1
|
Jafarzadeh A, Matta A, Moghadam SV, Vadde KK, Dessouky S, Hutchinson J, Kapoor V. Assessing the removal of heavy metals and polycyclic aromatic hydrocarbons and occurrence of metal resistance genes and antibiotic resistance genes in a stormwater bioretention system. CHEMOSPHERE 2024; 364:143043. [PMID: 39117084 DOI: 10.1016/j.chemosphere.2024.143043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Bioretention basins are extensively used in urban areas to manage stormwater by reducing peak flows and pollution. This study evaluated the performance of a bioretention basin in removing heavy metals, polycyclic aromatic hydrocarbons (PAHs), and oil and grease. Using droplet digital PCR (ddPCR), the presence of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) in the basin's soil was analyzed. The results indicated effective removal of Zn (67%), but higher concentration of Mg was observed at the outlet. Cu, Fe and Pb showed no significant differences in the in- and outflow concentrations. The system successfully removed 82% of influent PAHs. Soil samples collected in summer and fall revealed higher MRG abundance in summer, with copA being the most prevalent MRG (1.2-4.8 log10 copies/g soil). Among the ARGs, sul1 was consistently found throughout the basin (2.5-6.7 log10 copies/g soil), while tetW was detected primarily at the basin's start and end in the topsoil layer. Rubellimicrobium and Geobacter were identified as potential carriers of ARGs/MRGs. Although the concentration of metals in soil was not measured in the current study, these findings emphasize the need to understand heavy metal distribution and the occurrence of MRGs and ARGs in stormwater control systems to improve their design and effectiveness.
Collapse
Affiliation(s)
- Arash Jafarzadeh
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Akanksha Matta
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA; Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sina V Moghadam
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Samer Dessouky
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jeffrey Hutchinson
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
2
|
Lancaster E, Winston R, Martin J, Lee J. Urban stormwater green infrastructure: Evaluating the public health service role of bioretention using microbial source tracking and bacterial community analyses. WATER RESEARCH 2024; 259:121818. [PMID: 38815337 DOI: 10.1016/j.watres.2024.121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Bioretention cells (BRCs) control stormwater flow on-site during precipitation, reducing runoff and improving water quality through chemical, physical, and biological processes. While BRCs are effective in these aspects, they provide habitats for wildlife and may face microbial hazards from fecal shedding, posing a potential threat to human health and the nearby environment. However, limited knowledge exists regarding the ability to control microbial hazards (e.g., beyond using typical indicator bacteria) through stormwater biofiltration. Therefore, the purpose of this study is to characterize changes in the bacterial community of urban stormwater undergoing bioretention treatment, with the goal of assessing the public health implications of these green infrastructure solutions. Samples from BRC inflow and outflow in Columbus, Ohio, were collected post-heavy storms from October 2021 to March 2022. Conventional culture-based E. coli monitoring and microbial source tracking (MST) were conducted to identify major fecal contamination extent and its sources (i.e., human, canine, avian, and ruminant). Droplet digital polymerase chain reaction (ddPCR) was utilized to quantify the level of host-associated fecal contamination in addition to three antibiotic resistant genes (ARGs): tetracycline resistance gene (tetQ), sulfonamide resistance gene (sul1), and Klebsiella pneumoniae carbapenemase resistance gene (blaKPC). Subsequently, 16S rRNA gene sequencing was conducted to characterize bacterial community differences between stormwater BRC inflow and outflow. Untreated urban stormwater reflects anthropogenic contamination, suggesting it as a potential source of contamination to waterbodies and urban environments. When comparing inlet and outlet BRC samples, urban stormwater treated via biofiltration did not increase microbial hazards, and changes in bacterial taxa and alpha diversity were negligible. Beta diversity results reveal a significant shift in bacterial community structure, while simultaneously enhancing the water quality (i.e., reduction of metals, total suspended solids, total nitrogen) of urban stormwater. Significant correlations were found between the bacterial community diversity of urban stormwater with fecal contamination (e.g. dog) and ARG (sul1), rainfall intensity, and water quality (hardness, total phosphorous). The study concludes that bioretention technology can sustainably maintain urban microbial water quality without posing additional public health risks, making it a viable green infrastructure solution for heavy rainfall events exacerbated by climate change.
