1
|
Sun H, Zhang H, Li L, Wen J, Li X, Mao H, Wang J. Environmental efficacy of polyethylene microplastics: Enhancing the solidification of CuO nanoparticles and reducing the physiological toxicity to peanuts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174206. [PMID: 38914321 DOI: 10.1016/j.scitotenv.2024.174206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Microplastics and metal-based nanoparticles (NPs) are environmental pollutants that have attracted significant attention. However, there have been relatively few studies on the combined pollution of these substances in the soil-plant system. To investigate the environmental impact and interaction mechanisms of these two pollutants, a pot experiment was conducted to examine the effects of soil exposure on peanut growth. The experiment results revealed that polyethylene (PE) had a minimal effect on peanut growth, while CuO NPs significantly inhibited peanut growth. Peanut biomass decreased by over 50 % in all Cu treatments. The presence of PE significantly impacted the dissolution and absorption of CuO NPs. When 0.5 % PE was present, the dissolution and transformation of CuO NPs were limited, resulting in a total Cu concentration of 458 mg/kg. Conversely, when 5 % PE was present, the dissolution and transformation of CuO NPs were promoted, leading to a DTPA-Cu concentration of 141 mg/kg, the highest level observed. The distribution of trace elements in peanut stems also responded to the differences in Cu concentration. Both pollutants significantly disrupted soil bacteria, with CuO NPs having a more pronounced effect than PE. Throughout the entire growth cycle of peanuts, no chemical adsorption occurred between PE and CuO NPs, and CuO NPs had no significant impact on the aging rate of PE. In summary, this study provides insights into the environmental impact and transport mechanisms of composite pollution involving microplastics and metal-based nanoparticles in the soil-peanut system.
Collapse
Affiliation(s)
- Hongda Sun
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Li
- No. 5 Exploration Institute of Geology and Mineral Resources, Tai'an, Shandong 271018, China
| | - Jinyu Wen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
2
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Huang Z, Lin M, Wang L, Dou L, Hou X, Zhang J, Huang Y, Wei L, An R, Wang D, Yao Y, Guo D, Li Z, Zhang Y. Bafi A1 inhibits nano-copper oxide-induced mitochondrial damage by reducing the release of copper from lysosomes. J Appl Toxicol 2024; 44:1257-1268. [PMID: 38700028 DOI: 10.1002/jat.4624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
This study demonstrated that both copper oxide nanoparticles (CuO-NPs) and copper nanoparticles (Cu-NPs) can cause swelling, inflammation, and cause damage to the mitochondria of alveolar type II epithelial cells in mice. Cellular examinations indicated that both CuO-NPs and Cu-NPs can reduce cell viability and harm the mitochondria of human bronchial epithelial cells, particularly Beas-2B cells. However, it is clear that CuO-NPs exhibit a more pronounced detrimental effect compared with Cu-NPs. Using bafilomycin A1 (Bafi A1), an inhibitor of lysosomal acidification, was found to enhance cell viability and alleviate mitochondrial damage caused by CuO-NPs. Additionally, Bafi A1 also reduces the accumulation of dihydrolipoamide S-acetyltransferase (DLAT), a marker for mitochondrial protein toxicity, induced by CuO-NPs. This observation suggests that the toxicity of CuO-NPs depends on the distribution of copper particles within cells, a process facilitated by the acidic environment of lysosomes. The release of copper ions is thought to be triggered by the acidic conditions within lysosomes, which aligns with the lysosomal Trojan horse mechanism. However, this association does not seem to be evident with Cu-NPs.
