1
|
Huang T, Feng YX, Zhou L, Zhang SW. Enhanced self-cementation of arsenic-contaminated soil via activation of non-thermal plasma-irradiated ferromanganese: A mechanistic investigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124984. [PMID: 39303934 DOI: 10.1016/j.envpol.2024.124984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The self-cementation characteristics of arsenic (As)-contaminated soil were comprehensively investigated in this study. Different non-thermal plasma-irradiated binary (hydro)oxides of polyvalent ferromanganese (poly-Fe-Mn) were synthesized and exploratorily dispersed to soil samples to activate solidification and stabilization during the self-cemented process. The maximum compressive strength of 56.35 MPa and the lowest leaching toxicity of 0.004 mg/L were obtained in the proof test under optimal conditions (i.e., the mass ratio of the poly-Fe-Mn to the soil sample of 0.05; the mass ratio of the composite alkali activator (NaOH + CaO) to the soil sample of 0.25; the mass ratio of CaO to NaOH of 1.5; the mass ratio of the DI water to the binder of 0.515). The composite alkaline activator primarily contributed to the strength formation of the self-cemented matrix while the poly-Fe-Mn significantly influenced the reduction of the As-leaching toxicities. The poly-Fe-Mn maintained diffusion-controlled polycondensation and strengthened the nucleation process during self-cementation. The amount of water and the dosage of poly-Fe-Mn caused an interactive influence on the self-cemented solidification of contaminated soils. The solidified samples with poly-Fe-Mn exhibited better thermal decomposition than their counterparts, reflecting the enhancement of poly-Fe-Mn to the matrix. Some minerals including C-S-H, kaolinite, gehlenite, diopside sodian, augite, and albite were matched in the samples, directly demonstrating the geopolymerization-steered self-cementation of the As soil. The employment of poly-Fe-Mn not only reinforced the immobilization of As pollutants in the matrix but also induced the self-cementation of soils by intensifying the composite alkaline-activated geopolymerization kinetics.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China.
| | - Yu-Xuan Feng
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Lulu Zhou
- School of Environmental and Safety Engineering Changzhou University, No.1 Gehu Road, Wujing District, Changzhou, 213164, China
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|
2
|
Cao W, Lv X, Ban J, Lu JX, Liu Z, Chen Z, Poon CS. High-efficient stabilization and solidification of municipal solid waste incineration fly ash by synergy of alkali treatment and supersulfated cement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124261. [PMID: 38815891 DOI: 10.1016/j.envpol.2024.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Municipal solid waste incineration fly ash (IFA) designated as hazardous waste poses risks to environment and human health. This study introduces a novel approach for the stabilization and solidification (S/S) of IFA: a combined approach involving alkali treatment and immobilization in low-carbon supersulfated cement (SSC). The impact of varying temperatures of alkali solution on the chemical and mineralogical compositions, as well as the pozzolanic reactivity of IFA, and the removal efficiency of heavy metals and metallic aluminum (Al) were examined. The physical characteristics, hydration kinetics and effectiveness of SSC in immobilizing IFA were also analyzed. Results showed that alkali treatment at 25 °C effectively eliminated heavy metals like manganese (Mn), barium (Ba), nickel (Ni), and chromium (Cr) to safe levels and totally removed the metallic Al, while enhancing the pozzolanic reactivity of IFA. By incorporating the alkali-treated IFA and filtrate, the density, compressive strength and hydration reaction of SSC were improved, resulting in higher hydration degree, finer pore structure, and denser microstructure compared to untreated IFA. The rich presence of calcium-aluminosilicate-hydrate (C-(A)-S-H) and ettringite (AFt) in SSC facilitated the efficient stabilization and solidification of heavy metals, leading to a significant decrease in their leaching potential. The use of SSC for treating Ca(OH)2- and 25°C-treated IFA could achieve high strength and high-efficient immobilization.