Collapse
Affiliation(s)
- Emma Lancaster
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Jay Martin
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Koner S, Chen JS, Hseu ZY, Chang EH, Chen KY, Asif A, Hsu BM. An inclusive study to elucidation the heavy metals-derived ecological risk nexus with antibiotic resistome functional shape of niche microbial community and their carbon substrate utilization ability in serpentine soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121688. [PMID: 38971059 DOI: 10.1016/j.jenvman.2024.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Heavy metals (HMs) contained terrestrial ecosystems are often significantly display the antibiotic resistome in the pristine area due to increasing pressure from anthropogenic activity, is complex and emerging research interest. This study investigated that impact of chromium (Cr), nickel (Ni), cobalt (Co) concentrations in serpentine soil on the induction of antibiotic resistance genes and antimicrobial resistance within the native bacterial community as well as demonstrated their metabolic fingerprint. The full-length 16S-rRNA amplicon sequencing observed an increased abundance of Firmicutes, Actinobacteriota, and Acidobacteriota in serpentine soil. The microbial community in serpentine soil displayed varying preferences for different carbon sources, with some, such as carbohydrates and carboxylic acids, being consistently favored. Notably, 27 potential antibiotic resistance opportunistic bacterial genera have been identified in different serpentine soils. Among these, Lapillicoccus, Rubrobacter, Lacibacter, Chloroplast, Nitrospira, Rokubacteriales, Acinetobacter, Pseudomonas were significantly enriched in high and medium HMs concentrated serpentine soil samples. Functional profiling results illustrated that vancomycin resistance pathways were prevalent across all groups. Additionally, beta-lactamase, aminoglycoside, tetracycline, and vancomycin resistance involving specific bio-maker genes (ampC, penP, OXA, aacA, strB, hyg, aph, tet(A/B), otr(C), tet(M/O/Q), van(A/B/D), and vanJ) were the most abundant and enriched in the HMs-contaminated serpentine soil. Overall, this study highlighted that heavy-metal enriched serpentine soil is potential to support the proliferation of bacterial antibiotic resistance in native microbiome, and might able to spread antibiotic resistance to surrounding environment.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ed-Haun Chang
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Beitou, Taipei, Taiwan
| | - Kuang-Ying Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
4
|
Gillieatt BF, Coleman NV. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol Rev 2024; 48:fuae017. [PMID: 38897736 PMCID: PMC11253441 DOI: 10.1093/femsre/fuae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The co-selective pressure of heavy metals is a contributor to the dissemination and persistence of antibiotic resistance genes in environmental reservoirs. The overlapping range of antibiotic and metal contamination and similarities in their resistance mechanisms point to an intertwined evolutionary history. Metal resistance genes are known to be genetically linked to antibiotic resistance genes, with plasmids, transposons, and integrons involved in the assembly and horizontal transfer of the resistance elements. Models of co-selection between metals and antibiotics have been proposed, however, the molecular aspects of these phenomena are in many cases not defined or quantified and the importance of specific metals, environments, bacterial taxa, mobile genetic elements, and other abiotic or biotic conditions are not clear. Co-resistance is often suggested as a dominant mechanism, but interpretations are beset with correlational bias. Proof of principle examples of cross-resistance and co-regulation has been described but more in-depth characterizations are needed, using methodologies that confirm the functional expression of resistance genes and that connect genes with specific bacterial hosts. Here, we comprehensively evaluate the recent evidence for different models of co-selection from pure culture and metagenomic studies in environmental contexts and we highlight outstanding questions.