Collapse
Affiliation(s)
- Zhi Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Mo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Lei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Liangding Dou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Hou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Jinwen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yongchao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Lifang Wei
- Department of Nephrology, Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ran An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Zhibo Li
- The 5th Ward, Department of Internal Medicine, Anshan Tuberculosis Hospital, Anshan, China
| | - Yongxing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Gai X, Xing W, Chen G. Divergent responses of rhizosphere soil phosphorus fractions and biological features of Salix psammophila to fertilization strategies under cadmium contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172554. [PMID: 38657824 DOI: 10.1016/j.scitotenv.2024.172554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Soil oligotrophy in areas heavily contaminated with heavy metals poses a significant challenge to vegetation establishment and phytoremediation processes. Phosphorus (P) cycling plays a critical role in global biogeochemical cycles, but there is limited understanding of its response to varying fertilization strategies and its correlation with phytoremediation effectiveness. This study primarily investigated the effects of various fertilization strategies, including nitrogen (N, 300 mg·kg-1), P (100 mg·kg-1), NP (combined N and P at 300 mg·kg-1 and 100 mg·kg-1, respectively), and HP (high P, 300 mg·kg-1) application, on rhizosphere soil P fractions and P-solubilizing microbial community (harboring phoD and phoC genes, respectively) of Salix psammophila under cadmium contamination. Application of NP significantly enhanced plant growth and cadmium accumulation, whereas HP inhibited cadmium bioaccumulation but promoted its translocation. Compared to untreated soil, N application promoted P cycling, leading to increases of 141.9 %, 60.4 %, and 10.3 % in Resin-Pi, diluted HCl-Pi, and conc.HCl-Pi, respectively. P application decreased organic phosphorus (Po) fractions by 24.4 % - 225.8 %, but N incorporation mitigated the declining trend in Po and augmented alkaline phosphatase activity. Fertilization strategies significantly regulated phoC- or phoD-harboring bacterial community structure, but their differential nutrient demands resulted in distinct responses. The phoD-harboring bacteria exhibited higher diversity and network complexity, with numerous biomarkers and fertilizer-sensitive OTUs discovered across treatments. Structural equation modeling (SEM) analysis indicated that phytoremediation efficiency was directly affected by Pi fractions, and phoD-harboring bacteria exhibited stronger associations with Pi fractions than phoC-harboring bacteria. In conclusion, our results reveal potential pathways through which fertilization strategies influence phytoremediation by affecting the structure of P-solubilizing microbial community. Furthermore, our study emphasizes the importance of combined N and P application in promoting Cd accumulation in plants, with high P levels appearing as an ideal fertilization strategy for phytoremediation targeting the harvest of aboveground biomass.
Collapse
Affiliation(s)
- Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China.
| |
Collapse
|
5
|
Doku ET, Sylverken AA, Belford JDE. Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1212-1220. [PMID: 38214673 DOI: 10.1080/15226514.2024.2301994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Rhizospheric microbial communities improve the effectiveness of hyperaccumulators in the phytoremediation of heavy metals. However, limited access to tailing dams and inadequate assessment of plants' phytoremediation potential limit the characterization of native accumulators, hindering the effectiveness of local remediation efforts. This study evaluates the heavy metal sequestration potentials of Pennisetum purpureum, Leucaena leucocephala, and Pteris vittata and their associated rhizospheric microbial communities at the Marlu and Pompora tailing dams in Ghana. The results indicate shoot hyperaccumulation of Cd (334.5 ± 6.3 mg/kg) and Fe (10,647.0 ± 12.6 mg/kg) in P. purpureum and L. leucocephala, respectively. Analysis of rhizospheric bacterial communities revealed the impact of heavy metal contamination on bacterial community composition, associating Fe and Cd hyperaccumulation with Bacillus, Arthrobacter, and Sphingomonas species. This study reports the hyperaccumulation potentials of L. leucocephala and P. purpureum enhanced by associated rhizosphere bacterial communities, suggesting their potential application as an environmentally friendly remediation process of heavy metals contaminated lands.
Collapse
Affiliation(s)
- Emmanuel Tetteh Doku
- Department of Pharmaceutical Science, Sunyani Technical University, Sunyani, Ghana
| | | | - J D Ebenezer Belford
- Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
6
|
Gao J, Zhu Y, Zeng L, Liu X, Yang Y, Zhou Y. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121289. [PMID: 38820797 DOI: 10.1016/j.jenvman.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.
