1
|
Shan T, Wang B, Tu W, Huang F, Yang W, Xiang M, Luo X. Adsorption and biodegradation of butyl xanthate in mine water by Pseudomonas sp. immobilized on yak dung biochar. ENVIRONMENTAL RESEARCH 2025; 264:120300. [PMID: 39515552 DOI: 10.1016/j.envres.2024.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The butyl xanthate (BX) in mining wastewater poses significant environmental challenges due to its toxicity and persistence. This study aimed to evaluate the effectiveness of Pseudomonas sp. immobilized on yak dung biochar (Ps.@YDBC600) for BX degradation, emphasizing the synergistic effects of biochar adsorption and microbial degradation. BX removal efficiency of free Pseudomonas sp. cells was assessed under various environmental conditions, with optimal degradation observed at 30 °C and an initial pH of 5.0. Yak dung biochar prepared at 600 °C (YDBC600) was selected due to its high surface area, porosity, and favorable adsorption properties, enhancing the immobilization and activity of Pseudomonas sp. The absorption of BX by biochar followed a two-compartment first-order kinetic model and primarily involved hydrogen bonding, hydrophobic interactions, and pore filling. The primary crystalline mineral component of YDBC600 and Ps.@YDBC600 before and after the adsorption and degradation of BX was SiO₂. The Ps.@YDBC600 was shown to significantly enhance BX removal efficiency compared to free Pseudomonas sp. cells or biochar alone. Molecular studies indicated that biochar facilitated BX degradation by providing a stable environment for Pseudomonas sp. and optimizing metabolic resource allocation. The primary by-products, including CS₂, HS-, ROCOS-, ROCSSH and (ROCSS)₂ were effectively minimized (each by-product was reduced more than 80%), reducing secondary pollution. These findings demonstrated the potential of Pseudomonas sp. immobilized on biochar as an effective approach for treating BX-contaminated mining wastewater, offering a sustainable approach to environmental remediation and management.
Collapse
Affiliation(s)
- Tingqian Shan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China.
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Wenguang Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Mengyang Xiang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| |
Collapse
|
2
|
Qu X, Niu Q, Sheng C, Xia M, Zhang C, Qu X, Yang C. Co-toxicity and co-contamination remediation of polycyclic aromatic hydrocarbons and heavy metals: Research progress and future perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120211. [PMID: 39442665 DOI: 10.1016/j.envres.2024.120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) has attracted wide attention due to their high toxicity, mutagenicity, carcinogenicity and teratogenicity. A thorough understanding of the progress of the relevant studies about their co-toxicity and co-contamination remediation is of great importance to prevent environmental risk and develop new efficient remediation methods. This paper summarized the factors resulting in different co-toxic effects, the interaction mechanism influencing co-toxicity and the development of remediation technologies for the co-contamination. Also, the inadequacies of the previous studies related to the co-toxic effect and the remediation methods were pointed out, while the corresponding solutions were proposed. The specific type and concentration of PAHs and HMs, the specific type of their action object and environmental factors could affect their co-toxicity by influencing each other's transmembrane process, detoxification process and increasing reactive oxygen species (ROS) and some other mechanisms that need to be further studied. The specific action mechanisms of the concentration, environmental factors and the specific type of PAHs and HMs, their effect on each other's transmembrane processes, investigations at the cellular and molecular levels, non-targeted metabolomics analysis, as well as long-term ecological effects were proposed to be further explored in order to obtain more information about the co-toxicity. The combination of two or more methods, especially combining bioremediation with other methods, is a potential development field for the remediation of co-contamination. It can make full use of the advantages of each remediation method, to achieve an increase of remediation efficiency and a decrease of both remediation cost and ecological risk. This review intends to further improve the understanding on co-toxicity and provide references for the development and innovation of remediation technologies for the co-contamination of PAHs and HMs.
