1
|
Ivaneev A, Brzhezinskiy A, Karandashev V, Fedyunina N, Ermolin M, Fedotov P. Nanoparticles of dust as an emerging contaminant in urban environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:367. [PMID: 39167245 DOI: 10.1007/s10653-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Due to very high mobility in the environment and penetration ability into living organisms, nanoparticles (NPs) of urban dust pose a potential threat to human health and urban ecosystems. Currently, data on the chemical composition of NPs of urban dust, their fate in the environment, and corresponding risks are rather limited. In the present work, NPs of deposited urban dust have been comprehensively studied for the first time; NPs isolated from 78 samples of dust collected in Moscow, the largest megacity in Europe, being taken as example. The elemental composition, potential sources as well as environmental, ecological, and health risks of NPs of urban dust are assessed. It is found that dust NPs are extremely enriched by Cu, Hg, Zn, Mo, Sb, and Pb, and can serve as their carrier in urban environments. No regularities in the spatial distribution of elements have been found, probably, due to high mobility of dust NPs. High ecological and health risks caused by dust NPs are demonstrated. Source apportionment study has evaluated one natural and two anthropogenic sources of elements in NPs of urban dust; the contribution of natural and anthropogenic sources being comparable. It is also shown that dust NPs may be considered as an important carrier of trace elements in urban aquatic systems. Additionally, the risks associated with NPs and bulk samples of dust have been compared. The observed risks associated with NPs are significantly higher.
Collapse
Affiliation(s)
- Alexandr Ivaneev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991.
| | - Anton Brzhezinskiy
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- Russian Biotechnological University, Moscow, Russia, 125080
| | - Vasily Karandashev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Chernogolovka, Russia, 142432
| | - Natalia Fedyunina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- National University of Science and Technology 'MISIS', Moscow, Russia, 119049
| | - Mikhail Ermolin
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
| | - Petr Fedotov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- National University of Science and Technology 'MISIS', Moscow, Russia, 119049
| |
Collapse
|
2
|
Karthick Raja Namasivayam S, Priyanka S, Lavanya M, Krithika Shree S, Francis AL, Avinash GP, Arvind Bharani RS, Kavisri M, Moovendhan M. A review on vulnerable atmospheric aerosol nanoparticles: Sources, impact on the health, ecosystem and management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121644. [PMID: 38963970 DOI: 10.1016/j.jenvman.2024.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The Earth's atmosphere contains ultrafine particles known as aerosols, which can be either liquid or solid particles suspended in gas. These aerosols originate from both natural sources and human activities, termed primary and secondary sources respectively. They have significant impacts on the environment, particularly when they transform into ultrafine particles or aerosol nanoparticles, due to their extremely fine atomic structure. With this context in mind, this review aims to elucidate the fundamentals of atmospheric-derived aerosol nanoparticles, covering their various sources, impacts, and methods for control and management. Natural sources such as marine, volcanic, dust, and bioaerosols are discussed, along with anthropogenic sources like the combustion of fossil fuels, biomass, and industrial waste. Aerosol nanoparticles can have several detrimental effects on ecosystems, prompting the exploration and analysis of eco-friendly, sustainable technologies for their removal or mitigation.Despite the adverse effects highlighted in the review, attention is also given to the generation of aerosol-derived atmospheric nanoparticles from biomass sources. This finding provides valuable scientific evidence and background for researchers in fields such as epidemiology, aerobiology, and toxicology, particularly concerning atmospheric nanoparticles.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - S Priyanka
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - M Lavanya
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - S Krithika Shree
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - A L Francis
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - G P Avinash
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - R S Arvind Bharani
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - M Kavisri
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nādu, India
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