Collapse
Affiliation(s)
- Jieyu Gao
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
7
|
Shang C, Chen J, Nkoh JN, Wang J, Chen S, Hu Z, Hussain Q. Biochemical and multi-omics analyses of response mechanisms of rhizobacteria to long-term copper and salt stress: Effect on soil physicochemical properties and growth of Avicennia marina. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133601. [PMID: 38309159 DOI: 10.1016/j.jhazmat.2024.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Mangroves are of important economic and environmental value and research suggests that their carbon sequestration and climate change mitigation potential is significantly larger than other forests. However, increasing salinity and heavy metal pollution significantly affect mangrove ecosystem function and productivity. This study investigates the tolerance mechanisms of rhizobacteria in the rhizosphere of Avicennia marina under salinity and copper (Cu) stress during a 4-y stress period. The results exhibited significant differences in antioxidant levels, transcripts, and secondary metabolites. Under salt stress, the differentially expressed metabolites consisted of 30% organic acids, 26.78% nucleotides, 16.67% organic heterocyclic compounds, and 10% organic oxides as opposed to 27.27% organic acids, 24.24% nucleotides, 15.15% organic heterocyclic compounds, and 12.12% phenyl propane and polyketides under Cu stress. This resulted in differential regulation of metabolic pathways, with phenylpropanoid biosynthesis being unique to Cu stress and alanine/aspartate/glutamate metabolism and α-linolenic acid metabolism being unique to salt stress. The regulation of metabolic pathways enhanced antioxidant defenses, nutrient recycling, accumulation of osmoprotectants, stability of plasma membrane, and chelation of Cu, thereby improving the stress tolerance of rhizobacteria and A. marina. Even though the abundance and community structure of rhizobacteria were significantly changed, all the samples were dominated by Proteobacteria, Chloroflexi, Actinobacteriota, and Firmicutes. Since the response mechanisms were unbalanced between treatments, this led to differential growth trends for A. marina. Our study provides valuable inside on variations in diversity and composition of bacterial community structure from mangrove rhizosphere subjected to long-term salt and Cu stress. It also clarifies rhizobacterial adaptive mechanisms to these stresses and how they are important for mitigating abiotic stress and promoting plant growth. Therefore, this study can serve as a reference for future research aimed at developing long-term management practices for mangrove forests.
Collapse
Affiliation(s)
- Chenjing Shang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China
| | - Jiawen Chen
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Junjie Wang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Si Chen
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Quaid Hussain
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
8
|
Yan C, Li X, Huang J, Cao C, Ji X, Qian X, Wei Z. Long-term synergic removal performance of N, P, and CuO nanoparticles in constructed wetlands along with temporal record of Cu pollution in substrate-biofilm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121231. [PMID: 36754199 DOI: 10.1016/j.envpol.2023.121231] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
With continued exposure to CuO nanoparticles (NPs) which were toxic to organisms, the performance of wastewater treatment facility might be affected. In present study, the feasibility of constructed wetlands (CWs) for wastewater treatment containing CuO NPs and common pollutants was comprehensively explored. It was found that CWs removed 98.80-99.84% CuO NPs and 90.91-91.83% COD within 300 days. However, N and P removals were affected to varying degrees by CuO NPs. N removal was inhibited only by 0.5 mg/L CuO NPs with 19.75% decreases on the mean from day 200-300. P removal was reduced by 3.80-50.75% and 1.92-7.19% under exposure of 0.5 and 5 mg/L CuO NPs throughout the experiment. Moreover, CuO NPs changed the adsorption potential of P and ammonium-N on sand-biofilm. Cu concentrations in spatial distribution decreased, while they in temporal distribution increased from 36.94 to 97.78 μg/g and from 70.92 to 282.66 μg/g at middle sand layer exposed to 0.5 and 5 mg/L CuO NPs. Mass balance model showed that substrate-biofilm was main pollutant sink for CuO NPs, N, and P. The minor Cu was absorbed by plants exposed to 0.5 and 5 mg/L CuO NPs, which decreased N by 53.40% and 18.51%,and P by 52.35% and 21.62%. Sequencing analysis indicated that CuO NPs also altered spatial microbial community. N-degrading bacteria (Rhodanobacter, Thauera, Nitrospira) changed differently, while phosphate accumulation organisms (Acinetobacter, Pseudomonas, Microlunatus) reduced. Overall, the negative effects of CuO NPs on N and P removal should be noted when CWs as ecological technologies are used to treat CuO NPs-containing wastewater.
Collapse
Affiliation(s)
- Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Xuan Li
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210019, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoyu Ji
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Zhihui Wei
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
9
|
Di X, Fu Y, Xu Y, Zheng S, Huang Q, Sun Y. Assessment of CuO NPs on soil microbial community structure based on phospholipid fatty acid techniques and phytotoxicity of bok choy seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107657. [PMID: 36989987 DOI: 10.1016/j.plaphy.2023.107657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
In this study, a soil culture and a hydroponic experiment were conducted to assess the toxicology effects of copper oxide nanoparticles (CuO NPs) on soil microbial community structure and the growth of bok choy. Results showed CuO NPs had an inhibitory effect on soil microbial abundance, diversity, and activity, as well as the bok choy seedling growth, whereas CuO NPs at low concentrations did not significantly affect the soil microbial biomass or plant growth. In soil, CuO NPs at high dose (80 mg kg-1) significantly reduced the indexes of Simpson diversity, Shannon-Wiener diversity and Pielou evenness by 3.7%, 4.9% and 4.5%, respectively. In addition, CuO NPs at 20 and 80 mg kg-1 treatment significantly reduced soil enzymes (urease, alkaline phosphatase, dehydrogenase, and catalase) activities by 25.5%-58.9%. Further, CuO NPs at 20 mg L-1 significantly inhibited the growth of plant root by 33.8%, and catalase (CAT) activity by 17.9% in bok choy seedlings. The present study can provide a basis for a comprehensive evaluation of the toxicity effect of CuO NPs on soil microorganisms and phytotoxicity to bok choy seedlings.
