HRTEM), x-ray spectroscopy (EDS) and UV-visible spectroscopy techniques. The physical studies revealed the transformation of ZnO nanorods into nanosheets upon addition of an optimized amount of agave americana extract, which induced large amount of amorphous carbon deposited onto ZnO nanostructures as confirmed by HRTEM analysis. The use of increasing amount of americana extract has significantly reduced the average crystallite size of ZnO nanostructures. The resultant hybrid system of C@ZnO has produced a significant effect on the ultraviolet light-assisted photodegradation of malachite green (MG) dye. The photocatalyst dose was fixed at 10 mg for each study whereas the amount of agave americana extract and MG dye concentration are varied. The functionality of hybrid system was greatly enhanced when the amount of agave americana extract increased while dye concentration kept at lower level. Ultimately, almost 100% degradation efficiency was achieved via the prepared hybrid material, revealing combined contribution from synergy, stabilization of ZnO due to excess of carbon together with the high charge separation rate. The obtained results suggest that the driving role of agave americana extract for surface modification of photocatalyst can be considered for other nanostructured photocatalysts.
Collapse
Affiliation(s)
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | - Muhammad Ali Bhatti
- Center for Environmental Sciences University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | - Aqeel Ahmed Shah
- Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, Sindh, Pakistan
| | | | - Riaz Hussain Mari
- Institute of Physics, University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | | | - Mélanie Emo
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, 76080, Sindh, Pakistan
| |
Collapse
|
13
|
Dayana Priyadharshini S, Manikandan S, Kiruthiga R, Rednam U, Babu PS, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119377. [PMID: 35490997 DOI: 10.1016/j.envpol.2022.119377] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide can be used to store energy, as electrodes and purify industrial and domestic wastewater as photocatalysts and adsorbents because of its remarkable thermal, electrical, and chemical capabilities. Toward understanding graphene oxide (GO) based nanomaterials considering the background factors, the present review study investigated their characteristics, preparation methods, and characterization processes. The removal of contaminants from wastewater has recently been a focus of attention for materials based on GO. Progress in GO synthesis and surface modification has shown that they can be used to immobilize enzymes. It is possible to immobilize enzymes with varying characteristics on graphene-oxide-based substrates without sacrificing their functioning, thus developing a new environmental remediation platform utilizing nano biocatalysts. GO doping and co-doping with a variety of heterogeneous semiconductor-based metal oxides were included in a brief strategy for boosting GO efficiency. A high band-gap material was also explored as a possibility for immobilization, which shifts the absorption threshold to the visible range and increases photoactivity. For water treatment applications, graphene-based nanomaterials were used in Fenton reactions, photocatalysis, ozonation, photo electrocatalysis, photo-Fenton, and a combination of photon-Fenton and photocatalysis. Nanoparticles made from GO improved the efficiency of composite materials when used for their intended applications. As a result of the analysis, prospects and improvements are clear, especially when it comes to scaling up GO-based wastewater treatment technologies.
Collapse
Affiliation(s)
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - R Kiruthiga
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - Udayabhaskar Rednam
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
14
|
Saeed U, Jilani A, Iqbal J, Al-Turaif H. Reduced graphene oxide-assisted graphitic carbon nitride@ZnO rods for enhanced physical and photocatalytic degradation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Li Z, Li S, Li T, Gao X, Zhu L. Physiological and transcriptomic responses of Chlorella sorokiniana to ciprofloxacin reveal molecular mechanisms for antibiotic removal. iScience 2022; 25:104638. [PMID: 35800754 PMCID: PMC9254343 DOI: 10.1016/j.isci.2022.104638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Microalgae-based technology is an effective and environmentally friendly method for antibiotics-contaminated wastewater treatment. To assess the tolerance and removal ability of Chlorella sorokiniana to ciprofloxacin (CIP), this study comprehensively revealed the responses of C. sorokiniana to CIP exposure and its degradation processes through physiological and transcriptomic analyses. Although the photosynthetic system was inhibited, the growth of C. sorokiniana was not negatively affected by CIP. Dissolved organic matter was analyzed and indicated that humic-like substances were released to alleviate the stress of CIP. In addition, the maximum removal of CIP was 83.3% under 20 mg L-1 CIP exposure. HPLC-MS/MS and RNA-Seq analyses suggested that CIP could be bioaccumulated and biodegraded by C. sorokiniana through the reactions of hydroxylation, demethylation, ring cleavage, oxidation, dehydrogenation, and decarboxylation with the help of intracellular oxidoreductases, especially cytochrome P450. Collectively, this research shows that C. sorokiniana have a great potential for removing CIP from wastewater.
Collapse
Affiliation(s)
- Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Tianrui Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Xinxin Gao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| |
Collapse
|
16
|
Qi S, Zhang R, Zhang Y, Zhang K, Xu H. Degradation of Organic Dyes at High Concentration by Zn0.5Cd0.5S/MoS2 in Water: From Performance to Mechanism. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Zhao F, Wang Y, Shi Y, Dong Y, Liu X. MOF-5 derived ZnO-C nanoparticles combined with α-MnO 2 for efficient degradation of tetracycline under visible light. NEW J CHEM 2022. [DOI: 10.1039/d1nj06218b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional α-MnO2/ZnO-C (MZ) Z-scheme photocatalyst was synthesized by suit-growth of α-MnO2 on the surface of MOF-5 and pyrolysis of the organic components in a certain condition. The obtained photocatalysts...
Collapse
|
18
|
Mahdavi K, Zinatloo-Ajabshir S, Yousif QA, Salavati-Niasari M. Enhanced photocatalytic degradation of toxic contaminants using Dy 2O 3-SiO 2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. ULTRASONICS SONOCHEMISTRY 2022; 82:105892. [PMID: 34959201 PMCID: PMC8799595 DOI: 10.1016/j.ultsonch.2021.105892] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 05/05/2023]
Abstract
The present study is on the fabrication of new photocatalytic nanocomposites (Dy2O3-SiO2) employing a basic agent, tetraethylenepentamine (Tetrene), through a simple, efficient and, quick sonochemical approach. The features of the fabricated photocatalytic nanocomposite were examined employing a variety of microscopic and spectroscopic methods such as XRD, EDS, TEM, FTIR, DRS, and FESEM. The outcomes of morphological studies demonstrated that by proper tuning of sonication time and ultrasonic power (10 min and 400 W), a porous nanocomposite composed of sphere-shaped nanoparticles with a particle size in the range of 20 to 60 nm could be fabricated. The energy gap for the binary Dy2O3-SiO2 nanophotocatalyst was determined to be 3.41 eV, making these nanocomposite favorable for removing contaminants. The photocatalytic performance of the optimal nanocomposite sample was tested for photodecomposition of several contaminants including erythrosine, thymol blue, eriochrome black T, Acid Red 14, methyl orange, malachite green, and Rhodamine B. The binary Dy2O3-SiO2 nanophotocatalyst exhibited superior efficiency toward the decomposition of the studied contaminants. It was able to degrade the erythrosine pollutant more effectively (92.9%). Optimization studies for the photocatalytic decomposition of each contaminant demonstrated that the best performance could be achieved at a specific amount of contaminant and nanocatalyst. Trapping experiments illustrated that hydroxyl radicals were more effectively involved in the decomposition of contaminant molecules by Dy2O3-SiO2 nanophotocatalyst.
Collapse
Affiliation(s)
- Kamran Mahdavi
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan P. O. Box. 87317-51167, Iran
| | | | - Qahtan A Yousif
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan P. O. Box. 87317-51167, Iran.
| |
Collapse
|