1
|
Fan J, Chen Z, Cheng Y, Ji H, Hu C, Qu J. Mechanisms and Enhancement of Hydrogen Evolution for Membrane Anti-fouling and Methane Upgrading by Sacrificed Anode in a Novel Electro-AnMBR. WATER RESEARCH 2025; 272:122881. [PMID: 39644688 DOI: 10.1016/j.watres.2024.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Severe membrane fouling and low CH4 content in the produced biogas have restricted the applicability and energy recovery profit of the anaerobic membrane bioreactor (AnMBR). Herein, a novel AnMBR was constructed with an electrochemical hydrogen evolution reaction (electro-HER) by double anodes and a titanium membrane-cathode (eHAnMBR). The electro-HER was controlled and enhanced by sacrificed iron anode under low voltage, to mitigate membrane fouling and upgrade biogas simultaneously. The critical factors in electro-HER were investigated to influence the AnMBR system, including hydrogen, applied voltage, and Fe ions. The voltage and hydrogen enhanced the hydrogenotrophic methanogenesis process and enriched hydrophilic Methanobacterium and Methanosarcina, thereby improving biogas purity by up to 28% and increasing total CH₄ production by 46%. Furthermore, the electro-HER on the membrane-cathode decreased the transmembrane pressure by 30%. Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMs) was innovatively applied to visualize the organic foulants in membrane pores. The electro-HER not only produced H2 to optimize cake layer structure but also produced local alkalinity on the membrane surface, to remove extracellular polymeric substances in membrane pores. Additionally, Fe2+/Fe3+ released from the sacrificial iron anode, facilitated phosphate precipitation and removal from 15.7% to 37.9%. This study presents a novel and sustainable wastewater treatment solution by integrating the electro-HER process with AnMBR, enabling both energy recovery and membrane antifouling.
Collapse
Affiliation(s)
- Jinzhou Fan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - He Ji
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Nik Mut NN, Na J, Nam G, Jung J. The biodegradation of polylactic acid microplastic and their toxic effect after biofouling in activate sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125038. [PMID: 39343347 DOI: 10.1016/j.envpol.2024.125038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Biodegradable microplastics (MPs) can form biofilms through interactions with various microorganisms in aquatic system and can be exposed to organisms. This study first investigated biodegradability of polylactic acid (PLA) MPs and the characterization of PLA MPs before/after biofouling (4 weeks) and their toxic effects on the freshwater invertebrate Daphnia magna. The biodegradability rate of PLA MPs was up to 50% over 28 days, suggesting that even biodegradable MPs do not easily decompose under environmental conditions. Furthermore, biofouling of MPs led to an increase in size and, in the process, induced an additional functional peak in the PLA MPs. The exposure of biofouled MPs did not lead to a reduction in survival, reproduction, or growth during chronic exposure, nor did it cause feeding inhibition in juvenile (<4 days old) D. magna. However, pristine MPs significantly reduced survival, reproduction, and growth at concentrations of 5.0 mg L-1. Overall, pristine MPs caused inhibition of reproduction and growth and high mortality in D. magna, while the biofouling process did not induce these effects. Our findings highlight the complex interactions between MPs and biological components in aquatic environments, emphasizing the importance of considering biofouling dynamics when assessing the ecological impacts of biodegradable MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwiwoong Nam
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Zhao J, Wang H, Zheng L, Wang Q, Song Y. Comparison of pristine and aged poly-L-lactic acid and polyethylene terephthalate as microbe carriers in surface water: Displaying apparent differences. Int J Biol Macromol 2024; 280:136014. [PMID: 39326610 DOI: 10.1016/j.ijbiomac.2024.136014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) in water environment are potential carriers for many substances. In this study, pristine degradable poly-L-lactic acid (PLLA) and non-degradable polyethylene terephthalate (PET) MPs and their UV-aged counterparts were exposed to the Yuhangtang River (Y-River). The results showed that the surface morphology and structure of all MPs markedly changed after exposure. Oxygen-containing functional groups and hydrophilicity of aged MPs were higher compared with their pristine counterparts, and further increased after river exposure. The content of extracellular polymers (EPS) of biofilms on MPs increased with the exposure time, and was higher on aged MPs than on pristine ones. Similar results were obtained for most antibiotic resistance genes (ARGs) between pristine and aged MPs, and ARGs were positively related to pathogens. Dominant bacteria on all MPs were Proteobacteria (51.3 %-81.1 %), Chloroflexi (5.2 %-20.9 %) and Firmicutes (0.4 %-15.9 %), which markedly differed from the Y-River community. Aged MPs could enrich more microbes but relatively fewer bacterial species than pristine MPs, and higher enrichment and species diversity were observed on PLLA compared with PET. This study demonstrates that MPs are highly effective carriers for microbes, and the results provide valuable insights for evaluating the potential impact of bio-MPs on aquatic ecological environment.
