1
|
Constantin M, Chifiriuc MC, Vrancianu CO, Petrescu L, Cristian RE, Crunteanu I, Grigore GA, Chioncel M. Insights into the effects of lanthanides on mammalian systems and potential applications. ENVIRONMENTAL RESEARCH 2024; 263:120235. [PMID: 39461700 DOI: 10.1016/j.envres.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Lanthanides, a group of elements with unique chemical properties, have garnered significant attention for their varied biological effects, ranging from cytotoxic to protective, depending on concentration, cell type, and exposure conditions. This review provides a detailed examination of the biological interactions of lanthanides with mammalian systems, including humans, by exploring their impact on different cell lines and organisms. Through a systematic assessment of current research, this work highlights the dual nature of lanthanides, identifying them as both potential therapeutic agents and environmental toxins. Furthermore, it underscores the importance of understanding their mechanisms to mitigate health risks, particularly for those exposed occupationally or via environmental sources. The review concludes with an overview of knowledge gaps and future research directions necessary for unlocking the therapeutic potential of lanthanides while ensuring safety and sustainability in their applications.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031, Bucharest, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania.
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ioana Crunteanu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mariana Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
2
|
Wang W, Yang Y, Wang D, Huang L. Toxic Effects of Rare Earth Elements on Human Health: A Review. TOXICS 2024; 12:317. [PMID: 38787096 PMCID: PMC11125915 DOI: 10.3390/toxics12050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Rare earth elements (REEs) are a new type of material resource which have attracted significant attention in recent years. REEs have emerged as essential metals in modern-day technology due to their unique functions. The long-term, large-scale mining and utilization of rare earths has caused serious environmental pollution and constitutes a global health issue, which has raised concerns regarding the safety of human health. However, the toxicity profile of suspended particulate matter in REEs in the environment, which interacts with the human body, remains largely unknown. Studies have shown that REEs can enter the human body through a variety of pathways, leading to a variety of organ and system dysfunctions through changes in genetics, epigenetics, and signaling pathways. Through an extensive literature search and critical analysis, we provide a comprehensive overview of the available evidence, identify knowledge gaps, and make recommendations for future research directions.
Collapse
Affiliation(s)
| | | | | | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, China; (W.W.); (Y.Y.); (D.W.)
| |
Collapse
|
3
|
Tian F, Wang J, Ding F, Wang L, Yang Y, Bai X, Tan C, Liao X. Comparative transcriptomics and proteomics analysis of the symbiotic germination of Paphiopedilum barbigerum with Epulorhiza sp. FQXY019. Front Microbiol 2024; 15:1358137. [PMID: 38562471 PMCID: PMC10982344 DOI: 10.3389/fmicb.2024.1358137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Paphiopedilum barbigerum is currently the rarest and most endangered species of orchids in China and has significant ornamental value. The mature seeds of P. barbigerum are difficult to germinate owing to the absence of an endosperm and are highly dependent on mycorrhizal fungi for germination and subsequent development. However, little is known about the regulation mechanisms of symbiosis and symbiotic germination of P. barbigerum seeds. Methods Herein, transcriptomics and proteomics were used to explore the changes in the P. barbigerum seeds after inoculation with (FQXY019 treatment group) or without (control group) Epulorhiza sp. FQXY019 at 90 days after germination. Results Transcriptome sequencing revealed that a total of 10,961 differentially expressed genes (DEGs; 2,599 upregulated and 8,402 downregulated) were identified in the control and FQXY019 treatment groups. These DEGs were mainly involved in carbohydrate, fatty acid, and amino acid metabolism. Furthermore, the expression levels of candidate DEGs related to nodulin, Ca2+ signaling, and plant lectins were significantly affected in P. barbigerum in the FQXY019 treatment groups. Subsequently, tandem mass tag-based quantitative proteomics was performed to recognize the differentially expressed proteins (DEPs), and a total of 537 DEPs (220 upregulated and 317 downregulated) were identified that were enriched in processes including photosynthesis, photosynthesis-antenna proteins, and fatty acid biosynthesis and metabolism. Discussion This study provides novel insight on the mechanisms underlying the in vitro seed germination and protocorm development of P. barbigerum by using a compatible fungal symbiont and will benefit the reintroduction and mycorrhizal symbiotic germination of endangered orchids.