Collapse
Affiliation(s)
- Wenxiang Cao
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xuesen Lv
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiaxing Ban
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jian-Xin Lu
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Ze Liu
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Zhen Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chi Sun Poon
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
Zhang M, Wu Y, Li Y, Zhou R, Yu H, Zhu X, Quan H, Li Y. Risk assessment for the long-term stability of fly ash-based cementitious material containing arsenic: Dynamic and semidynamic leaching. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123361. [PMID: 38228264 DOI: 10.1016/j.envpol.2024.123361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Fly ash from municipal solid waste incineration (MSWIFA) contains leachable heavy metals (HMs), and the environmental risk of contained HMs is an important concern for its safe treatment and disposal. This paper presents a dynamic leaching test of fly ash-based cementitious materials containing arsenic (FCAC) in three particle sizes based on an innovative simulation of two acid rainfall conditions to investigate the long-term stability of FCAC under acid rain conditions. As well as semi-dynamic leaching test by simulating FCAC in three scenarios. Furthermore, the long-term stability risk of FCAC is evaluated using a sequential extraction procedure (SEP) and the potential risk assessment index. Results showed that the Al3+ in the FCAC dissolved and reacted with the OH- in solution to form Al(OH)3 colloids as the leaching time increased. Moreover, the oxidation of sulfide minerals in the slag produced oxidants, such as H2SO4 and Fe2(SO4)3, which further aggravated the oxidative dissolution of sulfides, thereby resulting in an overall decreasing pH value of the leachate. In addition, due to the varying particle sizes of the FCAC, surface area size, and adsorption site changes, the arsenic leaching process showed three stages of leaching characteristics, namely, initial, rapid, and slow release, with a maximum leaching concentration of 2.42 mg/L, the cumulative release of 133.78 mg/kg, and the cumulative release rate of 2.32%. The SEP test revealed that the reduced state of HMs in the raw slag was lowered substantially, and the acid extractable state and residual state of HMs were increased, which was conducive to lessening the risk of FCAC. Overall, the geological polymerization reaction of MSWIFA is a viable and promising solution to stabilize mining and industrial wastes and repurpose the wastes into construction materials.
Collapse
Affiliation(s)
- Mingliang Zhang
- College of Agriculture and Biological Science, Dali University, Dali, 671003, Yunnan, China; Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali, 671003, Yunnan, China
| | - Ying Wu
- College of Agriculture and Biological Science, Dali University, Dali, 671003, Yunnan, China; Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali, 671003, Yunnan, China
| | - Yinmei Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, Yunnan, China; Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali, 671003, Yunnan, China
| | - Rongwu Zhou
- College of Agriculture and Biological Science, Dali University, Dali, 671003, Yunnan, China; Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali, 671003, Yunnan, China
| | - Huijuan Yu
- College of Agriculture and Biological Science, Dali University, Dali, 671003, Yunnan, China; Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali, 671003, Yunnan, China
| | - Xing Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Hong Quan
- College of Agriculture and Biological Science, Dali University, Dali, 671003, Yunnan, China; Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali, 671003, Yunnan, China
| | - Yuancheng Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, Yunnan, China; Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali, 671003, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
| |
Collapse
|
4
|
Zhang H, Ji Z, Chen W, Pei Y. Codisposal of landfill leachate concentrate and antimony mine soils using a one-part geopolymer system for cationic and anionic heavy metals immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132909. [PMID: 37979425 DOI: 10.1016/j.jhazmat.2023.132909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023]
Abstract