Collapse
Affiliation(s)
- Jianqi Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
4
|
Liu X, Yang Y, Takizawa S, Graham NJD, Chen C, Pu J, Ng HY. New insights into the concentration-dependent regulation of membrane biofouling formation via continuous nanoplastics stimulation. WATER RESEARCH 2024; 253:121268. [PMID: 38340700 DOI: 10.1016/j.watres.2024.121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The release of nanoplastics (NPs) into the environment is growing due to the extensive use of plastic products. Numerous studies have confirmed the negative effects of NPs on microorganisms, which poses uncertainties concerning their impact on nanofiltration (NF) membrane biofouling. This study investigated the initial cell adhesion process, NF membrane biofouling kinetic processes and bacterial responses of Pseudomonas aeruginosa (P. aeruginosa) exposed to varied NPs concentrations (0-50 mg·L-1). Transcriptome analysis demonstrated that low concentration of NPs (0.1 mg·L-1) promoted bacterial quorum sensing, energy metabolism, exopolysaccharide biosynthesis and bacterial secretion systems. Correspondingly, the polysaccharide content increased remarkably to 2.77 times the unexposed control, which served as a protective barrier for bacteria to avoid the impact of NPs-induced stress. Suppressed homologous recombination, microbial metabolic potentials and flagellar assembly were detected in bacteria exposed to a high concentration (50 mg·L-1) of NPs, mainly due to the triggered reactive oxygen species (ROS) generation, genomic DNA damage, and decreased energy production. Overall, enhanced formation of the extracellular polymeric substances (EPS) and aggravated membrane flux decline were observed when NPs interacted with the membrane surface by cell secretions (low NPs levels) or cell lysis (high NPs levels). These findings shed light on understanding the microbial metabolism mechanism and membrane biofouling propensity with NPs stress at both the molecular and gene levels.
Collapse
Affiliation(s)
- Xinhui Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Chao Chen
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jian Pu
- Institute for the Advanced Study of Sustainability, United Nations University, Jingumae 5-53-70, Shibuya-ku, Tokyo 150-8925, Japan; Institute for Future Initiatives, The University of Tokyo, Tokyo 113-0033, Japan
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
5
|
Adeel M, Granata V, Carapella G, Rizzo L. Effect of microplastics on urban wastewater disinfection and impact on effluent reuse: Sunlight/H 2O 2 vs solar photo-Fenton at neutral pH. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133102. [PMID: 38070270 DOI: 10.1016/j.jhazmat.2023.133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024]
Abstract
The interference of three types of microplastics (MPs) on the inactivation of Escherichia coli (E. coli) by advanced oxidation processes (AOPs) (namely, sunlight/H2O2 and solar photo-Fenton (SPF) with Ethylenediamine-N,N'-disuccinic acid (EDDS)), in real secondary treated urban wastewater was investigated for the first time. Inactivation by sunlight/H2O2 treatment decreased as MPs concentration and H2O2 dose were increased. Noteworthy, an opposite behaviour was observed for SPF process where inactivation increased as MPs concentration was increased. Biofilm formation and microbial attachment on surfaces of post-treated MPs were observed on polyethylene (PE) and polyvinyl chloride (PVC) MPs by field emission scanning electron microscopy. In presence of PE MPs, a complete inactivation of E. Coli was achieved by SPF with EDDS (Fe:EDDS = 1:2) after 90 min treatment unlike of sunlight/H2O2 treatment (∼4.0 log reduction, 40 mg/L H2O2 dose, 90 min treatment). The lower efficiency of sunlight/H2O2 process could be attributed to the blocking/scattering effect of MPs on sunlight, which finally reduced the intracellular photo Fenton effect. A reduced E. coli regrowth was observed in presence of MPs. SPF (Fe:EDDS = 1:1) with PE MPs was less effective in controlling bacterial regrowth (∼120 CFU/100 mL) than sunlight/H2O2 (∼10 CFU/100 mL) after 48 h of post-treatment. These results provide useful information about possible interference of MPs on urban wastewater disinfection by solar driven AOPs and possible implications for effluent reuse.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Veronica Granata