Collapse
Affiliation(s)
- Fan Tian
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Fangjun Ding
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Lianhui Wang
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Yanbing Yang
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Xinxiang Bai
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Chengjiang Tan
- Guizhou Maolan National Nature Reserve Administration, Libo, Guizhou, China
| | - Xiaofeng Liao
- Guizhou Academy of Sciences, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Qian X, Ma C, Zhang H, Liu K. Bioseparation of rare earth elements and high value-added biomaterials applications. Bioorg Chem 2024; 143:107040. [PMID: 38141331 DOI: 10.1016/j.bioorg.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.
Collapse
Affiliation(s)
- Xining Qian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China.
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
5
|
Zheng B, Zhang YW, Geng Y, Wei W, Tan X, Xiao S, Gao Z. Measuring the anthropogenic cycles of light rare earths in China: Implications for the imbalance problem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163215. [PMID: 37011686 DOI: 10.1016/j.scitotenv.2023.163215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Light rare earth elements (LREEs) are of strategic importance for low carbon transition and decarbonization. However, the imbalance between LREEs exists and a systematic understanding of their flows and stocks is lacking, which impedes the attainment of resources efficiency and exacerbates the environmental burdens. This study examines the anthropogenic cycles and the imbalance problem of three representative LREEs in China, the largest LREEs producer in the world, including cerium (the most abundant), neodymium and praseodymium (the fastest demand-growing). We find that 1) from 2011 to 2020, the total consumption of Nd and Pr increased by 228 % and 223 %, respectively, mainly attributed to the increasing demand of NdFeB, whereas that of Ce increased by 157 %; 2) the supply insufficiency of Nd and Pr under the current quota system accumulated to 138,086 tons and 35,549 tons, respectively, while the oversupply of Ce reached 63,523 tons; and 3) China has become a net importer of LREEs concentrates, and a net exporter of LREEs in the form of intermediate and final products, imposing further burdens to the domestic environment. It is clear that the imbalance of LREEs occurred during the study period, raising urgent needs to adjust the LREEs production quotas, seek other Ce applications, and eliminate illegal mining.
Collapse
Affiliation(s)
- Biao Zheng
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Pudong New Area, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Yuquan W Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Pudong New Area, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Yong Geng
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| | - Wendong Wei
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China
| | - Xueping Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; School of Economics and Management, China University of Mining & Technology, No.1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Shijiang Xiao
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China
| | - Ziyan Gao
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
6
|
Zheng HX, Liu WS, Sun D, Zhu SC, Li Y, Yang YL, Liu RR, Feng HY, Cai X, Cao Y, Xu GH, Morel JL, van der Ent A, Ma LQ, Liu YG, Rylott EL, Qiu RL, Tang YT. Plasma-Membrane-Localized Transporter NREET1 is Responsible for Rare Earth Element Uptake in Hyperaccumulator Dicranopteris linearis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6922-6933. [PMID: 37071813 DOI: 10.1021/acs.est.2c09320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Dan Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Shi-Chen Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Yang Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Yu-Lu Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Ruo-Rong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Hua-Yuan Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| | - Guo-Hua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, Universitéde Lorraine, INRA, Nancy 54000, France
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Laboratory of Genetics, Wageningen University and Research, Wageningen 6708 WG, The Netherlands
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yao-Guang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, U.K
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510006, China
| |
Collapse
|
7
|
Le Jean M, Montargès-Pelletier E, Rivard C, Grosjean N, Chalot M, Vantelon D, Spiers KM, Blaudez D. Locked up Inside the Vessels: Rare Earth Elements Are Transferred and Stored in the Conductive Tissues of the Accumulating Fern Dryopteris erythrosora. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2768-2778. [PMID: 36752569 DOI: 10.1021/acs.est.2c06985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rare earth elements (REEs) are strategic metals strongly involved in low-carbon energy conversion. However, these emerging contaminants are increasingly disseminated into ecosystems, raising concern regarding their toxicity. REE-accumulating plants are crucial subjects to better understand REE transfer to the trophic chain but are also promising phytoremediation tools. In this analysis, we deciphered REE accumulation sites in the REE-accumulating fern Dryopteris erythrosora by synchrotron X-ray μfluorescence (μXRF). This technique allows a high-resolution and in situ analysis of fresh samples or frozen-hydrated cross sections of different organs of the plant. In the sporophyte, REEs were translocated from the roots to the fronds by the xylem sap and were stored within the xylem conductive system. The comparison of REE distribution and accumulation levels in the healthy and necrotic parts of the frond shed light on the differential mobility between light and heavy REEs. Furthermore, the comparison emphasized that necrotized areas were not the main REE-accumulating sites. Finally, the absence of cell-to-cell mobility of REEs in the gametophyte suggested the absence of REE-compatible transporters in photosynthetic tissues. These results provide valuable knowledge on the physiology of REE-accumulating ferns to understand the REE cycle in biological systems and the expansion of phytotechnologies for REE-enriched or REE-contaminated soils.