Geopolymer solidification/stabilization technology has developed rapidly in the remediation field of heavy metal-contaminated soil. However, geopolymers exhibit low anionic heavy metal immobilization efficiency due to their electronegativity and alkali activation characteristics. This study constructed a one-part blast furnace slag-based geopolymer system using landfill leachate concentrate (LLC) as chlorine and humic acid sources and achieved the solidification/stabilization of cations (Cd, Cu, Hg, and Pb) and anions (Sb and As) in the antimony mine soils (AMS). The LLC addition increased the Sb and As fixation rates from 92%∼94% and 82∼86%, respectively, to over 99%, reducing the leaching concentration of all heavy metal ions to the ppb level. LLC improved the chemical stability and physical encapsulation of Sb/As in three ways: inducing a Friedel's salt (FS) formation, enhancing humic acid complexation/chelation, and promoting geopolymerization. Wet curing was more conducive to FS formation in the geopolymer than dry curing and increased the 28-day compressive strength by 38.5%. Due to the SiO2 skeleton support effect in AMS, a 30 wt% AMS addition was beneficial for geopolymer strength development. Our study provided a harmless method for the codisposal of LLC and AMS and improved the efficiency of geopolymer fixation of complex heavy metal cations and anions.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zehua Ji
- Research Center for Water Quality and Ecology, Tsinghua University, Beijing 100084, PR China
| | - Weitong Chen
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
5
|
Li D, Ramos AO, Bah A, Li F. Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119501. [PMID: 37952378 DOI: 10.1016/j.jenvman.2023.119501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Lead-zinc mine tailing waste can have significant environmental impacts due to its potential for releasing toxic elements into the surroundings and contaminating local soil and water. This paper focuses on the valorization of lead-zinc mine tailing waste through geopolymerization, a sustainable process that can transform waste into useful building materials. Geopolymer matrixes with various mixtures of mine tailing (0-100 wt%), fly ash (0-100 wt%), and flue gas desulfurization (FGD) gypsum (0, 5, and 10 wt%) were synthesized using different activators such as sodium hydroxide (NaOH, 5, 10 M) and sodium silicate (waterglass, 0, 12.5 wt%). Visual inspection, unconfined compressive strength (UCS) testing, and microstructural analysis (e.g., X-ray diffractions, Fourier transforms infrared, and scanning electron microscopy) were employed for the physicochemical characterization of these geopolymers. The highest UCS value of 24.1 MPa was observed in a geopolymer specimen with 100 wt% fly ash and activated by 10 M NaOH and cured for 28 days. The blending of mine tailings would result in strength recession, e.g., the integrating of 25 wt% tailings showed a UCS of 12.3 MPa. The addition of 5 wt% gypsums can improve early strength development, particularly for matrixes with 50-75 wt% fly ash. But adding 10 wt% gypsums would lead to strength retrogression of the resulting geopolymers. The introduction of waterglass can also facilitate geopolymerization and improve strength development. However, the cointegrating of gypsum and waterglass can induce an antagonistic effect and lead to the collapse of the geopolymer specimens. The findings revealed that the strength and microstructural properties of geopolymer are determined by the matrix compositions, alkaline activators, etc. Effective regulation of these factors can produce geopolymer matrixes with high dimensional stability and UCS that well meet construction material standards. Overall, the study indicates that geopolymerization represents a viable and eco-friendly solution for valorizing lead-zinc mine tailing waste and gaining alternative building materials.
Collapse
Affiliation(s)
- Dawei Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Andrea O Ramos
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Alseny Bah
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Feihu Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
6
|
Zhu F, Kong L, He M, Fang D, Hu X, Peng X. Effective reduction and recovery of As(III) and As(V) from alkaline wastewater by thiourea dioxide: Efficiency and mechanism. WATER RESEARCH 2023; 243:120355. [PMID: 37506638 DOI: 10.1016/j.watres.2023.120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
For alkaline wastewater with high arsenic concentration, the traditional lime precipitation inevitably produces large amounts of hazardous waste. Herein, a heat-activated reduction method employing thiourea dioxide (TDO) as the reductant was proposed to efficiently remove and recover As(III)/As(V) from alkaline wastewater in the form of valuable As(0). More than 99.9% of As(III)/As(V) (2-400 mM) were reduced to As(0) with a high purity of more than 99.5 wt% by TDO within 30 min. The highly reductive eaq- and SO2- radical generated during TDO decomposition contribute to the arsenic reduction, and the contribution ratios of eaq- and SO2- radical were estimated to be approximately 57.6% and 42.4% for As(III) removal and 62.2% and 37.8% for As(V) removal, respectively. The arsenic reduction was greatly improved by increasing pH and temperature, which could accelerate the cleavage of C-S bond in TDO for the eaq- and SO2- formation. The presence of dissolved oxygen, which can not only scavenge eaq-/SO2- but also directly oxidize SO22-, had a negative effect on the arsenic removal. The presence of CO32- slightly suppressed the arsenic removal due to the eaq- scavenging effect while SiO32-, PO43-, Cl-, SO42- and NH4+ had negligible effects. The proposed method was a potential technology for the efficient removal and reduction of arsenic in alkaline wastewater.