Collapse
Affiliation(s)
- Brodie F Gillieatt
- School of Life and Environmental Sciences, The University of Sydney, F22 - LEES Building, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, 6 Wally’s Walk, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
5
|
Bodus B, O'Malley K, Dieter G, Gunawardana C, McDonald W. Review of emerging contaminants in green stormwater infrastructure: Antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167195. [PMID: 37777137 DOI: 10.1016/j.scitotenv.2023.167195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Green stormwater infrastructure is a growing management approach to capturing, infiltrating, and treating runoff at the source. However, there are several emerging contaminants for which green stormwater infrastructure has not been explicitly designed to mitigate and for which removal mechanisms are not yet well defined. This is an issue, as there is a growing understanding of the impact of emerging contaminants on human and environmental health. This paper presents a review of five emerging contaminants - antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature - and seeks to improve our understanding of how green stormwater infrastructure is impacted by and can be designed to mitigate these emerging contaminants. To do so, we present a review of the source and transport of these contaminants to green stormwater infrastructure, specific treatment mechanisms within green infrastructure, and design considerations of green stormwater infrastructure that could lead to their removal. In addition, common removal mechanisms across these contaminants and limitations of green infrastructure for contaminant mitigation are discussed. Finally, we present future research directions that can help to advance the use of green infrastructure as a first line of defense for downstream water bodies against emerging contaminants of concern.
Collapse
Affiliation(s)
- Benjamin Bodus
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Kassidy O'Malley
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Greg Dieter
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Charitha Gunawardana
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Walter McDonald
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| |
Collapse
|
6
|
Lin Z, Lu P, Wang R, Liu X, Yuan T. Sulfur: a neglected driver of the increased abundance of antibiotic resistance genes in agricultural reclaimed subsidence land located in coal mines with high phreatic water levels. Heliyon 2023; 9:e14364. [PMID: 36994396 PMCID: PMC10040520 DOI: 10.1016/j.heliyon.2023.e14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the shallow burial of groundwater in coal mines with a high phreatic water level, a large area of subsidence lakes is formed after the mine collapses. Agricultural and fishery reclamation activities have been carried out, which introduced antibiotics and exacerbated the contamination of antibiotic resistance genes (ARGs), but this has received limited attention. This study analyzed ARG occurrence in reclaimed mining areas, the key impact factors, and the underlying mechanism. The results show that sulfur is the most critical factor impacting the abundance of ARGs in reclaimed soil, which is due to changes in the microbial community. The species and abundance of ARGs in the reclaimed soil were higher than those in the controlled soil. The relative abundances of most ARGs increased with the depth of reclaimed soil (from 0 to 80 cm). In addition, the microbial structures of the reclaimed and controlled soils were significantly different. Proteobacteria, was the most dominant microbial phylum in the reclaimed soil. This difference is likely related to the high abundance of sulfur metabolism functional genes in the reclaimed soil. Correlation analysis showed that the differences in ARGs and microorganisms in the two soil types were highly correlated with the sulfur content. High levels of sulfur promoted the proliferation of sulfur-metabolizing microbial populations such as Proteobacteria and Gemmatimonadetes in the reclaimed soils. Remarkably, these microbial phyla were the main antibiotic-resistant bacteria in this study, and their proliferation created conditions for the enrichment of ARGs. Overall, this study underscores the risk of the abundance and spread of ARGs driven by high-level sulfur in reclaimed soils and reveals the mechanisms.
Collapse
|
7
|
Hung WC, Adams N, Ibrahim-Watkins ZR, Nguyen D, Jain T, Wang YH, Jay JA. Incorporating field-based research into remote learning: An assessment of soil lead pollution in different land-use types in Los Angeles. ENVIRONMENTAL RESEARCH 2023; 216:114480. [PMID: 36206923 DOI: 10.1016/j.envres.2022.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A research-based course was developed to investigate the legacy of soil lead (Pb) pollution in Los Angeles, California. During the course, undergraduate and graduate students collected a total of 270 soil samples for analyses of metal (loid) concentrations in different land-use types (residential, park, and school). Residential soils had significantly higher Pb concentrations than other land uses (p < 0.01) exceeding the California recommended safety level for soil Pb (80 mg/kg) at the highest frequency (64% of samples), followed by schools (42%) and parks (6.0%). Soil Pb from all 87 census block groups was correlated with battery recycling plant and railroad proximity as geospatial indicators of childhood Pb exposure risk. Meanwhile, census block groups with higher Pb levels were correlated with higher percentages of the following population: those without health insurance, without college degrees, with a lower median household income and income below the poverty line, and ethnic and racial minorities (r = -0.46 to 0.59, p < 0.05). Principal component regression models significantly improved soil Pb estimation over correlation analysis by incorporating sociodemographic, economic, and geospatial risk factors for Pb exposure (R2 = 0.58, p < 0.05). This work provides new insights into how topsoil Pb prevails in various land-use types and their co-occurring sociodemographic, economic, and geospatial risk factors, indicating the need for multi-scalar assessment across urban land uses.
