1
|
Zhang Y, Chen Z, Wei S, Zhang Y, Fu H, Zhang H, Li D, Xie Z. Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform. EXPLORATION (BEIJING, CHINA) 2024; 4:20230128. [PMID: 39439495 PMCID: PMC11491307 DOI: 10.1002/exp.20230128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/07/2024] [Indexed: 10/25/2024]
Abstract
Real-time polymerase chain reaction (RT-PCR) remains the most prevalent molecular detection technology for sewage analysis but is plagued with numerous disadvantages, such as time consumption, high manpower requirements, and susceptibility to false negatives. In this study, an automated robot-driven photoelectrochemical (PEC) biosensing platform is constructed, that utilizes the CRISPR/Cas12a system to achieve fast, ultrasensitive, high specificity detection of biological loads in sewage. The Shennong-1 robot integrates several functional modules, involving sewage sampling and pretreatment to streamline the sewage monitoring. A screen-printed electrode is employed with a vertical graphene-based working electrode and enhanced with surface-deposited Au nanoparticles (NPs). CdTe/ZnS quantum dots (QDs) are further fabricated through the double-stranded DNA (dsDNA) anchored on Au NPs. Using the cDNA template of Omicron BA.5 spike gene as a model, the PEC biosensor demonstrates excellent analytical performance, with a lower detection limit of 2.93 × 102 zm and an outstanding selectivity at the level of single-base mutation recognition. Furthermore, the rapid, accurate detection of BA.5 in sewage demonstrates the feasibility of the PEC platform for sewage monitoring. In conclusion, this platform allows early detection and tracking of infectious disease outbreaks, providing timely data support for public health institutions to take appropriate prevention and control measures.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Zhi Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhenPeople's Republic of China
| | - Songrui Wei
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhenPeople's Republic of China
| | - Yujun Zhang
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Hai Fu
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhenPeople's Republic of China
| | - Defa Li
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
| | - Zhongjian Xie
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Shenzhen International Institute for Biomedical ResearchShenzhenPeople's Republic of China
| |
Collapse
|
2
|
Liu S, Meng S, Li Y, Dong N, Wei Y, Li Y, Liu D, You T. Integrated Photoelectrochemical-SERS Platform Based on Plasmonic Metal-Semiconductor Heterostructures for Multidimensional Charge Transfer Analysis and Enhanced Patulin Detection. ACS Sens 2024; 9:3377-3386. [PMID: 38783424 DOI: 10.1021/acssensors.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.
Collapse
Affiliation(s)
- Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuqing Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
3
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Song Y, Meng Y, Chen K, Huang G, Li S, Hu L. Novel electrochemical sensing strategy for ultrasensitive detection of tetracycline based on porphyrin/metal phthalocyanine-covalent organic framework. Bioelectrochemistry 2024; 156:108630. [PMID: 38147788 DOI: 10.1016/j.bioelechem.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
In this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex. An ultralow detection limit of 59.6 fM is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.1-100000 pM for TC. The CuTAPc-TFPP-COF-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and excellent applicability for real river water, milk, and pork samples. Therefore, the CuTAPc-TFPP-COF-based aptasensor will be promising for detecting trace harmful antibiotics residues in environmental water and food samples.