Collapse
Affiliation(s)
- Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Cheng Sheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, PR China
| |
Collapse
|
3
|
Isakovski MK, Jevrosimov I, Tamindžija D, Apostolović T, Knicker H, de la Rosa JM, Rončević S, Maletić S. Enhanced retention of hydrophobic pesticides in subsurface soils using organic amendments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135738. [PMID: 39260001 DOI: 10.1016/j.jhazmat.2024.135738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The rapid global population growth since the early 2000s has significantly increased the demand for agricultural products, leading to widespread pesticide use, particularly organophosphorus pesticides (OPPs). This extensive application poses severe environmental risks by contaminating air, soil, and water resources. To protect groundwater quality, it is crucial to understand the transport and fate of these pesticides in soil and sediment. This study investigates the effects of hydrochars and biochars derived from sugar beet shreds (SBS) and Miscanthus×giganteus (MIS) on the retardation and biodegradation of OPPs in alluvial Danube sandy soil. The research is novel in its approach, isolating native OPP-degrading bacteria from natural alluvial sandy soil, inoculating them onto chars, and reapplying these bioaugmented chars to the same soil to enhance biodegradation and reduce pesticide leaching. The amendment of chars with immobilized Bacillus megaterium BD5 significantly increased bacterial abundance and activity. Metabarcoding of the 16S rRNA gene revealed a dominance of Proteobacteria (48.0-84.8 %) and Firmicutes (8.3-35.6 %). Transport modeling showed retardation coefficients (Rd) for OPPs ranging from 10 to 350, with biodegradation rates varying between 0.05 % and 75 %, indicating a positive correlation between retardation and biodegradation. The detection of biodegradation byproducts, including derivatives of phosphin, pyridine, and pyrazole, in the column leachate confirmed that biodegradation had occurred. Additionally, principal component analysis (PCA) revealed positive correlations among retardation, biodegradation, specific surface area (SSA), aldehyde/ketone groups, and bacterial count. These findings demonstrate the potential of biochar and hydrochar amendments to enhance OPP immobilization in contaminated soils, thereby reducing their leaching into groundwater. This study offers a comprehensive approach to the remediation of pesticide-contaminated soils, advancing both our fundamental understanding and the practical applications of environmental remediation techniques.
Collapse
Affiliation(s)
- Marijana Kragulj Isakovski
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Irina Jevrosimov
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Dragana Tamindžija
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Tamara Apostolović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Heike Knicker
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas IG-CSIC, UtreraRd, Km. 1, 41013 Seville, Spain
| | - José María de la Rosa
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Reina Mercedes Av., 10, 41012 Seville, Spain
| | - Srđan Rončević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Snežana Maletić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia.
| |
Collapse
|
4
|
Su T, Shang H, Su X, Sun Z, Li Y, Li L, Zhang Z, Geng R, Chen S. High-capacity adsorption of organic dyes using separable pullulan gel encapsulated with PDA-modified ZIF-8. Carbohydr Polym 2024; 345:122562. [PMID: 39227101 DOI: 10.1016/j.carbpol.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
In this investigation, a hydrogel adsorbent featuring remarkable efficiency in dye adsorption was successfully synthesized by the integration of natural polysaccharide (pullulan) and nanoparticles (ZIF-8@PDA). The prepared natural polysaccharide nanocomposite hydrogels not only exhibit superior mechanical strength and biocompatibility, but also demonstrate adeptness in the removal of dye pollutants. The dye removal capacities were 615.4 mg/g for malachite green (MG) and 525.8 mg/g for Congo red (CR), respectively. Notably, the adsorption process exhibits minimal susceptibility to variations in water quality and the presence of co-existing ions. The pH-responsive surface charge conversion capability of the adsorbent renders it recyclable, maintaining a dye adsorption performance exceeding 88 % even after 5 cycles of repeated usage. Overall, these environmentally friendly natural polysaccharide nanocomposite hydrogels hold potential for addressing complex wastewater treatment challenges and long-term use.
Collapse
Affiliation(s)
- Ting Su
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Hongxia Shang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Xinru Su
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Zhixian Sun
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yuehan Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Linwen Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Zhen Zhang
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Renyong Geng
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| | - Shuisheng Chen
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China.