Collapse
Affiliation(s)
- Wei-Cheng Hung
- Department of Civil and Environmental Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Naomi Adams
- Department of Civil and Environmental Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Zanobia R Ibrahim-Watkins
- Department of Civil and Environmental Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Dorothy Nguyen
- Department of Civil and Environmental Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Tricia Jain
- Department of Civil and Environmental Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu-Han Wang
- Institute of Transportation Studies, University of California-Irvine, Irvine, CA, 92697, USA
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Rugh MB, Grant SB, Hung WC, Jay JA, Parker EA, Feraud M, Li D, Avasarala S, Holden PA, Liu H, Rippy MA, Werfhorst LCVD, Kefela T, Peng J, Shao S, Graham KE, Boehm AB, Choi S, Mohanty SK, Cao Y. Highly variable removal of pathogens, antibiotic resistance genes, conventional fecal indicators and human-associated fecal source markers in a pilot-scale stormwater biofilter operated under realistic stormflow conditions. WATER RESEARCH 2022; 219:118525. [PMID: 35533621 DOI: 10.1016/j.watres.2022.118525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Green stormwater infrastructure systems, such as biofilters, provide many water quality and other environmental benefits, but their ability to remove human pathogens and antibiotic resistance genes (ARGs) from stormwater runoff is not well documented. In this study, a field scale biofilter in Southern California (USA) was simultaneously evaluated for the breakthrough of a conservative tracer (bromide), conventional fecal indicators, bacterial and viral human-associated fecal source markers (HF183, crAssphage, and PMMoV), ARGs, and bacterial and viral pathogens. When challenged with a 50:50 mixture of untreated sewage and stormwater (to mimic highly contaminated storm flow) the biofilter significantly removed (p < 0.05) 14 of 17 microbial markers and ARGsin descending order of concentration reduction: ermB (2.5 log(base 10) reduction) > Salmonella (2.3) > adenovirus (1.9) > coliphage (1.5) > crAssphage (1.2) > E. coli (1.0) ∼ 16S rRNA genes (1.0) ∼ fecal coliform (1.0) ∼ intl1 (1.0) > Enterococcus (0.9) ∼ MRSA (0.9) ∼ sul1 (0.9) > PMMoV (0.7) > Entero1A (0.5). No significant removal was observed for GenBac3, Campylobacter, and HF183. From the bromide data, we infer that 0.5 log-units of attenuation can be attributed to the dilution of incoming stormwater with water stored in the biofilter; removal above this threshold is presumably associated with non-conservative processes, such as physicochemical filtration, die-off, and predation. Our study documents high variability (>100-fold) in the removal of different microbial contaminants and ARGs by a field-scale stormwater biofilter operated under transient flow and raises further questions about the utility of human-associated fecal source markers as surrogates for pathogen removal.
Collapse
Affiliation(s)
- Megyn B Rugh
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Stanley B Grant
- Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, 9408 Prince William Street, Manassas VA 20110, USA; Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, VA 24061, USA
| | - Wei-Cheng Hung
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Emily A Parker
- Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, 9408 Prince William Street, Manassas VA 20110, USA
| | - Marina Feraud
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Dong Li
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Sumant Avasarala
- Department of Chemical and Environmental Engineering, Bourns Hall A239, UC Riverside, Riverside, CA 92521, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, Bourns Hall A239, UC Riverside, Riverside, CA 92521, USA
| | - Megan A Rippy
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA; Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, VA 24061, USA
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Timnit Kefela
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Jian Peng
- Orange County Environmental Resources, 2301 North Glassell Street, Orange, CA 92865, USA
| | - Stella Shao
- GSI Environmental Inc., 19200 Von Karman Ave, St 800, Irvine, CA 92612, USA
| | - Katherine E Graham
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel Choi
- Orange County Sanitation District, 10844 Ellis Avenue, Fountain Valley, CA 92708, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Yiping Cao
- Orange County Sanitation District, 10844 Ellis Avenue, Fountain Valley, CA 92708, USA; Source Molecular Corporation, 15280 NW 79th 10 Court, St 107, Miami Lakes, FL 33016, USA.