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Duxian Fang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyun Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Tian X, Liu K, Yang X, Jiang T, Chen B, Tian Z, Wu J, Xia L, Huang D, Peng H. Synthesis of metakaolin-based geopolymer foamed materials using municipal solid waste incineration fly ash as a foaming agent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:101-111. [PMID: 37421822 DOI: 10.1016/j.wasman.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The existence of metallic aluminum in municipal solid waste incineration fly ash (MSWIFA) makes it challenging to recycle MSWIFA into cement materials because expansion occurs in the resultant matrices. Geopolymer-foamed materials (GFMs) are gaining attention in the field of porous materials due to their high-temperature stability, low thermal conductivity and low CO2 emission. This work aimed to utilize MSWIFA as a foaming agent to synthesize GFMs. The physical properties, pore structure, compressive strength and thermal conductivity were analyzed to assess different GFMs which were synthesized with various MSWIFA and stabilizing agent dosages. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis were conducted to characterize the phase transformation of the GFMs. Results showed that when MSWIFA content was increased from 20 to 50%, the porosity of GFMs increased from 63.5 to 73.7%, and bulk density decreased from 890 to 690 kg/m3. The addition of stabilizing agent could trap the foam, refine the cell size, and homogenize the cell size range. With the stabilizing agent increase from 0 to 4%, the porosity increased from 69.9 to 76.8%, and the bulk density decreased from 800 to 620 kg/m3. The thermal conductivity decreased with increasing MSWIFA from 20 to 50%, and stabilizing agent dosage from 0 to 4%. Compared with the collected data from references, a higher compressive strength can be obtained at the same level of thermal conductivity for GFMs synthesized with MSWIFA as a foaming agent. Additionally, the foaming effect of MSWIFA results from the H2 release. The addition of MSWIFA changed both the crystal phase and gel composition, whereas the stabilizing agent dosage had little impact on the phase composition.
Collapse
Affiliation(s)
- Xiang Tian
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Kuizhou Liu
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xuetong Yang
- Research Group LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B 5, B-8500 Kortrijk, Belgium.
| | - Tianyong Jiang
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Bohao Chen
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhongchu Tian
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jie Wu
- Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 530, San Luis Potosi 78210, Mexico
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Dunwen Huang
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Hui Peng
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
8
|
Biswas R, Rahul S, Pal SK, Sarkar A. Fabrication, characterization and performance analysis of a two-step arsenic bio-filter column using Delftia spp. BAs29 and fired red mud pellets. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4257-4273. [PMID: 36719609 DOI: 10.1007/s10653-022-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Arsenic (As) is considered to be a grave inorganic pollutant, contaminating major aquifers worldwide. In this study, a two-step approach has been designed to combat this toxic metalloid by combining a highly efficient As (III) oxidizing bacteria; Delftia sp. BAs29 and fired red mud pellets to remove the total As from groundwater including both As (III) and As (V) ions. The maximum capacity of As (III) oxidation by Delftia sp. BAs29 was seen to be 95.65% for 500 ml of As contaminated groundwater using an optimized As (III) concentration of 300 ppb and 6.5 g of bacterial cell mass for 7 days. The second step indicated the maximum As (V) adsorption capacity by the stacked red mud pellets to be 97.91% for 500 ml of As contaminated groundwater using the optimized pore size of 106-125 μm for 7 days. The efficiency of As removal increased to 98.76% at a flow rate of 50 ml/h on combining of both the steps. In addition, the morphological properties, chemical composition, and the crystal structure of the As (V) adsorbed red mud pellets were characterized. The techno-economic feasibility of this entire unit was studied using SuperPro 10 software to estimate its optimal demand and potential. Hence, it is believed that scaling up of this two-step bio-filter column can serve as a potent filtration unit to eliminate As, both at the household and industrial level in the near future.