Collapse
Affiliation(s)
- Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| | - Yubo Meng
- School of Mechanical Engineering, Henan University of Engineering, Zhengzhou, 451191, PR China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Gailing Huang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Sizhuan Li
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Lijun Hu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| |
Collapse
|
5
|
Wang T, Zhang M, Lu Y, Liu Q, Niu Q, You T. Metal-organic-framework-confined quantum dots enhance photocurrent signals: A molecularly imprinted photoelectrochemical cathodic sensor for rapid and sensitive tetracycline detection. Anal Chim Acta 2024; 1293:342269. [PMID: 38331550 DOI: 10.1016/j.aca.2024.342269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Tetracycline (TC), a cost-effective broad-spectrum antibacterial drug, has been excessively utilized in the livestock and poultry industry, leading to a serious overabundance of TC in livestock wastewater. However, conventional analytical methods such as liquid chromatography and gas chromatography face challenges in achieving sensitive detection of trace amounts of TC in complex substrates. Therefore, it is imperative to develop a highly sensitive and anti-interference analytical method for the detection of tetracycline in livestock wastewater. RESULTS A porphyrin-based MOF (PCN-224)-confined carbon dots (CDs) material (CDs@PCN-224) was synthesized by a "bottle-around-ship" strategy. The reduced carrier migration distance is conducive to the separation of electron-hole pairs and enhanced the photocurrent signal due to the tight coupling of CDs and PCN-224. Further, molecularly imprinted polymer (MIP) was synthesized by rapid in-situ UV-polymerization and employed as a recognition element. The specific recognition of the target by imprinted cavities blocks electron transfer, resulting in a "turn off" response signal, thus realizing the selective detection of TC. Under optimal conditions, the constructed MIP-PEC cathodic sensor detected 1.00 × 10-12 M to 1.00 × 10-7 M of TC sensitively, with a limit of detection of 3.72 × 10-13 M. In addition, the proposed MIP-PEC sensor demonstrated good TC detection performance in actual livestock wastewater. SIGNIFICANCE The strategy based on MOF pore-confined quantum dots can effectively enhance the photocurrent response of the photosensitive substrate. Simultaneously, the MIP constructed by in-situ rapid UV-polymerization showed excellent anti-interference and reusable properties. This work provides a promising MIP-PEC cathodic sensing method for the rapid and sensitive detection of antibiotics in complex-matrix environmental samples.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mengge Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhao Lu
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
6
|
Feng X, Ding L, Zou Y, Heng H, Di K, Shao Z, Hao N, Wang K. A portable polymeric electrochromism-based visual biosensing device with distance readout. Chem Commun (Camb) 2024; 60:2200-2203. [PMID: 38299689 DOI: 10.1039/d3cc06316j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A distance-based visual electrochromic biosensing device is proposed. With this device, the naked eye is capable of discerning the distance of discoloration, which exhibits a positive correlation with the concentration of the detected substance.
Collapse
Affiliation(s)
- Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Yi Zou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Huadong Heng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Kezuo Di
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Zhiying Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information, Science & Technology, Nanjing 210044, P.R. China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
7
|
Liu Y, Dong N, Liu S, Meng S, Liu D, You T. Photoelectrochemical aptasensing with methylene blue filled Ni-MOFs nanocomposite by spatial confinement for microcystin-LR detection. Mikrochim Acta 2024; 191:108. [PMID: 38244133 DOI: 10.1007/s00604-024-06185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)-loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid-liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions. Benefiting from the uniform pore size, Ni-MOF acted as reaction platform to anchor the photosensitive molecule MB. The electron donor, ascorbic acid (AA), was produced by alkaline phosphatase (ALP) loaded on DNA strand catalyzing ascorbic acid phosphate. The generated AA was absorbed by Ni-MOF/MB, thereby effectively improving the utilization of AA and avoiding the external environment interferences to enlarge the photocurrent of MB. For analysis, ALP-labeled aptamer can specifically recognize MC-LR by forming a complex to strip from aptasensor, thus leading to a decreased photocurrent. The developed PEC aptasensor offered a linear range of 10 fM-100 pM with a detection limit of 6 fM. It was successfully employed for detecting MC-LR in farm water and fish meat, and the results were validated by ultrahigh-performance liquid chromatography-mass spectrometry. This method presents a new idea of MOF-limited domain for PEC aptasensing.