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Carapella
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
6
|
Yang FA, Hou YN, Cao C, Huang C, Shen S, Ren N, Wang AJ, Guo J, Wei W, Ni BJ. Electroactive properties of EABs in response to long-term exposure to polystyrene microplastics/nanoplastics and the underlying adaptive mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133438. [PMID: 38198865 DOI: 10.1016/j.jhazmat.2024.133438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Given widespread presence of polystyrene (PS) microplastics/nanoplastics (MPs/NPs), the electroactive responses and adaptation mechanisms of electroactive biofilms (EABs) exposed long-term to PS-containing aquatic environments remain unclear. Therefore, this study investigated the impacts of PS MPs/NPs on electroactivity of EABs. Results found that EABs exhibited delayed formation upon initially exposure but displayed an increased maximum current density (Imax) after subsequent exposure for up to 55 days. Notably, EABs exposure to NH2PS NPs (EAB-NH2PSNPs) demonstrated a 50% higher Imax than the control, along with a 17.84% increase in viability and a 58.10% increase in biomass. The cytochrome c (c-Cyts) content in EAB-NH2PSNPs rose by 178.35%, benefiting the extracellular electron transfer (EET) of EABs. Moreover, bacterial community assembly indicated the relative abundance of electroactive bacteria increased to 87.56% in EAB-NH2PSNPs. The adaptability mechanisms of EABs under prolonged exposure to PS MPs/NPs predominantly operate by adjusting viability, EET, and bacterial community assembly, which were further confirmed a positive correlation with Imax through structural equation model. These findings provide deeper insights into long-term effects and mechanisms of MPs/NPs on the electroactive properties of EABs and even functional microorganisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shaoheng Shen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Hou M, Zhu Y, Chen H, Wen Y. Chiral herbicide imazethapy influences plant-soil feedback on nitrogen metabolism by shaping rhizosphere microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18625-18635. [PMID: 38351351 DOI: 10.1007/s11356-024-32393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Herbicides are known to affect the soil nitrogen cycle by shaping soil microorganisms. However, it is not clear how herbicides regulate diverse transformation processes of soil nitrogen cycling by altering rhizosphere microorganisms, subsequently influencing the feedback to plant nitrogen metabolism. Here, we investigated how imazethapyr (IM) enantiomers drive plant-soil feedback on nitrogen metabolism by altering the rhizosphere microorganisms. The results indicated that (R)- and (S)-IM significantly changed the composition and structure rhizosphere microbiome with enantioselectivity and functional changes in microbial communities were associated with soil nitrogen circulation. The determination of nitrogen-cycling functional genes further supported the above findings. The results revealed that (R)- and (S)-IM could change the abundance of nitrogen-cycling functional genes by changing specific bacteria abundances, such as Bacteroidetes, Proteobacteria, and Acidobacteria, thus resulting in diverse nitrogen transformation processes. The alternation of nitrogen transformation processes indicated (R)-IM exhibited a more notable tendency to form a nitrogen cycling pattern with lower energy cost and higher nitrogen retention than (S)-IM. Sterilization experiments demonstrated changes in soil nitrogen cycling drive plant nitrogen metabolism and rhizosphere microorganisms are responsible for the above process of plant-soil feedback for nitrogen metabolism. Under IM enantiomer treatments, rhizosphere microorganisms might stimulate glutamate synthesis by promoting NH4+ uptake and glutamine-glutamate synthesis cycling in roots, thus contributing to positive feedback, with (R)-IM treatments showing more pronounced positive feedback on nitrogen metabolism than (S)-IM treatments. Our results provide theoretical support for determining the mechanism by which IM enantiomers drive plant-soil nitrogen metabolism by changing the rhizosphere microbial communities.