| |
Collapse
|
9
|
Hung WC, Miao Y, Truong N, Jones A, Mahendra S, Jay J. Tracking antibiotic resistance through the environment near a biosolid spreading ground: Resistome changes, distribution, and metal(loid) co-selection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153570. [PMID: 35121038 DOI: 10.1016/j.scitotenv.2022.153570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The application of urban wastewater treatment plants (WWTPs) products to agricultural lands has contributed to the rising level of antibiotic resistance and drawn a critical public health concern. It has not been thoroughly investigated at which spatial scales a biosolid applied area as a potentially predominant source affects surrounding soil resistomes. This study investigated distribution and impact of WWTP biosolids treated with anaerobic digestion on an agricultural area. Heterotrophic plate counts (HPCs) and quantitative polymerase chain reaction (qPCR) were performed for detection of selected antibiotic-resistant bacteria (ARB), selected antibiotic resistance genes (ARGs), intI1 genes, and 16S rRNA genes. Biosolid samples contained significantly higher levels of selected ARGs than the raw agricultural soils (p < 0.05). The average relative abundances of intI1, sul1, blaSHV, and ermB genes were significantly higher in biosolid-amended soils than nearby agricultural soils (p < 0.05). Spatial interpolation analysis of relative gene abundances of intI1, sul1, sul2, and tetW across the studied area further indicated directional trends towards the northwest and southeast directions, highlighting possible airborne spread. Concentrations of Co, Cu, Ni, and Fe were found to be significantly and positively correlated with relative abundances of intI1, sul1, and tetW genes (p < 0.05). The resistance ratios of culturable antibiotic-resistant bacteria in agricultural soils with biosolid amendments were generally identical to those without biosolid amendments. This study will advance the understanding of the antibiotic resistome in agricultural soils impacted by long-term waste reuse and inform the evaluation strategies for future biosolids application and management.
Collapse
Affiliation(s)
- Wei-Cheng Hung
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Yu Miao
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Nhi Truong
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Adriane Jones
- Department of Biological Sciences, Mount Saint Mary's University, Los Angeles, CA 90049, USA
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Jennifer Jay
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Zuo X, Xu Q, Li Y, Zhang K. Antibiotic resistance genes removals in stormwater bioretention cells with three kinds of environmental conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128336. [PMID: 35091189 DOI: 10.1016/j.jhazmat.2022.128336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistance genes (ARGs) in stormwater runoff. However, there is still no available literature about ARGs removals through stormwater bioretention cells. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) removals under three environmental conditions, including substrate (weight ratios of sand to soil), hydraulic loading rate (HLR) and submerged area depth. The target ARGs removals were the largest (more than 5 log in the bottom outlets) in bioretention cells with 8:2 ratio of sand to soil, HLR 0.044 cm3/cm2/min and 150 mm of submerged area depth. The proportion for both iARGs and eARGs had little effect on target ARGs removals (expect extracellular blaTEM), although distributions of target ARGs were different in substrate layers. Adsorption behavior tests indicated that both kinetics and isotherms of target ARGs adsorption by biofilms were more suitable to explain their best removals for bioretention cells with 8:2 ratio of sand to soil than that by substrate. At phylum and genus levels, there were respectively 6 dominant microflora related significantly to target ARGs levels, and their relationships changed obviously under different environmental conditions, suggesting that regulating the dominant microflora (like Verrucomicrobia and Actinobacteria) could be feasible to change ARGs removals.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - QiangQiang Xu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yang Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - KeFeng Zhang
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| |
Collapse
|