| |
Collapse
|
5
|
Liu A, Feng LJ, Ou Y, Zhang X, Zhang J, Chen H. Competitive adsorption of polycyclic aromatic hydrocarbons on phosphorus tailing-modified sludge biochar provides mechanistic insights. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:497. [PMID: 39508923 DOI: 10.1007/s10653-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Biochar has been widely used to solve the wastewater pollution of polycyclic aromatic hydrocarbons (PAHs). However, the competition of PAHs with different benzene ring numbers (e.g., phenanthrene [Phe], pyrene [Pyr], and benzo[a]pyrene [BaP]) for adsorption sites on biochar has received little attention. In this study, biochar was produced by co-pyrolysis of sludge and phosphorus tailing at different temperatures (300, 500, or 800 °C) to adsorb PAHs. The results show that phosphorus tailing increased the adsorption of PAH by increasing the biochar's BET surface area (SBET), micropore volume, hydrophobicity (at low temperatures) and aromaticity (at high temperatures). The maximum adsorption capacities were 29.90 µmol/g for Phe, 25.58 µmol/g for Pyr and 20.45 µmol/g for BaP, respectively. Importantly, the types and functions of groups involved in the adsorption of various PAHs were discussed. Adsorption of Phe and Pyr on the biochar mainly involved C=O and C-O-C functional groups, and there was a certain degree of competition between these PAHs for those sites. In contrast, BaP mainly adsorbed at C-OH and C=C moieties, without competing with Phe or Pyr at C-OH sites. The competitive edge of BaP was also stronger than that of Phe and Pyr on C=C functional groups. The adsorption mechanisms involving pore filling, hydrophobic interactions, and π-π interactions governed the adsorption of the evaluated PAHs. Overall, the adsorption of PAHs on biochar followed a heterogeneous chemical adsorption process.
Collapse
Affiliation(s)
- Anrong Liu
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Li-Juan Feng
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China.
| | - Yangyang Ou
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, 550001, People's Republic of China
| | - Xiaoya Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Jinhong Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Hongyan Chen
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| |
Collapse
|
6
|
Alchouron J, Bursztyn Fuentes AL, Guerreiro C, Hodara K, Gatti MN, Pittman CU, Mlsna TE, Chludil HD, Vega AS. The feedstock anatomical properties determine biochar adsorption capacities: A study using woody bamboos (Bambuseae) and methylene blue as a model molecule. CHEMOSPHERE 2024; 362:142656. [PMID: 38908449 DOI: 10.1016/j.chemosphere.2024.142656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Feedstock characteristics impact biochar physicochemical properties, and reproducible biochar properties are essential for any potential application. However, in most articles, feedstock aspects (i.e., taxonomic name of the species, part of the plant, and phenological phase) are scarcely reported. This research aimed at studying the effect of species and phenological stage of the feedstock on the properties of the derived biochars and, thus, adsorption capacities in water treatment. In this study, we analysed the anatomical characteristics of three different woody bamboo species [Guadua chacoensis (GC), Phyllostachys aurea (PA), and Bambusa tuldoides (BT)] in culms harvested at two different phenological phases (young and mature), and statistically correlated them with the characteristics of the six derived biochars, including their adsorption performance in aqueous media. Sclerenchyma fibres and parenchyma cells diameter and cell-wall width significantly differed among species. Additionally, sclerenchyma fibres and parenchyma cell-wall width as well as sclerenchyma fibre cell diameters are dependent on the phenological phase of the culms. Consequently, differences in biochar characteristics (i.e., yield and average pore diameter) were also observed, leading to differential methylene blue (MB) adsorption capacities between individuals at different phenological phases. MB adsorption capacities were higher for biochar produced from young culms compared to those obtained from matures ones (i.e., GC: 628.66 vs. 507.79; BT: 537.45 vs. 477.53; PA: 477.52 vs. 462.82 mg/g), which had smaller cell wall widths leading to a lower percentage of biochar yield. The feedstock anatomical properties determined biochar characteristics which modulated adsorption capacities.
Collapse
Affiliation(s)
- Jacinta Alchouron
- Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Botánica General. Av. San Martín 4453 (C1417DSE), Buenos Aires, Argentina
| | - Amalia L Bursztyn Fuentes
- Universidad Nacional de Tierra del Fuego. Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA-UNTDF). Yrigoyen 879, Ushuaia (9410), Tierra del Fuego, Argentina; Centro Austral de Investigaciones Científicas (CADIC-CONICET). B. Houssay 200, Ushuaia (9410), Tierra del Fuego, Argentina
| | - Carolina Guerreiro
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, CC 22 (B1642HYD), San Isidro, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires, Argentina
| | - Karina Hodara
- Universidad de Buenos Aires, Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de información. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Martín N Gatti
- Universidad Nacional de La Plata. Facultad de Ingeniería. 1 esq 47 (1900), La Plata, Argentina; Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA-CONICET), 47 n° 257 (1900), La Plata, Argentina
| | - Charles U Pittman
- Mississippi State University. Department of Chemistry, MS 39762-9573, Mississippi State, USA
| | - Todd E Mlsna
- Mississippi State University. Department of Chemistry, MS 39762-9573, Mississippi State, USA
| | - Hugo D Chludil
- Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedra de Química de Biomoléculas. Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Andrea S Vega
- Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Botánica General. Av. San Martín 4453 (C1417DSE), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Buenos Aires, Argentina.