Collapse
Affiliation(s)
- Rimi Biswas
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India
| | - S Rahul
- Department of Biotechnology, Indian Institute of Technology, Madras, 600036, India
| | - Sumit Kumar Pal
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
9
|
Li T, Wang B. Effect and mechanism of nano-alumina on early hydration properties and heavy metals solidification/stabilization of alkali-activated MSWI fly ash solidified body. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131327. [PMID: 37027917 DOI: 10.1016/j.jhazmat.2023.131327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash has serious pollution. It needs to be solidification/stabilization (S/S) to sanitary landfill as quickly as possible. In order to achieve the objective, the early hydration properties of alkali-activated MSWI fly ash solidified body were investigated in this paper. Meanwhile, nano-alumina was utilized as an agent to optimize the early performance. Therefore, the mechanical properties, environmental safety, hydration process and mechanisms of heavy metals S/S were explored. The results showed that after adding nano-alumina, the leaching concentration of Pb and Zn in solidified bodies after 3 d curing was significantly reduced by 49.7-63% and 65.8-76.1%, respectively, and the compressive strength was enhanced by 10.2-55.9%. Nano-alumina improved the hydration process, and the predominant hydration products in solidified bodies were C-S-H gels and C-A-S-H gels. Meanwhile, nano-alumina could obviously increase the most stable chemical speciation (residual state) ratio of heavy metals in solidified bodies. Pore structure data showed that, due to the filling effect and pozzolanic effect of nano-alumina, the porosity has been reduced and the ratio of harmless pore structure has been increased. Therefore, it can be concluded that solidified bodies mainly solidify MSWI fly ash by physical adsorption, physical encapsulation and chemical bonding.
Collapse
Affiliation(s)
- Tianru Li
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Baomin Wang
- School of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
10
|
Zhang W, Li JS, Huang X, Chen Z, Lang L, Huang K. Unraveling the cation adsorption of geopolymer binder: A molecular dynamics study. CHEMOSPHERE 2023:139118. [PMID: 37271468 DOI: 10.1016/j.chemosphere.2023.139118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Geopolymers play a significant role in remediation of heavy metal contamination and are attracting increasing interests. Sodium aluminosilicate hydrate (NASH) is the prime hydration substance of geopolymers which exhibits excellent adsorption capacity, however, the mechanism of metal cation adsorption at the NASH interface remains unclear. In this study, the adsorption behavior of cations at the NASH interface was investigated in depth, and the effects of Si/Al ratios, ion concentration and ion type on adsorption behavior were also analyzed. Furthermore, three Si/Al ratio models of NASH gel were modified and developed by molecular dynamics simulation, and validated by experiments. The result showed that electrostatic attraction and ion exchange played the major role in adsorbing three cations on the surface of NASH gel. For cations with the same charge number, ionic radius was inversely proportional to the cation exchange and adsorption capacity. Cations with lower ionic potential, among those with different charge numbers, were easier to be adsorbed onto the NASH surface. Therefore, the adsorption capacity of NASH for the three adsorbents was in the order of Na+ > Cs+ > Pb2+. The adsorption capacity of NASH gel for cations increased with the increasing of Al/Si and decreased with the increasing of cation concentration, which was attributed to the increased electrostatic attraction on the NASH surface and the limited number of adsorption sites. The derived microstructure and dynamics information are beneficial for profoundly understanding the adsorption mechanisms of geopolymers on cations.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China.