3
|
Hua C, Ma W, Zheng F, Zhang Y, Xie J, Ma L, Song B, Yan C, Li H, Liu Z, Liu Q, Kulmala M, Liu Y. Health risks and sources of trace elements and black carbon in PM 2.5 from 2019 to 2021 in Beijing. J Environ Sci (China) 2024; 142:69-82. [PMID: 38527897 DOI: 10.1016/j.jes.2023.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 03/27/2024]
Abstract
A comprehensive health risk assessment of PM2.5 is meaningful to understand the current status and directions regarding further improving air quality from the perspective of human health. In this study, we evaluated the health risks of PM2.5 as well as highly toxic inorganic components, including heavy metals (HMs) and black carbon (BC) based on long-term observations in Beijing from 2019 to 2021. Our results showed that the relative risks of chronic obstructive pulmonary disease, lung cancer, acute lower respiratory tract infection, ischemic heart disease, and stroke decreased by 4.07%-9.30% in 2020 and 2.12%-6.70% in 2021 compared with 2019. However, they were still at high levels ranging from 1.26 to 1.77, in particular, stroke showed the highest value in 2021. Mn had the highest hazard quotient (HQ, from 2.18 to 2.56) for adults from 2019 to 2021, while Ni, Cr, Pb, As, and BC showed high carcinogenic risks (CR > 1.0×10-6) for adults. The HQ values of Mn and As and the CR values of Pb and As showed constant or slight upwards trends during our observations, which is in contrast to the downward trends of other HMs and PM2.5. Mn, Cr, and BC are crucial toxicants in PM2.5. A significant shrink of southern region sourcesof HMs and BCshrank suggests the increased importance of local sources. Industry, dust, and biomass burning are the major contributors to the non-carcinogenic risks, while traffic emissions and industry are the dominant contributors to the carcinogenic risks in Beijing.
Collapse
Affiliation(s)
- Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiali Xie
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Boying Song
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Hongyan Li
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zhen Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Yang M, Wu QZ, Zhang YT, Leskinen A, Wang XF, Komppula M, Hakkarainen H, Roponen M, Jin NX, Tan WH, Xu SL, Lin LZ, Liu RQ, Zeng XW, Dong GH, Jalava PI. Toxicological evaluation and concentration of airborne PM 0.1 in high air pollution period in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171224. [PMID: 38402960 DOI: 10.1016/j.scitotenv.2024.171224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The emissions and exposure limits for airborne PM0.1 are lacking, with limited scientific data for toxicity. Therefore, we continuously monitored and calculated the number and mass concentrations of airborne PM0.1 in December 2017, January 2018 and March 2018 during the high pollution period in Guangzhou. We collected PM0.1 from the same period and analyzed their chemical components. A549, THP-1 and A549/THP-1 co-cultured cells were selected for exposure to PM0.1, and evaluated for toxicological responses. Our aims are to 1) measure and analyze the number and mass concentrations, and chemical components of PM0.1; 2) evaluate and compare PM0.1 toxicity to different airway cells models at different time points. Guangzhou had the highest mass concentration of PM0.1 in December 2017, while the number concentration was the lowest. Chemical components in PM0.1 vary significantly at different time periods, and the correlation between the chemical composition or source of PM0.1 and the mass and number concentration of PM0.1 was dissimilar. Exposure to PM0.1 disrupted cell membranes, impaired mitochondrial function, promoted the expression of inflammatory mediators, and interfered with DNA replication in the cell cycle. The damage caused by exposure to PM0.1 at different times exhibited variations across different types of cells. PM0.1 in March 2018 stimulated co-cultured cells to secrete more inflammatory mediators, and CMA was significantly related to the expression of them. Our study indicates that it is essential to monitor both the mass and number concentrations of PM0.1 throughout all seasons annually, as conventional toxicological experiments and the internal components of PM0.1 may not effectively reveal the health damages caused by elevated number levels of PM0.1.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Nan-Xiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Shu-Li Xu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pasi I Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
5
|