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Liu Q, Guo Z, Hou X, Huang G, You T. Signal Modulation of Organic Photoelectrochemical Transistor by a Z-Scheme Photocathodic Gate: An Innovative Dual Amplification Strategy for Sensitive Aptasensing Application. Anal Chem 2023; 95:17108-17116. [PMID: 37948569 DOI: 10.1021/acs.analchem.3c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pursuing a more efficient signal amplification strategy is highly demanded for improving the performance of the promising cathodic photoelectrochemical (PEC) sensors. In this work, we present an extremely effective dual signal amplification strategy by the integration of a Z-scheme nanohybrids-based photocathode with the effective signal modulation of an organic photoelectrochemical transistor (OPECT) device. Specifically, photocathodic gate material of CdTe-BiOBr nanohybrids with a Z-scheme electron-transfer route was designed and synthesized for preliminary improvement of the activity of the photogate; afterward, signal modulation of the OPECT system by the photocathodic gate of CdTe-BiOBr was then accomplished for further signal amplification by 2 orders of magnitude. As a result, the output PEC signal of CdTe-BiOBr was enhanced by 17.5-fold as compared to BiOBr, and the channel current (IDS) of the OPECT device was 117-fold magnified than its gate current (IG) response. Exemplified by tetracycline (TC) as a model target and aptamer as the specific recognition element, a versatile cathodic aptasensing platform was constructed based on the proposed OPECT device. The introduced OPECT aptasensor merits advantages, including a good linear range (1.0 × 10-12 to 1.0 × 10-6 M), a low limit of detection (4.2 × 10-13 M), and superior sensitivity than the traditional PEC methods for TC detection, which represents a universal protocol for developing the innovative photocathodic OPECT sensing platform toward accurate analysis.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- CECEP Solar Energy Technology (Zhenjiang) Co., Ltd., Zhenjiang 212013, Jiangsu, China
| | - Zhijie Guo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuli Hou
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Guoping Huang
- CECEP Solar Energy Technology (Zhenjiang) Co., Ltd., Zhenjiang 212013, Jiangsu, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
9
|
Li W, Wang X, Chen L, Luo F, Guo L, Lin C, Wang J, Qiu B, Lin Z. A photoelectrochemical aptasensor for tetracycline based on the self-assembly of 2D MoS 2 on a 3D ZnO/Au/ITO electrode. Analyst 2023; 148:4995-5001. [PMID: 37728304 DOI: 10.1039/d3an01280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Two-dimensional (2D) layered MoS2 has good dispersion and adsorption properties, but being a narrow bandgap semiconductor limits its application in photoelectric sensing. In this study, a homogeneous photoelectrochemical sensor based on three-dimensional (3D) ZnO/Au/2D MoS2 is proposed for the ultrasensitive detection of tetracycline (TET). MoS2 is uniformly embedded on the 3D ZnO/Au surface by ordered self-assembly. The physical method of π-π interaction of MoS2 replaces the conventional use of chemically modifying aptamers on the electrode material surface. Under optimal conditions, this method has been successfully applied to the detection of TET in milk, honey, pig kidney and pork samples with reliable results. We believe that this study presents a method for the preparation of sensing carriers and target detection with great potential for application.
Collapse
Affiliation(s)
- Weixin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Xinyang Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
10
|
Yang P, Jiang H, Zhang H, Hou X, Gao X, Liu Q. Synergistic Signal Amplification-Initiated Innovative Self-Powered Photoelectrochemical Aptasensing: An Ingenious Photocathode Activated by the High-Light-Harvesting Photoanode. Anal Chem 2023; 95:7303-7311. [PMID: 37096866 DOI: 10.1021/acs.analchem.3c00337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Exploiting ingenious photoelectrodes and innovative signal amplification strategies has the potential to achieve high sensitivity in self-powered cathodic photoelectrochemical (PEC) analysis. In this work, a novel self-powered PEC sensing platform was constructed by integrating a synergistic signal amplification of an ingenious photocathode with a high light-harvesting photoanode. In the dual photoelectrode-based PEC system, the amplified photocurrent signals were induced by a synergistic enhancement: (1) the photocurrent of the BiOBr photocathode was improved by the incorporation of nitrogen-doped graphene; (2) the photocurrent of the self-powered sensor was activated by the high-light-harvesting Bi2S3-C3N4 photoanode. Subsequently, the rational mechanism for synergistic signal amplification was investigated. For the construction of the sensing interface, an aptamer was introduced as the recognition element to specifically capture the streptomycin (STR) target. Under optimal conditions, the constructed self-powered aptasensor has the merits of good linear range (1 × 10-11 to 5 × 10-7 M), acceptable limit of detection (1.18 × 10-12 M), and excellent stability and selectivity for STR detection. Additionally, the proposed self-powered aptasensor showed acceptable accuracy for the detection of STR in water. Hopefully, this might stimulate more interest in designing and constructing novel platforms for exquisite photocathodic monitoring of various contaminants in the environment.