| | - Xiao Huang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China
| | - Zhen Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China
| | - Lei Lang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China
| | - Kang Huang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Huang T, Song D, Zhou L, Pan L, Zhang SW. Self-alkali-activated self-cementation achievement and mechanism exploration for the synergistic treatment of the municipal solid waste incineration fly ashes and the arsenic-contaminated soils. CHEMOSPHERE 2023; 325:138397. [PMID: 36925014 DOI: 10.1016/j.chemosphere.2023.138397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The feasibility and potential mechanisms of the self-alkali activation brought by municipal solid waste incineration (MSWI) fly ashes to the self-cementation of arsenic-contaminated soils were quantitatively evaluated and comprehensively analyzed to avoid the additional application of the alkali activators and binder materials traditionally. The employment of the two kinds of precursor materials achieved the self-alkali-activated self-cementation ('double self') under ambient conditions. The largest compressive strength (MPa) of 25.64 and lowest leaching toxicities (mg/L) of 21.05, 2.86, 0.08, 0.02, 2.05, and 0.34 for Zn, Cu, Cr, Cd, Pb, and As were obtained in the solidified matrix. Geopolymerization kinetics of the 'double self' cementation can be mathematically fitted by the Johnson-Mehl-Avrami-Kolmogorov model. CaClOH and halite in the MSWI fly ashes set up the self-alkali activation by reacting with the kaolinite and quartz in soils contaminated with arsenic by forming layered hydration and three-dimensional geopolymerization products to push for self-cementation.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Dongping Song
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Longwei Pan
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|
12
|
Bah A, Jin J, Ramos AO, Bao Y, Ma M, Li F. Arsenic(V) immobilization in fly ash and mine tailing-based geopolymers: Performance and mechanism insight. CHEMOSPHERE 2022; 306:135636. [PMID: 35810868 DOI: 10.1016/j.chemosphere.2022.135636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Global mining activities produce thousands of millions of toxic-bearing mine tailing (MT) wastes each year. Storage of the mine tailings not only encroaches upon large areas of cropland but also arouses additional ecological and environmental risks. Herein we demonstrate that geopolymerization of a mixture of the toxic-bearing mine tailings and the coal fly ash (FA) can effectively immobilize exogenous arsenic (As) species in addition to inherent As from the raw materials. The geopolymers also possess high compressive strengths (e.g., >25 MPa for specimens with 54 wt% FA and activated with 10 M sodium hydroxide (NaOH)), allowing them to be further used as low-carbon, cement-free building materials. The geopolymer strength was found to depend clearly upon the NaOH concentration, the FA content, and the curing time, with the maximum being 37.07 MPa for a specimen with 54 wt% FA, 0.03 wt% As, activated with 10 M NaOH and cured for 28 days. Leaching tests showed that all specimens achieved an immobilization efficiency as high as 95.4% toward As, and that both the short-term and long-term leachabilities of all toxic elements are far below the standard maximum contaminant levels. Microstructural analyses indicate that calcite, calcium silicate, and calcium silicate hydroxide are likely to play a crucial role in immobilizing As species and heavy metals of concern in the geopolymer matrixes. Given the superior mechanical strengths and long-term stabilities, the FA/MT-based geopolymers demonstrate a promising low-carbon material for both the remediation of As-bearing lands and the construction industry.
Collapse
Affiliation(s)
- Alseny Bah
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu Road, Nanjing, 210044, China
| | - Jie Jin
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu Road, Nanjing, 210044, China
| | - Andrea O Ramos
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu Road, Nanjing, 210044, China
| | - Yang Bao
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu Road, Nanjing, 210044, China
| | - Mengyu Ma
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu Road, Nanjing, 210044, China
| | - Feihu Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu Road, Nanjing, 210044, China.
| |
Collapse
|
13
|
Quan H, Yu HJ, Yang X, Lv DP, Zhu X, Li YC. Long-Term Stabilization/Solidification of Arsenic-Contaminated Sludge by a Blast Furnace Slag-Based Cementitious Material: Functions of CaO and NaCl. ACS OMEGA 2022; 7:32631-32639. [PMID: 36119981 PMCID: PMC9475631 DOI: 10.1021/acsomega.2c04302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a kind of element widely distributed in the environment that may pose a threat to the ecological environment and human health, while effective remediation and sustainable utilization of arsenic-containing sludge is a challenge. Based on stabilization/solidification blast furnace slag-based cementitious materials (BCMs), this study innovatively proposes to improve the arsenic (As) solidification efficiency and long-term stability by using the activation mode of CaO and NaCl. The effects of different factors on the properties of the BCM were measured by unconfined compressive strength (UCS) tests, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The long-term stability and safety of the BCM were verified by leaching toxicity and improved three stage continuous extraction method (BCR) tests. Experimental results show that the addition of CaO provides conditions for the formation of ettringite (AFt), thus promoting the crystal growth of AFt. The addition of NaCl can promote the formation of Cl-AFt and play a good long-term stabilizing role. When the content of the alkali activator is 10% and the modulus is 1.0, the contents of CaO and NaCl are 10 and 1%, respectively. The BCM has the best efficiency in terms of UCS and As solidification. The UCS at 28 days was 5.4 MPa, and the leaching concentration of As was 0.309 mg/L, and the As solidification efficiency was up to 99.9%. In the improved BCR test, the proportions of residual and oxidizable states of arsenic increased by 19.6 and 13.5%, respectively, and the stability of heavy metals improved. These findings show that the BCM has good long-term stability and safety. Overall, this study shows that CaO and NaCl significantly increase the output of AFt and achieve the purpose of efficient and stable solidification of As by the BCM.