| |
Collapse
|
7
|
Li H, Zhen F, Zhang Q, Song Y, Zhang L, Qu B. Preparation of porous lignocellulose biochar adsorbent by cold isostatic pressing pretreatment and study on Hg (II) adsorption properties of C and N dual activity sites. Int J Biol Macromol 2024; 274:133479. [PMID: 38945340 DOI: 10.1016/j.ijbiomac.2024.133479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Utilizing corn straw (CS) mainly composed of lignocellulose to prepare physically modified biochar (PCSB) via cold isostatic pressing (CIP) in order to increase the biochar' s Hg (II) adsorption capacity. The results of the characterization indicated that CIP pretreatment renders PCSB-400' s structure more porous and higher N content of 16.65 %, leading to more N-containing functional groups partaking in the adsorption process. PCSB-400 adsorbed Hg (II) primarily via C/N synergistic complexation and electrostatic attraction between pores, in addition to the presence of redox reactions of surface functional groups on PCSB-400. The adsorption experiment reveals that PCSB-400 has a high selectivity for the adsorption of Hg (II). The adsorption process of Hg (II) by PCSB-400 more closely resembles the Langmuir model and pseudo-first-order adsorption kinetics equation. The adsorption quantity at saturation is 282.52 mg/g at 25 °C. This paper provided an effective idea to selectively remove Hg (II) in wastewater.
Collapse
Affiliation(s)
- Hongru Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Quanguo Zhang
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Yu Song
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lingling Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Qu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Lan Z, Huang J, Fu S, Chen Y, Meng T, Zhou W, Xu Z, Chen M, Wen L, Cheng Y, Ding L. Length-controlled hydrophobic CF 3-COF as a highly efficient absorbent coating for dual-mode solid-phase microextraction of sixteen polycyclic aromatic hydrocarbons in water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171726. [PMID: 38492591 DOI: 10.1016/j.scitotenv.2024.171726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), a group of seriously hazardous environmental contaminants, have attracted extensive attention due to their carcinogenicity, genotoxicity, mutagenicity, and ubiquity. In this work, the excellent hydrophobic trifluoromethyl-enriched covalent organic framework (CF3-COF) was designed and synthesized as coating of solid-phase microextraction (SPME). The CF3-COF offered a high adsorption selectivity for PAHs, which could be attributed to the multiple interactions between the CF3-COF and PAHs, including hydrophobicity interaction, π-π and H bond interactions. Furthermore, headspace (HS) and direct immersion (DI) dual-mode solid-phase microextraction (HS/DI-SPME) were innovatively integrated as a dual-mode extraction by varying the length of SPME coating on stainless-steel, which could simultaneously and efficiently extract 16 PAHs with different volatile. Amazingly, the proposed strategy achieved fast adsorption for PAHs and shortened the adsorption equilibrium time to 15 min. By further integrating with gas chromatography tandem mass spectrometry (GC-MS/MS), PAHs could be detected in the range of 0.008-0.16 ng mL-1 with a quantitative limit of 0.029-0.47 ng mL-1, respectively. The recoveries of PAHs in water samples ranged from 80.84 to 117.67 %. This work indicates that the dual-mode CF3-COF-SPME is a promising candidate for the enrichment of multiple hazardous substances in complicated samples.
Collapse
Affiliation(s)
- Zirong Lan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Jin Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Shanliang Fu
- Hunan Key Laboratory of Food Safety Science and Technology, Changsha Customs, Changsha 410004, PR China
| | - Youwei Chen
- Technical Center, Tianjin Customs, Tianjin 300041, PR China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China.