Collapse
Affiliation(s)
- Mengchun Hou
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youfeng Zhu
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Zhang J, Li T, Tao S, Shen M. Microplastic pollution interaction with disinfectant resistance genes: research progress, environmental impacts, and potential threats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16241-16255. [PMID: 38340302 DOI: 10.1007/s11356-024-32225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The consumption of disposable plastic products and disinfectants has surged during the global COVID-19 pandemic, as they play a vital role in effectively preventing and controlling the spread of the virus. However, microplastic pollution and the excessive or improper use of disinfectants contribute to the increased environmental tolerance of microorganisms. Microplastics play a crucial role as vectors for microorganisms and plankton, facilitating energy transfer and horizontal gene exchange. The increase in the use of disinfectants has become a driving force for the growth of disinfectant resistant bacteria (DRB). A large number of microorganisms can have intense gene exchange, such as plasmid loss and capture, phage transduction, and cell fusion. The reproduction and diffusion rate of DRB in the environment is significantly higher than that of ordinary microorganisms, which will greatly increase the environmental tolerance of DRB. Unfortunately, there is still a huge knowledge gap in the interaction between microplastics and disinfectant resistance genes (DRGs). Accordingly, it is critical to comprehensively summarize the formation and transmission routes of DRGs on microplastics to address the problem. This paper systematically analyzed the process and mechanisms of DRGs formed by microbes. The interaction between microplastics and DRGs and the contribution of microplastic on the diffusion and spread of DRGs were expounded. The potential threats to the ecological environment and human health were also discussed. Additionally, some challenges and future priorities were also proposed with a view to providing useful basis for further research.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
9
|
Wu X, Li Y, Su Z, Tian L, Siddique MS, Yu W. Less pressure contributes to gravity-driven membrane ultrafiltration with greater performance: Enhanced driving efficiency and reduced disinfection by-products formation potential. J Environ Sci (China) 2024; 137:407-419. [PMID: 37980026 DOI: 10.1016/j.jes.2023.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 11/20/2023]
Abstract
Gravity-driven membrane (GDM) systems have been well developed previously; however, impacts of driving (i.e., transmembrane) pressure on their performance received little attention, which may influence GDM performance. In this study, we evaluated 4 GDM systems via altering the transmembrane pressure from 50 mbar to 150 mbar with 2 groups, treating surface water in Beijing, China. Results showed that less driving pressure was more favorable. Specifically, compared to groups (150 mbar), groups under a pressure of 50 mbar were found to have greater normalized permeability and lower total resistance. During the whole operation period, the quality of effluents was gradually improved. For example, the removal efficiency of UV254 was significantly improved; particularly, under low driving pressure, the removal efficiency of UV254 in PES GDM system increased by 11.91%, as compared to the corresponding system under high driving pressure. This observation was consistent with the reduction on disinfection by-products (DBPs) formation potential; groups under 50 mbar achieved better DBPs potential control, indicating the advantages of lower driving pressure. Biofilms were analyzed and responsible for these differences, and distinct distributions of bacteria communities of two GDM systems under 50 and 150 mbar may be responsible for various humic-like substances removal efficiency. Overall, GDM systems under less pressure should be considered and expected to provide suggestions on the design of GDM systems in real applications.
Collapse
Affiliation(s)
- Xiaoting Wu
- Colleges of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yufei Li
- Colleges of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Cen C, Zhang K, Zhang T, Wu J, Mao X. Exploring the ignored role of escaped algae in a pilot-scale DWDS: Disinfectant consumption, DBP yield and risk formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122599. [PMID: 37739259 DOI: 10.1016/j.envpol.2023.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Insufficient treatments during bloom-forming seasons allow algae to enter the subsequent drinking water distribution system (DWDS). Yet, scarce information is available regarding the role escaped algae to play in the DWDS, and how they interact with the system. Thus, three scenarios were conducted: a pilot DWDS with algae (a), pipe water (b), and pipe water with algae (c). Experimental results showed that, compared to biofilm and bulk water, escaped algae required fewer disinfectants. Competition for disinfectants varied with algal strains (Microcystis aeruginosa, MA; Pseudanabaena sp., PS) and disinfectant types (chlorine, Cl2; chloriamine, NH2Cl). Algae in the MA-Cl2 group showed the highest demand (6.25%-36.02%). However, the low-concentration disinfectants distributed to algae could trigger distinct algal status alternations. Cl2 diffused into intact MA cells and reacted with intracellular compositions. Damaged PS cells reached 100% within 2 h. Typical disinfection byproducts (DBPs), including trihalomethanes (THMs), haloacetic acids and halogenated acetonitriles were examined. Disinfectant types and algal strains affected DBP yield and distribution. Although disinfectants consumed by algae might not promote dissolved DBP formation, especially for THMs. DBP formation of the other components was affected by escaped algae via changing disinfectant assignment (reduced by 45.45% for MA-Cl2) and transformation efficiency (by 34.52%). The cytotoxicity risks were estimated. Dissolved DBP-induced risks were not added when escaped algae occurred, whereas disruption and release of intracellular substances increased risks; the maximum cytotoxicity did not occur at 12 h rather than at the end (24 h). Overall, this study provided an innovative perspective on algal-related water quality issues in water systems.