Collapse
Affiliation(s)
- Xuerong Di
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Yutong Fu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing, 100125, China
| | - Qingqing Huang
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| |
Collapse
|
10
|
Rashid MI, Shah GA, Sadiq M, Amin NU, Ali AM, Ondrasek G, Shahzad K. Nanobiochar and Copper Oxide Nanoparticles Mixture Synergistically Increases Soil Nutrient Availability and Improves Wheat Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061312. [PMID: 36986999 PMCID: PMC10052822 DOI: 10.3390/plants12061312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
Recently, nanomaterials have received considerable attention in the agricultural sector, due to their distinctive characteristics such as small size, high surface area to volume ratio, and charged surface. These properties allow nanomaterials to be utilized as nanofertilizers, that can improve crop nutrient management and reduce environmental nutrient losses. However, after soil application, metallic nanoparticles have been shown to be toxic to soil biota and their associated ecosystem services. The organic nature of nanobiochar (nanoB) may help to overcome this toxicity while maintaining all the beneficial effects of nanomaterials. We aimed to synthesize nanoB from goat manure and utilize it with CuO nanoparticles (nanoCu) to influence soil microbes, nutrient content, and wheat productivity. An X-ray diffractogram (XRD) confirmed nanoB synthesis (crystal size = 20 nm). The XRD spectrum showed a distinct carbon peak at 2θ = 42.9°. Fourier-transform spectroscopy of nanoB's surface indicated the presence of C=O, C≡N-R, and C=C bonds, and other functional groups. The electron microscopic micrographs of nanoB showed cubical, pentagonal, needle, and spherical shapes. NanoB and nanoCu were applied alone and as a mixture at the rate of 1000 mg kg-1 soil, to pots where wheat crop was grown. NanoCu did not influence any soil or plant parameters except soil Cu content and plant Cu uptake. The soil and wheat Cu content in the nanoCu treatment were 146 and 91% higher, respectively, than in the control. NanoB increased microbial biomass N, mineral N, and plant available P by 57, 28, and 64%, respectively, compared to the control. The mixture of nanoB and nanoCu further increased these parameters, by 61, 18, and 38%, compared to nanoB or nanoCu alone. Consequently, wheat biological, grain yields, and N uptake were 35, 62 and 80% higher in the nanoB+nanoCu treatment compared to the control. NanoB further increased wheat Cu uptake by 37% in the nanoB+nanoCu treatment compared to the nanoCu alone. Hence, nanoB alone, or in a mixture with nanoCu, enhanced soil microbial activity, nutrient content, and wheat production. NanoB also increased wheat Cu uptake when mixed with nanoCu, a micronutrient essential for seed and chlorophyll production. Therefore, a mixture of nanobiochar and nanoCu would be recommended to farmers for improving their clayey loam soil quality and increasing Cu uptake and crop productivity in such agroecosystems.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Abbas Shah
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Maqsood Sadiq
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Noor ul Amin
- Department of Environmental Science, Sub-Campus, COMSATS University Islamabad, Vehari 61000, Pakistan
| | - Arshid Mahmood Ali
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Khurram Shahzad
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Yu Y, Dai W, Luan Y. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120784. [PMID: 36462678 DOI: 10.1016/j.envpol.2022.120784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The thriving nano-enabled agriculture facilitates the interaction of nanomaterials with plants. Recently, these interactions and their biological effects are receiving increasing attention. Upon entering plants via leaves, roots, stems, and other organs, nanoparticles adsorb numerous biomolecules inside plants and form bio-corona. In addition, nanoparticles that enter plants through roots may have formed eco-corona with root exudates in the rhizosphere environment before contacting with plant exogenous proteins. The most significant biological effects of plant protein corona include changes in protein structure and function, as well as changes in nanoparticle toxicity and targeting ability. However, the mechanisms, particularly how protein corona affects plant protein function, plant development and growth, and rhizosphere environment properties, require further investigation. Our review summarizes the current understanding of the formation and biological effects of nanoparticle-plant protein corona and provides an outlook on future research.