| |
Collapse
|
9
|
Ke Y, Zhang X, Ren Y, Zhu X, Si S, Kou B, Zhang Z, Wang J, Shen B. Remediation of polycyclic aromatic hydrocarbons polluted soil by biochar loaded humic acid activating persulfate: performance, process and mechanisms. BIORESOURCE TECHNOLOGY 2024; 399:130633. [PMID: 38552862 DOI: 10.1016/j.biortech.2024.130633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The remediation for polycyclic aromatic hydrocarbons contaminated soil with cost-effective method has received significant public concern, a composite material, therefore, been fabricated by loading humic acid into biochar in this study to activate persulfate for naphthalene, pyrene and benzo(a)pyrene remediation. Experimental results proved the hypothesis that biochar loaded humic acid combined both advantages of individual materials in polycyclic aromatic hydrocarbons adsorption and persulfate activation, achieved synergistic performance in naphthalene, pyrene and benzo(a)pyrene removal from aqueous solution with efficiency reached at 98.2%, 99.3% and 90.1%, respectively. In addition, degradation played a crucial role in polycyclic aromatic hydrocarbons remediation, converting polycyclic aromatic hydrocarbons into less toxic intermediates through radicals of ·SO4-, ·OH, ·O2-, and 1O2 generated from persulfate activation process. Despite pH fluctuation and interfering ions inhibited remediation efficiency in some extent, the excellent performances of composite material in two field soil samples (76.7% and 91.9%) highlighted its potential in large-scale remediation.
Collapse
Affiliation(s)
- Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Xing Zhang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Yuhang Ren
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China.
| | - Shaocheng Si
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| | - Ziye Zhang
- Xi'an Jinborui Ecological Tech. Co., Ltd., Xi'an 710065, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China; Xi'an Jinborui Ecological Tech. Co., Ltd., Xi'an 710065, China
| | - Baoshou Shen
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China
| |
Collapse
|
10
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
11
|
Park KB, Chae DY, Fini EH, Kim JS. Pyrolysis of biomass harvested from heavy-metal contaminated area: Characteristics of bio-oils and biochars from batch-wise one-stage and continuous two-stage pyrolysis. CHEMOSPHERE 2024; 355:141715. [PMID: 38554861 DOI: 10.1016/j.chemosphere.2024.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
This study evaluates pyrolysis products obtained from biomasses (silver grass, pine, and acacia) harvested from heavy-metal-contaminated soil. To do so, we utilized two methods: a batch one-stage pyrolysis, and a continuous two-stage pyrolysis. The study results show that the yields and characteristics of bio-oils and biochars varied depending on the pyrolysis process and the type of biomass. The two-stage pyrolysis having two reactors (auger and fluidized bed reactors) appeared to be very suitable for specific chemicals production such as acetic acid, acetol, catechol, and levoglucosan. The biochar obtained from the fluidized-bed reactor of two-stage pyrolysis had high thermal stability, high crystallinity, high inorganic content, and a small number of functional groups. In contrast, the biochar obtained from the one-stage pyrolysis had low thermal stability, low crystallinity, a high carbon content, and a large number of functional groups. The biochar obtained from the two-stage pyrolysis appeared to be suitable as a material for catalyst support and as an adsorbent. The biochar obtained from one-stage pyrolysis appeared to be a suitable as a soil amendment, as an adsorbent, and as a precursor of activated carbon. All biochars showed a negative carbon footprint. In the end, this study, which was conducted using two different processes, was able to obtain the fact that products of pyrolysis biomass contaminated with heavy metals have different characteristics depending on the process characteristics and that their utilization plans are different accordingly. If the optimal utilization method proposed through this study is found, pyrolysis will be able to gain importance as an effective treatment method for biomass contaminated with heavy metals.
Collapse
Affiliation(s)
- Ki-Bum Park
- Department of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 130-743, Republic of Korea
| | - Da-Yeong Chae
- Graduate School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea; Department of Smart Cities, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Elham H Fini
- School of Sustainable Engineering and Built Environment, Arizona State University, 660 S. College Ave, Tempe, AZ, 85281, USA
| | - Joo-Sik Kim
- Department of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 130-743, Republic of Korea; Graduate School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea; Department of Smart Cities, University of Seoul, 163 Siripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
12
|
Zou JJ, Dai C, Hu J, Tong WK, Gao MT, Zhang Y, Leong KH, Fu R, Zhou L. A novel mycelial pellet applied to remove polycyclic aromatic hydrocarbons: High adsorption performance & its mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171201. [PMID: 38417506 DOI: 10.1016/j.scitotenv.2024.171201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.