Collapse
Affiliation(s)
- Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China
| | - Xinwei Mao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China
| |
Collapse
|
11
|
Dong Z, Ma Y, Yu M, Cai Y, Chen Y, Wu J, Ma F, Hu B. Affinity difference determines the assembly and interaction mode of anammox community reconstructed by siderophores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165278. [PMID: 37414172 DOI: 10.1016/j.scitotenv.2023.165278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Anammox community is the core of anammox process. The constancy of the anammox community determines the stability of the anammox process and the ability of withstand environmental impact. Community stability is influenced by the assembly and interaction mode of the community. This study aimed to explore the assembly, interaction mode, and stability of anammox community influenced by two siderophores (enterobactin and putrebactin) specific for Ca. Brocadia and Ca. Kuenenia as produced in our previous research. Siderophores improved the stability of the anammox community, among which vulnerability dropped by 30.02 % and 72.53 % respectively. Enterobactin and putrebactin altered the succession speed and assembly pattern of communities, with a respective increase of 9.77 % and 80.87 % in the deterministic process of anammox community assembly, respectively. Enterobactin and putrebactin reduced the dependence of Ca. Brocadia and Ca. Kuenenia on companion bacteria by 60 items and 27 items respectively. The affinity of different siderophore-Fe with bacterial membrane receptors caused variations in community reconstruction, with Ca. Brocadia and Ca. Kuenenia exhibiting the highest affinity with enterobactin-Fe (-11.4 kcal/mol) and putrebactin-Fe (-9.0 kcal/mol), respectively. This study demonstrated how siderophores can enhance the stability of anammox process by regulating assembly and interaction mode of anammox community, while also revealing the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ziyang Dong
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxin Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Mengwen Yu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yufei Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yingluo Chen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Junwei Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
12
|
Thacharodi A, Meenatchi R, Hassan S, Hussain N, Bhat MA, Arockiaraj J, Ngo HH, Le QH, Pugazhendhi A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119433. [PMID: 39492398 DOI: 10.1016/j.jenvman.2023.119433] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Microplastics are small plastic pieces ranging in size from 1μ to <5 mm in diameter, are water-soluble, and can be either primary as they are initially created in small sizes or secondary as they develop due to plastic degradation. Approximately 360 million tons of plastic are produced globally every year, with only 7% recycled, leaving the majority of waste to accumulate in the environment and pose a serious threat in the form of microplastics. All ecosystems, particularly freshwater ecosystems, experience microplastic accumulation and are also prone to degrading processes. Degraded microplastics accumulate in many aquatic systems, contaminate them, and enter the food chain as a result of the excessive discharge of plastic trash annually from the domestic to the industrial sector. Due to their pervasiveness, these tiny plastic particles are constantly present in freshwater environments, which are essential to human life. In this sense, microplastic pollution is seen as a worldwide problem that has a detrimental impact on every component of the freshwater environment. Microplastics act as carriers for various toxic components such as additives and other hazardous substances from industrial and urbanized areas. These microplastic-contaminated effluents are ultimately transferred into water systems and directly ingested by organisms associated with a particular ecosystem. The microplastics components also pose an indirect threat to aquatic ecosystems by adsorbing surrounding water pollutants. This review mainly focuses on the sources of microplastics, the ecotoxicity of microplastics and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the Government to combat microplastic pollution are also discussed in this review.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, Eskişehir, 26555, Turkey
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
13
|
Fernández-Pascual E, Droz B, O’Dwyer J, O’Driscoll C, Goslan EH, Harrison S, Weatherill J. Fluorescent Dissolved Organic Matter Components as Surrogates for Disinfection Byproduct Formation in Drinking Water: A Critical Review. ACS ES&T WATER 2023; 3:1997-2008. [PMID: 37588806 PMCID: PMC10425960 DOI: 10.1021/acsestwater.2c00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 08/18/2023]
Abstract