Collapse
Affiliation(s)
- Peilin Yang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huihui Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hang Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiuli Hou
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Gao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
11
|
Azzouz A, Kumar V, Hejji L, Kim KH. Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnol Adv 2023; 66:108156. [PMID: 37084799 DOI: 10.1016/j.biotechadv.2023.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the covered aptasensing systems are classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL. Special attention has been paid to the fabrication processes, analytical achievements, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares, Jaén, Spain
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
12
|
Qureshi A, Shaikh T, Niazi JH. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications. Analyst 2023; 148:1633-1652. [PMID: 36880521 DOI: 10.1039/d2an01690g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Semiconductor quantum dots (QDs) are a promising class of nanomaterials for developing new photoelectrodes and photoelectrochemistry systems for energy storage, transfer, and biosensing applications. These materials have unique electronic and photophysical properties and can be used as optical nanoprobes in displays, biosensors, imaging, optoelectronics, energy storage and energy harvesting. Researchers have recently been exploring the use of QDs in photoelectrochemical (PEC) sensors, which involve exciting a QD-interfaced photoactive material with a flashlight source and generating a photoelectrical current as an output signal. The simple surface properties of QDs also make them suitable for addressing issues related to sensitivity, miniaturization, and cost-effectiveness. This technology has the potential to replace current laboratory practices and equipment, such as spectrophotometers, used for testing sample absorption and emission. Semiconductor QD-based PEC sensors offer simple, fast, and easily miniaturized sensors for analyzing a variety of analytes. This review summarizes the various strategies for interfacing QD nanoarchitectures for PEC sensing, as well as their signal amplification. PEC sensing devices, particularly those used for the detection of disease biomarkers, biomolecules (glucose, dopamine), drugs, and various pathogens, have the potential to revolutionize the biomedical field. This review discusses the advantages of semiconductor QD-based PEC biosensors and their fabrication methods, with a focus on disease diagnostics and the detection of various biomolecules. Finally, the review provides prospects and considerations for QD-based photoelectrochemical sensor systems in terms of their sensitivity, speed, and portability for biomedical applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Tayyaba Shaikh
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
13
|
Wu C, Deng H, Ding Q, Yuan R, Yuan Y. Au nano-flower/organic polymer heterojunction-based cathode photochemical biosensor with reduction-accelerated quenching effect of porphyrin manganese. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130510. [PMID: 36493645 DOI: 10.1016/j.jhazmat.2022.130510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
In this work, a novel reduction-accelerated quenching of manganese porphyrin (MnPP) based signal-off cathode photochemical (PEC) biosensor by using Au nano-flower/organic polymer (PTB7-Th) heterojunction as platform was proposed for ultrasensitive detection of Hg2+. Firstly, the photoactive PTB7-Th with Au nano-flower on electrode could form a typical Mott-Schottky heterojunction for acquiring an extremely high cathode signal. Meanwhile, the presence of target Hg2+ could bring in the formation of T-Hg2+-T based scissor-like DNA walker, which thus activated efficient Mg2+-specific DNAzyme based cleavage recycling to shear hairpin H2 on electrode to exposure abundant trigger sites of hybridization chain reaction (HCR) for in-situ decoration of quencher MnPP. Here, besides the steric hinderance and light competition effect of MnPP decorated DNA nanowires attributing to signal decrease, we for the first time testified the MnPP reduction-accelerated quenching that constantly consumed the photo-generated electron by using cyclic voltammetry (CV). As a result, the proposed biosensor had excellent sensitivity and selectivity to Hg2+ in the range of 1 fM-10 nM with a detection limit of 0.48 fM. The actual sample analysis showed that the biosensor could reliably and quantitatively identify Hg2+, indicating an excellent application prospect in routine detection.
Collapse
Affiliation(s)
- Chou Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hanmei Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
14
|
Jiang H, Liu Q, Zhang H, Yang P, You T. A self-powered photoelectrochemical oxytetracycline aptasensor: An integrated heterojunction photoanode of metal-organic framework derived ZnO nanopolyhedra/graphitic carbon nitride with high carrier density. J Colloid Interface Sci 2023; 632:35-43. [PMID: 36403375 DOI: 10.1016/j.jcis.2022.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
The development of effective strategies for the detection of oxytetracycline (OTC) in soil is of great importance for preserving agri-environmental safety and human health. Herein, a novel photoactive material of metal-organic framework (MOF) derived ZnO nanopolyhedra/graphitic carbon nitride (ZnO/g-C3N4) heterojunction was designed by mixing calcination of zeolite imidazole framework-8 (ZIF-8) and melamine. A self-powered photoelectrochemical aptasensor for the sensitive and selective detection of OTC in soil was proposed using ZnO/g-C3N4 as the photoanode. The photoactivity of the MOF derived ZnO nanopolyhedra was regulated effectively by the introduction of g-C3N4, which resulted in a 7-fold increase in the photocurrent of the ZnO nanopolyhedra at a bias potential of 0 V. It was assigned to the higher carrier density of ZnO/g-C3N4. By virtue of the amplified photocurrent of ZnO/g-C3N4, the specificity of the OTC aptamer and the anti-interference ability of the self-powered sensing method, the designed aptasensor demonstrated the advantages of a wide linear range (0.005-200 nM), low limit of detection (1.49 × 10-3 nM), good selectivity and good reproducibility. For real soil sample analysis, satisfactory recoveries were obtained and further verified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