Collapse
Affiliation(s)
- Jia Jie Zou
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Wang Kai Tong
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
13
|
Li T, Peng H, He B, Hu C, Zhang H, Li Y, Yang Y, Wang Y, Bakr MMA, Zhou M, Peng L, Kang H. Cellulose de-polymerization is selective for bioethanol refinery and multi-functional biochar assembly using brittle stalk of corn mutant. Int J Biol Macromol 2024; 264:130448. [PMID: 38428756 DOI: 10.1016/j.ijbiomac.2024.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
As lignocellulose recalcitrance principally restricts for a cost-effective conversion into biofuels and bioproducts, this study re-selected the brittle stalk of corn mutant by MuDR-transposon insertion, and detected much reduced cellulose polymerization and crystallinity. Using recyclable CaO chemical for biomass pretreatment, we determined a consistently enhanced enzymatic saccharification of pretreated corn brittle stalk for higher-yield bioethanol conversion. Furthermore, the enzyme-undigestible lignocellulose was treated with two-step thermal-chemical processes via FeCl2 catalysis and KOH activation to generate the biochar with significantly raised adsorption capacities with two industry dyes (methylene blue and Congo red). However, the desirable biochar was attained from one-step KOH treatment with the entire brittle stalk, which was characterized as the highly-porous nanocarbon that is of the largest specific surface area at 1697.34 m2/g and 2-fold higher dyes adsorption. Notably, this nanocarbon enabled to eliminate the most toxic compounds released from CaO pretreatment and enzymatic hydrolysis, and also showed much improved electrochemical performance with specific capacitance at 205 F/g. Hence, this work has raised a mechanism model to interpret how the recalcitrance-reduced lignocellulose is convertible for high-yield bioethanol and multiple-function biochar with high performance.
Collapse
Affiliation(s)
- Tianqi Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Boyang He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyi Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujing Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mahmoud M A Bakr
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Wei Z, Wei Y, Liu Y, Niu S, Xu Y, Park JH, Wang JJ. Biochar-based materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: Performances, mechanisms, and environmental impact. J Environ Sci (China) 2024; 138:350-372. [PMID: 38135402 DOI: 10.1016/j.jes.2023.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 12/24/2023]
Abstract
Petroleum contamination is considered as a major risk to the health of humans and environment. Biochars as low-cost and eco-friendly carbon materials, have been widely used for the removal of petroleum hydrocarbon in the environment. The purpose of this paper is to review the performance, mechanisms, and potential environmental toxicity of biochar, modified biochar and its integration use with other materials in petroleum contaminated soil and water. Specifically, the use of biochar in oil-contaminated water and soil as well as the factors that could influence the removal ability of biochar were systematically evaluated. In addition, the modification and integrated use of biochar for improving the removal efficiency were summarized from the aspects of sorption, biodegradation, chemical degradation, and reusability. Moreover, the functional impacts and associated ecotoxicity of pristine and modified biochars in various environments were demonstrated. Finally, some shortcoming of current approaches, and future research needs were provided for the future direction and challenges of modified biochar research. Overall, this paper gain insight into biochar application in petroleum remediation from the perspectives of performance enhancement and environmental sustainability.
Collapse
Affiliation(s)
- Zhuo Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA
| | - Yi Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yang Liu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shuai Niu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yaxi Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Jong-Hwan Park
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, South Korea
| | - Jim J Wang
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA.
| |
Collapse
|
15
|
Shyamalagowri S, Bhavithra HA, Akila N, Jeyaraj SSG, Aravind J, Kamaraj M, Pandiaraj S. Carbon-based adsorbents for the mitigation of polycyclic aromatic hydrocarbon: a review of recent research. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:108. [PMID: 38453774 DOI: 10.1007/s10653-024-01915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Accumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH. Due to their affordability and environmental friendliness, carbonaceous adsorbents (CAs) have been regarded as promising for adsorbing PAH. However, adsorbent qualities, environmental features, and factors may all significantly impact how well CAs remove PAH. According to growing data, CAs, most of which come from laboratory tests, may be utilized to decontaminate PAH in aquatic setups. However, their full potential has not yet been established, especially concerning field applications. This review aims to concisely summarize recent developments in CA, PAH stabilization processes, and essential field application-controlling variables. This review analysis emphasizes activated carbon, biochar, Graphene, carbon nanotubes, and carbon-nanomaterials composite since these CAs are most often utilized as adsorbents for PAH in aquatic systems.
Collapse
Affiliation(s)
- S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, Tamil Nadu, 600030, India
| | - H A Bhavithra
- Department of Mathematics, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - N Akila
- PG and Research Department of Zoology, Pachaiyappa's College, Chennai, Tamil Nadu, 600030, India
| | | | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, Tamil Nadu, 600089, India.