Disinfection byproduct (DBP) formation, prediction, and minimization are critical challenges facing the drinking water treatment industry worldwide where chemical disinfection is required to inactivate pathogenic microorganisms. Fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC) is used to characterize and quantify fluorescent dissolved organic matter (FDOM) components in aquatic systems and may offer considerable promise as a low-cost optical surrogate for DBP formation in treated drinking waters. However, the global utility of this approach for quantification and prediction of specific DBP classes or species has not been widely explored to date. Hence, this critical review aims to elucidate recurring empirical relationships between common environmental fluorophores (identified by PARAFAC) and DBP concentrations produced during water disinfection. From 45 selected peer-reviewed articles, 218 statistically significant linear relationships (R2 ≥ 0.5) with one or more DBP classes or species were established. Trihalomethanes (THMs) and haloacetic acids (HAAs), as key regulated classes, were extensively investigated and exhibited strong, recurrent relationships with ubiquitous humic/fulvic-like FDOM components, highlighting their potential as surrogates for carbonaceous DBP formation. Conversely, observed relationships between nitrogenous DBP classes, such as haloacetonitriles (HANs), halonitromethanes (HNMs), and N-nitrosamines (NAs), and PARAFAC fluorophores were more ambiguous, but preferential relationships with protein-like components in the case of algal/microbial FDOM sources were noted. This review highlights the challenges of transposing site-specific or FDOM source-specific empirical relationships between PARAFAC component and DBP formation potential to a global model.
Collapse
Affiliation(s)
- Elena Fernández-Pascual
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Boris Droz
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Jean O’Dwyer
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
- iCRAG
Science Foundation Ireland Research Centre in Applied Geosciences, University College Dublin, Dublin D04 V1W8, Ireland
| | | | - Emma H. Goslan
- Cranfield
Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Simon Harrison
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - John Weatherill
- School
of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental
Research Institute, University College Cork, Cork T23 XE10, Ireland
- iCRAG
Science Foundation Ireland Research Centre in Applied Geosciences, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
14
|
Shen M, Zhao Y, Liu S, Hu T, Zheng K, Wang Y, Lian J, Meng G. Recent advances on micro/nanoplastic pollution and membrane fouling during water treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163467. [PMID: 37062323 DOI: 10.1016/j.scitotenv.2023.163467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Effluent from sewage treatment plant, as an important source of microplastics (MPs) in receiving water, has attracted extensive attention. Membrane separation process shows good microplastic removal performance in the existing tertiary water treatment process. Problematically, membrane fouling and insufficient removal of small organic molecules are still the key obstacles to its further extensive application. Dissolved organics, extracellular polymers and suspended particles in the influent are deposited on the membrane surface and internal structure, reducing the number and pore diameter of effective membrane aperture, and increasing the resistance of membrane filtration. Exploring the mechanism and approach of membrane fouling caused by micro/nanoplastics is the key to alleviate fouling and allow membranes to operate longer. In this paper, removal performance of micro/nanoplastics by current membrane filtration and the contribution to membrane fouling during water treatment are thoroughly reviewed. The coupling mechanisms between micro/nanoplastics and other pollutants and mechanism of membrane fouling caused by composite micro/nanoplastics are discussed. Additionally, on this basis, the prospect of combined process for micro/nanoplastic removal and membrane fouling prevention is also proposed and discussed, which provides a valuable reference for the preferential removal of micro/nanoplastics and development of antifouling membrane.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Jianjun Lian
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
15
|
Zhou L, Ma R, Yan C, Wu J, Zhang Y, Zhou J, Qu G, He X, Wang T. Plasma-mediated aging process of different microplastics: Release of dissolved organic matter and formation of disinfection by-products. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Hao T, Miao M, Cheng X, Dou Y, Zhang M, Li Y. The effects of polypropylene microplastics on the DBP formation under the chlorination and chloramination processes. CHEMOSPHERE 2022; 303:135102. [PMID: 35623421 DOI: 10.1016/j.chemosphere.2022.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