Collapse
Affiliation(s)
- Marie Le Jean
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
| | | | - Camille Rivard
- Synchrotron SOLEIL, Saint-Aubin F-91190, France
- INRAE, TRANSFORM, Nantes F-44300, France
| | - Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| | - Michel Chalot
- Université de Franche-Comté, CNRS, Laboratoire Chrono-Environnement, Besançon F-25000, France
- Université de Lorraine, Nancy F-54000, France
| | | | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| |
Collapse
|
8
|
Grosjean N, Le Jean M, Chalot M, Mora-Montes HM, Armengaud J, Gross EM, Blaudez D. Genome-Wide Mutant Screening in Yeast Reveals that the Cell Wall is a First Shield to Discriminate Light From Heavy Lanthanides. Front Microbiol 2022; 13:881535. [PMID: 35663896 PMCID: PMC9162579 DOI: 10.3389/fmicb.2022.881535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The rapidly expanding utilization of lanthanides (Ln) for the development of new technologies, green energies, and agriculture has raised concerns regarding their impacts on the environment and human health. The absence of characterization of the underlying cellular and molecular mechanisms regarding their toxicity is a caveat in the apprehension of their environmental impacts. We performed genomic phenotyping and molecular physiology analyses of Saccharomyces cerevisiae mutants exposed to La and Yb to uncover genes and pathways affecting Ln resistance and toxicity. Ln responses strongly differed from well-known transition metal and from common responses mediated by oxidative compounds. Shared response pathways to La and Yb exposure were associated to lipid metabolism, ion homeostasis, vesicular trafficking, and endocytosis, which represents a putative way of entry for Ln. Cell wall organization and related signaling pathways allowed for the discrimination of light and heavy Ln. Mutants in cell wall integrity-related proteins (e.g., Kre1p, Kre6p) or in the activation of secretory pathway and cell wall proteins (e.g., Kex2p, Kex1p) were resistant to Yb but sensitive to La. Exposure of WT yeast to the serine protease inhibitor tosyl phenylalanyl chloromethyl ketone mimicked the phenotype of kex2∆ under Ln, strengthening these results. Our data also suggest that the relative proportions of chitin and phosphomannan could modulate the proportion of functional groups (phosphates and carboxylates) to which La and Yb could differentially bind. Moreover, we showed that kex2∆, kex1∆, kre1∆, and kre6∆ strains were all sensitive to light Ln (La to Eu), while being increasingly resistant to heavier Ln. Finally, shotgun proteomic analyses identified modulated proteins in kex2∆ exposed to Ln, among which several plasmalemma ion transporters that were less abundant and that could play a role in Yb uptake. By combining these different approaches, we unraveled that cell wall components not only act in Ln adsorption but are also active signal effectors allowing cells to differentiate light and heavy Ln. This work paves the way for future investigations to the better understanding of Ln toxicity in higher eukaryotes.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Nancy, France
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | - Michel Chalot
- Laboratoire Chrono-Environnement, Université de Bourgogne Franche-Comté, CNRS, Besançon, France
- Université de Lorraine, Nancy, France
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, Nancy, France
- *Correspondence: Damien Blaudez,
| |
Collapse
|