Vo LHT, Yoneda M, Nghiem TD, Sekiguchi K, Fujitani Y, Vu DN, Nguyen THT. Characterisation of polycyclic aromatic hydrocarbons associated with indoor PM 0.1 and PM 2.5 in Hanoi and implications for health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123138. [PMID: 38097160 DOI: 10.1016/j.envpol.2023.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) associated with indoor PM pose a high risk to human health because of their toxicity. A total of 160 daily samples of indoor PM2.5 and PM0.1 were collected in Hanoi and analysed for 15 PAHs. In general, the concentrations of carcinogenic PAHs (car-PAHs) accounted for 21% ± 2%, 19.1% ± 2%, and 26% ± 3% of the concentrations of 15 PAHs in PM2.5, PM0.1-2.5, and PM0.1, respectively. Higher percentages of car-PAHs were found in smaller fractions (PM0.1), which can be easily deposited deep in the pulmonary regions of the human respiratory tract. The concentrations of 15 PAHs were higher in winter than in summer. The most abundant PAH species were naphthalene and phenanthrene, accounting for 11%-21% and 19%-23%, respectively. The PAH content in PM0.1 was almost twice as high as those in PM2.5 and PM0.1-2.5. Principal component analysis found that vehicle emissions and the combustion of biomass and coal were the main outdoor sources of PAHs, whereas indoor sources included cooking activities, the combustion of incense, scented candles, and domestic uses in houses. According to the results, 60%-90% of the PM0.1-bound BaP(eq) was deposited in the alveoli region, whereas 63%-75% of the PM2.5-bound BaP(eq) was deposited in head airways (HA), implying that most of the particles deposited in the HA region were PM0.1-2.5. The contributions of dibenz[a,h]anthracene and benzo[a]pyrene were dominant and contributed from 36% to 51% and 31%-50%, respectively, to the carcinogenic potential, whereas benzo[a]pyrene contributed from 30% to 49% to the mutagenic potential for both size fractions. The incremental lifetime cancer risk, simulated by Monte Carlo simulation, was within the limits set by the US EPA, indicating an acceptable risk for the occupants. These results provide an additional scientific basis for protecting human health from exposure to indoor PAHs.
Collapse
Affiliation(s)
- Le-Ha T Vo
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 100000, Viet Nam
| | - Minoru Yoneda
- Department of Environmental Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Trung-Dung Nghiem
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 100000, Viet Nam.
| | - Kazuhiko Sekiguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama, 338- 8570, Japan
| | - Yuji Fujitani
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Duc Nam Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Viet Nam
| | - Thu-Hien T Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, 100000, Viet Nam
| |
Collapse
|
6
|
Sharma B, Sarkar S. Disease burden and health risk to rural communities of northeastern India from indoor cooking-related exposure to parent, oxygenated and alkylated PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167163. [PMID: 37730065 DOI: 10.1016/j.scitotenv.2023.167163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Exposure to a total of 51 targeted and non-targeted polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and alkylated derivatives associated with size-segregated aerosol was investigated in rural kitchens using liquefied petroleum gas (LPG), mixed biomass (MB) and firewood (FW) fuels in northeastern India. The averaged PM10-associated parent-, alkylated-, and oxygenated-PAHs concentrations increased notably from LPG (257, 54, and 116 ng m-3) to MB (838, 119, and 272 ng m-3) to FW-using kitchens (2762, 225, and 554 ng m-3), respectively. PAHs were preferentially associated with the PM1 fraction with contributions increasing from 80 % in LPG to 86 % in MB and 90 % in FW-using kitchens, which in turn was dominated by <0.25 μm particles (54-75 % of the total). A clear profile of enrichment of low-molecular weight PAHs in cleaner fuels (LPG) and a contrasting enrichment of high-molecular weight PAHs in biomass-based fuels was noted. The averaged internal dose of Benzo[a]pyrene equivalent was the lowest in the case of LPG (19 ng m-3), followed by MB (161 ng m-3) and the highest in FW users (782 ng m-3). Estimation of incremental lifetime cancer risk (ILCR) from PAH exposure revealed extremely high cancer risk in biomass users (factors of 8-40) compared to LPG. The potential years of life lost (PYLL) and PYLL rate averaged across kitchen categories was higher for lung cancer (PYLL: 10.55 ± 1.04 years; PYLL rate: 204 ± 426) compared to upper respiratory tract cancer (PYLL: 10.02 ± 0.05 years; PYLL rate: 4 ± 7), and the PYLL rates for biomass users were higher by factors of 9-56 as compared to LPG users. These findings stress the need for accelerated governmental intervention to ensure a quick transition from traditional biomass-based fuels to cleaner alternatives for the rural population of northeastern India.