Collapse
Affiliation(s)
- Yanni Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Niu T, Xie J, Li J, Zhang J, Zhang X, Ma H, Wang C. Response of rhizosphere microbial community of Chinese chives under different fertilization treatments. Front Microbiol 2022; 13:1031624. [PMID: 36478855 PMCID: PMC9719922 DOI: 10.3389/fmicb.2022.1031624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Soil microorganisms play an irreplaceable role in agricultural production, however, an understanding of response of soil microorganisms to slow-release and common fertilizer applications is limited. In this study, different amounts of slow- release fertilizer were used to overwintering Chinese chives growing area in a plastic greenhouse to investigate the effects of on rhizosphere soil physicochemical properties and soil microbial communities (bacteria and fungi) of Chinese chives. The result displayed that application of slow-release fertilizer significantly improved soil nutrients, soil enzyme activity, and soil microbial community structure and diversity compared to conventional fertilizer application. Compared with T1 treatment, the content of total nitrogen (TN) and available phosphorus (AP), and the SU-E activity in the soil of T2 (NPK: 62.8 kg · 667 m-2) increased by 42.58%, 16.67%, and 9.70%, respectively, showing the best effects. In addition, soil bacterial diversity index and soil microbial community structure were improved as indicated by increased relative abundance of each species, such as Byssovorax, Sandaracinus, and Cellvibrio. Oppositely, the both soil fungal diversity and the number of species decreased after fertilizationthe relative abundance of Ascomycota increased in each fertilization treatment detected by ITS sequencing. Further, the relative abundance of pathogenic fungi such as Pezizomycetes, Cantharellales, and Pleosporales decreased in the T2 treatment. Principal Coordinates Analysis (PCoA) showed that both the amount of fertilizer applied and the type of fertilizer applied affected the soil microbial community structure. RDA evidenced that soil bacteria, Proteobacteria and Gemmatimonadetes, were closely correlated with soil AN, SOM, and AK. Acidobacteria were closely correlated with soil pH, TN, and AP. Ascomycota was closely correlated with soil pH and TN. In conclusion, the application of slow-release fertilizers and reduced fertilizer applicationcould improve soil physical and chemical properties as well as soil microbial community structure and diversity, contributing to sustainable soil development. The recommended fertilization rate for overwintering Chinese chives is NPK: 62.8 kg · 667 m-2.
Collapse
Affiliation(s)
- Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hongyan Ma
- Lanzhou New Area Agricultural Science and Technology Development Co., Ltd., Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Zong X, Wu D, Zhang J, Tong X, Yin Y, Sun Y, Guo H. Size-dependent biological effect of copper oxide nanoparticles exposure on cucumber (Cucumis sativus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69517-69526. [PMID: 35567686 DOI: 10.1007/s11356-022-20662-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received considerable attention for their toxic effects on crops and potential application in agriculture. In order to investigate the biological effects of CuO NPs on plants, we exposed cucumber (Cucumis sativus) to two sizes of CuO NPs (510 nm, μCuO and 43 nm, nCuO). Results indicated that with concentration increased, the available Cu content in soil increased significantly. The addition of CuO NPs increased Cu content and other nutrient element (e.g., K, P, Mn, and Zn) content in plants. However, diverse particle sizes had different effects. The nCuO treatment had larger translocation factor, higher nutrient element content in fruits, and lower oxidative damage than μCuO treatment. Moreover, nCuO of 100 mg/kg could stimulate cucumber growth, while μCuO had no obvious effects on growth. Conclusively, CuO NPs could be used as copper fertilizer to supply copper to cucumber. The nCuO had better effects on improving the bioavailability of Cu and nutritional value of fruits. These results can help develop strategies for safe disposal of CuO NPs as agricultural fertilizer.