Collapse
Affiliation(s)
- Hong Quan
- College
of Agriculture and Biological Sciences, Dali University, Dali, Yunnan 671003, China
- Key
Laboratory of Ecological Microbial Remediation Technology of Yunnan
Higher Education Institutes, Dali University, Dali, Yunnan 671003, China
| | - Hui-juan Yu
- College
of Agriculture and Biological Sciences, Dali University, Dali, Yunnan 671003, China
- Key
Laboratory of Ecological Microbial Remediation Technology of Yunnan
Higher Education Institutes, Dali University, Dali, Yunnan 671003, China
| | - Xue Yang
- College
of Agriculture and Biological Sciences, Dali University, Dali, Yunnan 671003, China
- Key
Laboratory of Ecological Microbial Remediation Technology of Yunnan
Higher Education Institutes, Dali University, Dali, Yunnan 671003, China
| | - Dong-peng Lv
- College
of Agriculture and Biological Sciences, Dali University, Dali, Yunnan 671003, China
- Key
Laboratory of Ecological Microbial Remediation Technology of Yunnan
Higher Education Institutes, Dali University, Dali, Yunnan 671003, China
| | - Xing Zhu
- Faculty
of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Yuan-cheng Li
- College
of Agriculture and Biological Sciences, Dali University, Dali, Yunnan 671003, China
- Key
Laboratory of Ecological Microbial Remediation Technology of Yunnan
Higher Education Institutes, Dali University, Dali, Yunnan 671003, China
- Faculty
of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| |
Collapse
|
14
|
Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete. Gels 2022; 8:gels8060341. [PMID: 35735685 PMCID: PMC9222754 DOI: 10.3390/gels8060341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Geopolymers are environmentally friendly materials made from industrial solid waste with high silicon and aluminum contents, and municipal solid waste incineration fly ash (MFA) contains active ingredients such as Si, Al and Ca. According to this fact, a green and low-carbon geopolymer concrete was prepared using MFA as a partial replacement for metakaolin in this study. The mechanical properties of the MFA geopolymer concrete (MFA-GPC) were investigated through a series of experiments, including a compressive strength test, splitting tensile strength test, elastic modulus test and three-point bending fracture test. The effect of the MFA replacement ratio on the microstructure of MFA-GPC was investigated by SEM test, XRD analysis and FTIR analysis. MFA replacement ratios incorporated in GPC were 5%, 10%, 15%, 20%, 25%, 30%, 35% and 40% by replacing metakaolin with equal quality in this study. In addition, toxic leaching tests of MFA and MFA-GPC were performed by ICP-AES to evaluate the safety of MFA-GPC. The results indicated that the mechanical properties of MFA-GPC decreased with the increase of the MFA replacement ratio. Compared with the reference group of GPC without MFA, the maximum reduction rates of the cubic compressive strength, splitting tensile strength, axial compressive strength, elastic modulus, initiation fracture toughness, unstable fracture toughness and fracture energy of MFA-GPC were 83%, 81%, 78%, 93%, 77%, 73% and 61%, respectively. The microstructure of MFA-GPC was porous and carbonized; however, the type of hydrated gel products was still a calcium silicoaluminate-based silicoaluminate gel. Moreover, the leaching content of heavy metals from MFA-GPC was lower than that of the standard limit. In general, the appropriate amount of MFA can be used to prepare GPC, and its mechanical properties can meet the engineering requirements, but the amount of MFA should not be too high.
Collapse
|