Collapse
Affiliation(s)
- Bijay Sharma
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
7
|
Sharma B, Sarkar S, Bau S. Understanding population exposure to size-segregated aerosol and associated trace elements during residential cooking in northeastern India: Implications for disease burden and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162539. [PMID: 36871731 DOI: 10.1016/j.scitotenv.2023.162539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Mass-size distribution of respirable aerosol and 13 associated trace elements (TEs) were investigated in rural kitchens using liquefied petroleum gas (LPG), firewood and mixed biomass fuels across three northeastern Indian states. The averaged PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ΣTE concentrations were 403 and 30 μg m-3 for LPG, 2429 and 55 μg m-3 for firewood, and 1024 and 44 μg m-3 for mixed biomass-using kitchens. Mass-size distributions were tri-modal with peaks in the ultrafine (0.05-0.08 μm), accumulation (0.20-1.05 μm), and coarse (3.20-4.57 μm) modes. Respiratory deposition, estimated using the multiple path particle dosimetry model, ranged from 21 % to 58 % of the total concentration across fuel types and population age categories. Head, followed by pulmonary and tracheobronchial, was the most vulnerable deposition region, and children were the most susceptible age group. Inhalation risk assessment of TEs revealed significant non-carcinogenic as well as carcinogenic risk, especially for biomass fuel users. The potential years of life lost (PYLL) was the highest for chronic obstructive pulmonary disease (COPD: 15.9 ± 3.8 years) followed by lung cancer (10.3 ± 0.3 years) and pneumonia (10.1 ± 0.1 years), while the PYLL rate was also highest for COPD, with Cr(VI) being the major contributor. Overall, these findings reveal the significant health burden faced by the northeastern Indian population from indoor cooking using solid biomass fuels.
Collapse
Affiliation(s)
- Bijay Sharma
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| | - Sebastien Bau
- Laboratory of Aerosol Metrology, Institut National de Recherche et de Sécurité, Rue de Morvan, CS 60027, Vandoeuvre Cedex 54519, France
| |
Collapse
|
8
|
Gladović A, Petrović B, Vukelić D, Buha Djordjevic A, Ćurčić M, Đukić-Ćosić D, Šoštarić A, Antonijević B, Bulat Z. Carcinogenic and human health risk assessment of children's and adults' exposure to toxic metal(oid)s from air PM 10 in critical sites of the Republic of Serbia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61753-61765. [PMID: 36932311 DOI: 10.1007/s11356-023-26375-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 05/10/2023]
Abstract
With global urbanization and industrialization, air pollution has become an inevitable problem. Among air pollutants, toxic metals bound to particulate matter (PM) have a high hazardous potential, contributing to the development of several diseases, including various types of cancer. Due to PM pollution, Serbia is considered to be among the most polluted countries in Europe. Therefore, the objective of the study was to assess and characterize the non-carcinogenic and carcinogenic risks of children's and adults' exposure to metal(oid)s (Pb, Cd, Ni, and As) bound to PM10 in five of the most polluted areas in the Republic of Serbia (Subotica, Smederevo, Bor, Valjevo, and Kraljevo). Non-carcinogenic (HQ and HI) and carcinogenic risk (CR) were calculated using USEPA methodology. Our results show that PM10 concentrations exceeded the annual limit of 40 μg/m3 at four out of five monitoring sites (ranging from 44.33 to 63.25 μg/m3). Results obtained from Bor monitoring station show that safe limits were exceeded for both children and adults, indicating an unacceptable risk (> 1) obtained for inhalation exposure to the As (HQ = 6.14) and Cd (HQ = 1.17), while total HI was 7.43, which characterized the risk as unacceptable. For the same station, the CR value was 1.44E-04 (> 1 × 10-4). In other sites, the risks were acceptable. The characterized risk from exposure to the toxic elements via PM10 in critical locations in Serbia contributes to improving air quality by requiring regulatory organs to take new actions and adopt new measures to reduce air pollution.