Collapse
Affiliation(s)
- Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Wang X, Wang WX. Cell-Type-Dependent Dissolution of CuO Nanoparticles and Efflux of Cu Ions following Cellular Internalization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12404-12415. [PMID: 35946305 DOI: 10.1021/acs.est.2c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CuO nanoparticles (NPs) show promising applications in biosensors, waste treatment, and energy materials, but the growing manufacture of CuO NPs also leads to the concerns for their potential environmental and health risks. However, the cellular fates of CuO NPs such as Cu ion dissolution, transformation, and efflux remain largely speculative. In the present study, we for the first time combined the gold-core labeling and Cu ion bioimaging technologies to reveal the intracellular fates of CuO NPs in different cells following cellular internalization of NPs. We demonstrated that the dissolution rate of CuO NPs depended on the cell type. Following CuO dissolution, limited transformation of Cu(II) to Cu(I) occurred within the cellular microenvironment. Instead, Cu(II) was rapidly eliminated from the cells, and such rapid efflux in different cells was highly dependent on the GSH-mediated pathway and lysosome exocytosis. The labile Cu(I) level in the two cancerous cell lines was immediately regulated upon Cu exposure, which explained their tolerance to Au@CuO NPs. Overall, our study demonstrated a very rapid turnover of Cu in the cells following CuO internalization, which subsequently determined the cellular toxicity of CuO. The results will have important implications for assessing the health risk of CuO NPs.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
15
|
Yan C, Huang J, Cao C, Li X, Lin X, Wang Y, Qian X. Iris pseudacorus as precursor affecting ecological transformation of graphene oxide and performance of constructed wetland. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129164. [PMID: 35739704 DOI: 10.1016/j.jhazmat.2022.129164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The role of plants is largely unknown in constructed wetlands (CWs) exposed to phytotoxic nanomaterials. Present study investigated transformation of graphene oxide (GO) and performance of CWs with Iris pseudacorus as precursor. GO was trapped by CWs without dependence on plants. GO could move to lower substrate layer and present increases on defects/disorders with stronger effects in planted CW. Before adding GO, planted CW achieved better removal both of phosphorus and nitrogen. After adding GO, phosphorus removal in planted CW was 93.23-95.71% higher than 82.55-90.07% in unplanted CW. However, total nitrogen removal was not improved, showing 48.20-56.66% and 53.44-56.04% in planted and unplanted CWs. Plant improved urease, phosphatase, and arylsulfatase, but it decreased β-glucosidase and had less effects on dehydrogenase and catalase. Pearson correlation matrix revealed that plant enhanced microbial interaction with high degree of positive correlation. Moreover, there were obvious shifts in microbial community at phylum and genus level, which presented closely positive action on substrate enzyme activities. The functional profile was less affected due to functional redundancy in microbial system, but time effects were obvious in CWs, especially in planted CW. These findings could provide the basis on understanding role of plants in CWs for treating nanoparticles wastewater.
Collapse
Affiliation(s)
- Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Li
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| | - Xiaoyang Lin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yaoyao Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
16
|
Nikolić LJ, Maksimović I, Džigurski D, Putnik-Delić M, Ljevnaić-Mašić B. Removal of nitrogen and phosphorus by aboveground biomass of Phragmites australis in Constructed Wetland System under the conditions of temperate continental climate. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:483-492. [PMID: 35786062 DOI: 10.1080/15226514.2022.2090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, aboveground biomass and basic nutrients removal, nitrogen (N) and phosphorus (P), was analyzed by the use of reed as the main component of Constructed Wetland System (CWS) "Gložan". In almost ideal conditions of temperate continental climate, with favorable substrate humidity, due to the constant inflow of municipal wastewater, reed populations reach a high density, on average 217 ind/m2. The reed produces significant aboveground biomass, fresh weight (FW) of 144.21 g/plant and dry weight (DW) of 77.04 g/plant, with the largest share being per tree (87.49 g FW/plant, 48.17 g DW/plant), then leaf (49.45 g FW/plant, 24.89 g DW/plant) and the smallest inflorescence (7.27 g FW/plant, 3.99 g DW/plant). The results obtained in this way indicate that the largest amount of nitrogen was removed by leaves, then by stems and, the smallest by inflorescences, 181.07 g/m2, 97.73 g/m2, 23.41 g/m2, respectively. Thus, an average of 302.21 g/m2 of nitrogen was removed by the entire aboveground part of the reed. Also, the largest amount of phosphorus was removed by leaves, then by stems, and the smallest by inflorescences, 5.72 g/m2, 4.82 g/m2 and 2.57 g/m2, respectively, while the entire aboveground part of the reed is on average about 13.11 g/m2.
Collapse
Affiliation(s)
- LJiljana Nikolić
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Ivana Maksimović
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Dejana Džigurski
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | | | | |
Collapse
|