Collapse
Affiliation(s)
- Huihui Jiang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hang Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peilin Yang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Photoelectrochemical aptasensor based on cascade dual Z-scheme CdTe-polyaniline@MoS2 heterostructure for the sensitive carbendazim detection. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Liang Z, Wen J, Zhou Y, Liu T, Dong J, Zheng W, Chang C, Xiao X, Liu Q, Zheng X. Comparative investigation of BiOCl0.5X0.5 (X= F, Br, and I) heterojunctions for solar-light driven photodegradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. SENSORS (BASEL, SWITZERLAND) 2022; 22:3684. [PMID: 35632093 PMCID: PMC9143886 DOI: 10.3390/s22103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance. Conventional methods of antibiotics detection such are microbiological assays chromatographic and mass spectroscopy methods are sensitive; however, they require qualified personnel, expensive instruments, and sample pretreatment. Biosensor technology can overcome these drawbacks. This review is focused on the recent achievements in the electrochemical biosensors based on nucleic acid aptamers for antibiotic detection. A brief explanation of conventional methods of antibiotic detection is also provided. The methods of the aptamer selection are explained, together with the approach used for the improvement of aptamer affinity by post-SELEX modification and computer modeling. The substantial focus of this review is on the explanation of the principles of the electrochemical detection of antibiotics by aptasensors and on recent achievements in the development of electrochemical aptasensors. The current trends and problems in practical applications of aptasensors are also discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Veronika Oravczova
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| |
Collapse
|
18
|
Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent advances and perspectives of g-C 3N 4-based materials for photocatalytic dyes degradation. CHEMOSPHERE 2022; 295:133834. [PMID: 35124079 DOI: 10.1016/j.chemosphere.2022.133834] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic degradation technology is regarded as a promising technology for dye-contained wastewater treatment due to its superior efficiency and recycling. The key to the implementation of photocatalytic degradation technology is the selection of sunlight-active photocatalyst. Graphitic carbon nitride (g-C3N4) photocatalyst has been put into a lot of research in the field of organic pollutant degradation because of its low cost, suitable electronic structure and high chemical stability. In this perspective review, we comprehensively discuss the recent advance of photocatalytic dyes degradation over g-C3N4-based materials. The properties, structure and preparation methods of g-C3N4 are briefly introduced. Furthermore, the progress in improving the degradation efficiency of g-C3N4-based photocatalyst is highlighted in the article. The possible pathways and different active species for dyes decomposition are also summarized. We expect this review can provide instructive application of g-C3N4-based catalysts for environmental remediation.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China; Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China.
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China; Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
20
|
Gavrilaș S, Ursachi CȘ, Perța-Crișan S, Munteanu FD. Recent Trends in Biosensors for Environmental Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:1513. [PMID: 35214408 PMCID: PMC8879434 DOI: 10.3390/s22041513] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 05/07/2023]
Abstract
The monitoring of environmental pollution requires fast, reliable, cost-effective and small devices. This need explains the recent trends in the development of biosensing devices for pollutant detection. The present review aims to summarize the newest trends regarding the use of biosensors to detect environmental contaminants. Enzyme, whole cell, antibody, aptamer, and DNA-based biosensors and biomimetic sensors are discussed. We summarize their applicability to the detection of various pollutants and mention their constructive characteristics. Several detection principles are used in biosensor design: amperometry, conductometry, luminescence, etc. They differ in terms of rapidity, sensitivity, profitability, and design. Each one is characterized by specific selectivity and detection limits depending on the sensitive element. Mimetic biosensors are slowly gaining attention from researchers and users due to their advantages compared with classical ones. Further studies are necessary for the development of robust biosensing devices that can successfully be used for the detection of pollutants from complex matrices without prior sample preparation.
Collapse
Affiliation(s)
| | | | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, Tourism and Environmental Protection, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.G.); (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
21
|
Chen G, Li Y, Miao Y, Liu B. Recent developments on bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomater Sci 2022; 10:5809-5830. [DOI: 10.1039/d2bm01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as...
Collapse
|
22
|
Zhang XJ, Ma YY, Bi HX, Yin XY, Song H, Liu MH, Han ZG. Wheel-shaped molybdenum( v) cobalt-phosphate cluster as a highly sensitive bifunctional photoelectrochemical sensor for the trace determination of Cr( vi) and tetracycline. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A wheel-shaped {Co16Mo16P24} cluster-based 3-D crystal framework serves as an efficient bifunctional photoelectrochemical sensor for the trace determination of Cr(vi) and tetracycline.
Collapse
Affiliation(s)
- Xiu-Juan Zhang
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Yuan-Yuan Ma
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hao-Xue Bi
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Xiao-Yu Yin
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hao Song
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Man-Hui Liu
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Zhan-Gang Han
- Hebei Key laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| |
Collapse
|