Collapse
Affiliation(s)
- Ana Gladović
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Bojana Petrović
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia.
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Andrej Šoštarić
- Center for Eco-Toxicology, Unit for Air Quality Monitoring, Institute of Public Health of Belgrade, 11000, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović" and Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, 11000, Belgrade, Serbia
| |
Collapse
|
9
|
Chen TL, Lai CH, Chen YC, Ho YH, Chen AY, Hsiao TC. Source-oriented risk and lung-deposited surface area (LDSA) of ultrafine particles in a Southeast Asia urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161733. [PMID: 36682561 DOI: 10.1016/j.scitotenv.2023.161733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Submicron and ultrafine particle (UFP) exposure may be epidemiologically and toxicologically linked to pulmonary, neurodegenerative, and cardiovascular diseases. This study explores UFP and fine particle sources using a positive matrix factorization (PMF) model based on PM2.5 chemical compositions and particle number size distributions (PNSDs). The particle chemical composition and size distribution contributions are simultaneously identified to evaluate lung deposition and excess cancer risks. High correlations between the PNSD and chemical composition apportionment results were observed. Fresh and aged traffic particles dominated the number concentrations, while heterogeneous, photochemical reactions and/or regional transport may have resulted in secondary aerosol formation. Fresh and aged road traffic particle sources mostly contributed to the lung deposition dosage in the pulmonary region (~53 %), followed by the tracheobronchial (~30.4 %) and head regions (~16.6 %). However, lung-deposited surface area (LDSA) concentrations were dominated by aged road traffic (~39.2 %) and secondary aerosol (~33.2 %) sources. The excess cancer risks caused by Cr6+, Ni, and As were also mainly contributed to by aged road traffic (~31.7 %) and secondary aerosols (~67 %). The source apportionments based on the physical and chemical properties of aerosol particles are complementary, offering a health impact benchmark of UFPs in a Southeast Asia urban city.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Chen-Hao Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsuan Ho
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Albert Y Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Amnuaylojaroen T, Parasin N. Future Health Risk Assessment of Exposure to PM 2.5 in Different Age Groups of Children in Northern Thailand. TOXICS 2023; 11:291. [PMID: 36977056 PMCID: PMC10057456 DOI: 10.3390/toxics11030291] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter with a diameter less than 2.5 (PM2.5) is one of the major threats posed by air pollution to human health. It penetrates the respiratory system, particularly the lungs. In northern Thailand, the PM2.5 concentrations have significantly increased in the past decade, becoming a major concern for the health of children. This study aimed to assess the health risk of PM2.5 in different age groups of children in northern Thailand between 2020 and 2029. Based on the PM2.5 data from the simulation of the Nested Regional Climate Model with Chemistry (NRCM-Chem), the hazard quotient (HQ) was used to estimate the possible risk from PM2.5 exposure in children. In general, all age groups of children in northern Thailand will tend to experience the threat of PM2.5 in the future. In the context of age-related development periods, infants are at a higher risk than other groups (toddlers, young children, school age and adolescents), but adolescents also have a lower risk of exposure to PM2.5, albeit maintaining a high HQ value (>1). Moreover, the analysis of risk assessment in different age groups of children revealed that PM2.5 exposure might indeed affect adolescent risk differently depending on gender, with males generally at a heightened risk than females in adolescence.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- Department of Environmental Science, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand;
- Atmospheric Pollution and Climate Research Unit, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
11
|