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Hashemzadeh F, Khoshmardan ME, Sanaei D, Ghalhari MR, Sharifan H, Inglezakis VJ, Arcibar-Orozco JA, Shaikh WA, Khan E, Biswas JK. Adsorptive removal of anthracene from water by biochar derived amphiphilic carbon dots decorated with chitosan. CHEMOSPHERE 2024; 352:141248. [PMID: 38280643 DOI: 10.1016/j.chemosphere.2024.141248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Anthracene belongs to the polycyclic aromatic hydrocarbon (PAH) consisting of benzene rings, unusually highly stable through more π-electrons and localized π-bond in entire rings. Aqueous-phase anthracene adsorption using carbon-based materials such as biochar is ineffective. In this paper, carbon dots (CDs) derived from the acid treatment of coconut shell biochar (CDs/MCSB) decorated with chitosan (CS) are successfully synthesized and applied for anthracene removal from aqueous solutions. The h-CDs/MCSB exhibited fast adsorption of anthracene with significant sorption capacity (Qmax = 49.26 mg g-1) with 95 % removal efficiency at 60 min. The study suggested chemisorption dominated monolayer anthracene adsorption onto h-CDs/MCSB, where a significant role was played by ion-exchange. Density Functional Theory (DFT) suggested the anthracene adsorption was dominated by the electrostatic interactions and delocalized electron, induced by higher polarizability of functional groups on the surface of hybrid CDs/MCSB assisted by chitosan (h-CDs/MCSB). In addition, the aromatic structure of CDs/MCSB and high polarizability of functional groups provided the strong interactions between benzene rings of anthracene and hybrid adsorbent-assisted multiple π-bond through delocalized π-bond and polarization-induced H-bond interactions. The presence of carboxylic and sulfonic groups on the CDs/MCSB surface also contributed to the effective adsorption of anthracene was confirmed by the fluorescence spectra. The results showed that the hybrid adsorbent was an effective material for removing PAHs, usually difficult to remove from water owing to the presence of benzene rings in their structures. Further, consistency in the DFT results suggested the outstanding binding capacity with the anthracene molecules with h-CDs/MCSB.
Collapse
Affiliation(s)
- Farzad Hashemzadeh
- Water and Wastewater Research Center, Water Research Institute, Tehran, Iran
| | - Maede Esmaeili Khoshmardan
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Daryoush Sanaei
- Department of Environmental Health Engineering, Faculty of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | | | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA
| | | | - Javier A Arcibar-Orozco
- Research Department, CIATEC A.C. Centro de Innovación Aplicada en Tecnologías Competitivas, León, Mexico
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, India, 743368
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV 89154-4015, USA
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal - 741235, India.
| |
Collapse
|
17
|
Zeng S, Mao S, Xu S, He Y, Yu J. Investigation on DOPO as reactive fumes suppressant to reduce the fumes emission of asphalt. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132878. [PMID: 37922580 DOI: 10.1016/j.jhazmat.2023.132878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Asphalt fumes released during pavement construction posed a threat to human health and environment. In this study, 9,10-dihydro-9-oxa-10-phosphorophenanthrene-10-oxide (DOPO) was used as a reactive fumes suppressant to reduce the asphalt fumes emission. The volatilization behavior of DOPO modified asphalt (DOPO-Asphalt) was investigated through thermogravimetric analysis, volatility test and thermal destruction gas chromatography mass spectrometry, and effect of DOPO on the chemical structure and composition of asphalt was explored through nuclear magnetic resonance hydrogen spectroscopy, Fourier transform infrared spectroscopy, and asphalt component testing. The results indicated that 1.0 wt% DOPO reduced the fume content of control asphalt by 1.1% from 120 ℃ - 200 ℃ and the H2S and VOC content by 96.9% and 84.2%, respectively, at 180 ℃. Moreover, 1.0 wt% DOPO reduced the content of aliphatic hydrocarbons, hydrocarbon derivatives, aromatics, and sulfides in control asphalt fumes by 86.8%, 89.7%, 90.7%, and 93.5%, respectively, which may be attributed to electrophilic and nucleophilic reactions between DOPO and volatile substances in asphalt. Chemical structure and composition changing of DOPO-Asphalt confirmed that P-H bond in DOPO was chemically reacted with components in asphalt, generating stable aromatic hydrocarbons and resins. The results provided a novel method for inhibiting the volatilization of harmful substances in asphalt.