With the increased use of microplastics in modern society, tonnes of various microplastics (MPs) end up in natural and engineered water systems if not properly handled. Being a class of organics, the role of MPs during the disinfection of water treatment systems is still unclear at this stage. In the current experimental study, the formation of 6 typical disinfection by-products (DBPs) was investigated using varying concentrations of polypropylene (PP) MPs under various aquatic chemistry conditions and disinfectants. All investigated DBPs were detected, during the chlorination of PP, with an average CHCl3 concentration of 378 μg/g, and other DBPs, including CHCl2Br, TCA, DCAN, 1,1-DCP, and TCNM, were present in less than 60 μg/g, on average. When PP coexisted with Suwannee River Fulvic acid (SRFA), a suppression of DBP formation was observed with a 56% net reduction compared with a condition of PP alone. The dynamic balance of being a DBP precursor, or a scavenger, by absorbing the organics of PP is subjected to aquatic chemistry. Increasing the pH decreases the HOCl concentrations, reducing the PP oxidation capacity and DBP formation. As salinity increases, the aggregation of PP can reduce the reaction sites on the surface of PP and enhance the adsorption of SRFA, hence lowering the formation of DBPs.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yuanyuan Dou
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| |
Collapse
|
17
|
Chen X, Tao G, Wang Y, Wei W, Lian X, Shi Y, Chen S, Sun Y. Interactive impacts of microplastics and chlorine on biological stability and microbial community formation in stagnant water. WATER RESEARCH 2022; 221:118734. [PMID: 35714469 DOI: 10.1016/j.watres.2022.118734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Possibility of human exposure to microplastics (MPs) in water environment has been escalating, and subsequent challenges of MPs to biostability and biosafety in drinking water deserve more attention, especially in stagnant water. The present study explored the integrated impacts of MPs and chlorine on disinfection kinetics, microbial growth, and microbial community formation in drinking water, by setting MPs or microplastic-biofilm (MP-BM) under different disinfection conditions. The following were the primary conclusions: (1) The presence of MP and MP-BM led to the deterioration of water indices (especially turbidity) when chlorine was less than 1 mg/L. (2) MP/MP-BM accelerated the decay of disinfectants and MP-BM consumed more rapidly. Meanwhile, chlorine contributed to the level of BRP, ranging from 4.78 × 105 CFU/mL to 1.42 × 107 CFU/mL. (3) MP/MP-BM and chlorine integrally shaped microbial communities in water samples and biofilm samples. Microbial dissimilarity between isolated and hybrid MP-BM indicated manners of microbial field or non-contact communication. Microbial abundance and OPs were effectively controlled when chlorine was over 1 mg/L. (4) According to time-lag differential equations simulation, impulsive chlorination contributed to controlling microbial risks and DBPs induced by MP/MP-BM and water stagnation.
Collapse
Affiliation(s)
- Xiao Chen
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Guolin Tao
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Yi Wang
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China.
| | - Weizhi Wei
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China.
| | - Xiaoying Lian
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Yue Shi
- College of Defense Engineering, The Army Engineering University of PLA, Nanjing 210007, China
| | - Sheng Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiran Sun
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Characteristics of Initial Attachment and Biofilm Formation of Pseudomonas aeruginosa on Microplastic Surfaces. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The toxic effect of microplastics on living organisms is emerging as a serious environmental issue nowadays. The biofilm formed on their surface by microorganisms can further increase the toxicity, but the mechanism of biofilm formation on microplastics is not yet fully understood because of the complexities of other factors. This study aimed to identify the factors with an important influence on biofilm formation on microplastic surfaces. The microtiter plate assay was used to evaluate the biofilms formed by Pseudomonas aeruginosa PAO1, a model microorganism, on four types of microplastics, including polyethylene, polystyrene, polypropylene, and polytetrafluoroethylene. The density of microplastics was found to be a key factor in determining the amount of biofilm formation because the density relative to water has a decisive effect on the behavior of microplastics. Biofilm formation on plastics with densities similar to that of water showed remarkable differences based on surface characteristics, whereas biofilm formation on plastics with a higher density was significantly influenced by particle movement in the experimental environment. Furthermore, biofilm formation was inhibited by adding a quorum quenching enzyme, suggesting that QS is critical in biofilm formation on microplastics. This study provides useful information on biofilm formation on microplastic surfaces.
Collapse
|