Suriyawong P, Chuetor S, Samae H, Piriyakarnsakul S, Amin M, Furuuchi M, Hata M, Inerb M, Phairuang W. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 2023; 9:e14261. [PMID: 36938473 PMCID: PMC10018570 DOI: 10.1016/j.heliyon.2023.e14261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Many of the current atmospheric environmental problems facing Thailand are linked to air pollution that is largely derived from biomass burning. Different parts of Thailand have distinctive sources of biomass emissions that affect air quality. The main contributors to atmospheric particulate matter (PM), especially the PM2.5 fraction in Thailand, were highlighted in a recent study of PM derived from biomass burning. This review is divided into six sections. Section one is an introduction to biomass burning in Thailand. Section two covers issues related to biomass burning for each of the four main regions in Thailand, including Northern, Northeastern, Central, and Southern Thailand. In northern Thailand, forest fires and the burning of crop residues have contributed to air quality in the past decade. The northeast region is mainly affected by the burning of agricultural residues. However, the main contributor to PM in the Bangkok Metropolitan Region is motor vehicles and crop burning. In Southern Thailand, the impact of agoindustries, biomass combustion, and possible agricultural residue burning are the primary sources, and cross-border pollution is also important. The third section concerns the effect of biomass burning on human health. Finally, perspectives, new challenges, and policy recommendations are made concerning improving air quality in Thailand, e.g., forest fuel management and biomass utilization. The overall conclusions point to issues that will have a long-term impact on achieving a blue sky over Thailand through the development of coherent policies and the management of air pollution and sharing this knowledge with a broader audience.
Collapse
Affiliation(s)
- Phuchiwan Suriyawong
- Research Unit for Energy, Economic, And Ecological Management (3E), Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800 Thailand
| | - Hisam Samae
- Research Unit for Energy, Economic, And Ecological Management (3E), Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Suthida Piriyakarnsakul
- Office of National Higher Education Science Research and Innovation Policy Council, Bangkok 10330 Thailand
| | - Muhammad Amin
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
- Faculty of Engineering, Maritim University of Raja Ali Haji, Tanjung Pinang, Kepulauan Riau 29115, Indonesia
| | - Masami Furuuchi
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mitsuhiko Hata
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
| | - Muanfun Inerb
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
- Department of Geography, Faculty of Social Sciences, Chiang Mai University, Muang, Chiang Mai 50200 Thailand
- Corresponding author. Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan.
| |
Collapse
|
12
|
Abdillah SFI, Wang YF. Ambient ultrafine particle (PM 0.1): Sources, characteristics, measurements and exposure implications on human health. ENVIRONMENTAL RESEARCH 2023; 218:115061. [PMID: 36525995 DOI: 10.1016/j.envres.2022.115061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
13
|
Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The concentration of total suspended particles (TSP) and nanoparticles (PM0.1) over Hat Yai city, Songkhla province, southern Thailand was measured in 2019. Organic carbon (OC) and elemental carbon (EC) were evaluated by carbon aerosol analyzer (IMPROVE-TOR) method. Thirteen trace elements including Al, Ba, K, Cu, Cr, Fe, Mg, Mn, Na, Ni, Ti, Pb, and Zn were evaluated by ICP-OES. Annual average TSP and PM0.1 mass concentrations were determined to be 58.3 ± 7.8 and 10.4 ± 1.2 µg/m3, respectively. The highest levels of PM occurred in the wet season with the corresponding values for the dry seasons being lower. The averaged OC/EC ratio ranged from 3.8–4.2 (TSP) and 2.5–2.7 (PM0.1). The char to soot ratios were constantly less than 1.0 for both TSP and PM0.1, indicating that land transportation is the main emission source. A principal component analysis (PCA) revealed that road transportation, industry, and biomass burning are the key sources of these particles. However, PM arising from Indonesian peatland fires causes an increase in the carbon and trace element concentrations in southern Thailand. The findings make useful information for air quality management and strategies for controlling this problem, based on a source apportionment analysis.
Collapse
|