Collapse
Affiliation(s)
- Shangheng Zeng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Sanpeng Mao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; Research Institute of Petro China Fuel Oil Co., Ltd., Beiwucun Road 25, Beijing 100195, PR China
| | - Shi Xu
- Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands
| | - Yanheng He
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianying Yu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
18
|
Yuan X, Cao Y, Li J, Patel AK, Dong CD, Jin X, Gu C, Yip ACK, Tsang DCW, Ok YS. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnol Adv 2023; 67:108181. [PMID: 37268152 DOI: 10.1016/j.biotechadv.2023.108181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
The sustainable utilization of biochar produced from biomass waste could substantially promote the development of carbon neutrality and a circular economy. Due to their cost-effectiveness, multiple functionalities, tailorable porous structure, and thermal stability, biochar-based catalysts play a vital role in sustainable biorefineries and environmental protection, contributing to a positive, planet-level impact. This review provides an overview of emerging synthesis routes for multifunctional biochar-based catalysts. It discusses recent advances in biorefinery and pollutant degradation in air, soil, and water, providing deeper and more comprehensive information of the catalysts, such as physicochemical properties and surface chemistry. The catalytic performance and deactivation mechanisms under different catalytic systems were critically reviewed, providing new insights into developing efficient and practical biochar-based catalysts for large-scale use in various applications. Machine learning (ML)-based predictions and inverse design have addressed the innovation of biochar-based catalysts with high-performance applications, as ML efficiently predicts the properties and performance of biochar, interprets the underlying mechanisms and complicated relationships, and guides biochar synthesis. Finally, environmental benefit and economic feasibility assessments are proposed for science-based guidelines for industries and policymakers. With concerted effort, upgrading biomass waste into high-performance catalysts for biorefinery and environmental protection could reduce environmental pollution, increase energy safety, and achieve sustainable biomass management, all of which are beneficial for attaining several of the United Nations Sustainable Development Goals (UN SDGs) and Environmental, Social and Governance (ESG).
Collapse
Affiliation(s)
- Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Nahar A, Akbor MA, Pinky NS, Chowdhury NJ, Ahmed S, Gafur MA, Akhtar US, Quddus MS, Chowdhury F. Waste newspaper driven activated carbon to remove polycyclic aromatic hydrocarbon from wastewater. Heliyon 2023; 9:e17793. [PMID: 37449116 PMCID: PMC10336527 DOI: 10.1016/j.heliyon.2023.e17793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
In this study, a carbon-based adsorbent was developed from waste newspaper through pyrolysis at 800 °C to evaluate the removal efficiency of polycyclic aromatic hydrocarbons (Benzo[ghi]perylene (BghiP) and Indeno [1,2,3-cd] pyrene (IP)) from wastewater. The surface area of the developed adsorbent was estimated at 509.247m2g-1 which allowed the adsorption of the PAHs from wastewater. The maximum adsorption capacity was estimated at 138.436 μg g-1 and 228.705 μg g-1 for BghiP and IP, respectively and the highest removal efficiency was observed at pH 2. Around 91% removal efficiency was observed at pH 7 for both pollutants. Experimental adsorption data were fit for pseudo-second-order kinetics and Langmuir isotherm models, which demonstrate electrostatic interaction, monolayered deposition, hydrogen bonding, and π-π interaction between adsorbate and adsorbent which play a significant role in adsorption. The regeneration study described that the developed adsorbent could be able to intake 52.75% BghiP and 48.073% IP until the 8th and 6th cycles, respectively. The removal efficiency of the adsorbent in the real sample was also evaluated. This study will provide a method to convert waste material into adsorbent and will remove PAHs from wastewater as a function of pollutant mitigation and waste management.
Collapse
Affiliation(s)
- Aynun Nahar
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Nigar Sultana Pinky
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Nushrat Jahan Chowdhury
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shamim Ahmed
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Abdul Gafur
- Pilot Plant and Process Development Center (PP&PDC), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Umme Sarmeen Akhtar
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Saiful Quddus
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Fariha Chowdhury
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| |
Collapse
|
20
|
Zhang D, Zhou D, Lu L, Zhang M, Lü T, Huang J, Zhao H, Zhou J, Rinklebe J. Preferential, synergistic sorption and reduction of Cr(VI) from chromium-rhodamine B mixed wastewater by magnetic porous biochar derived from wasted Myriophyllum aquaticum biomass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121593. [PMID: 37030599 DOI: 10.1016/j.envpol.2023.121593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Eradication of heavy metals and dyes simultaneously from wastewater is urgently needed to safeguard public and environmental health. In this study, magnetic porous biochar derived from wasted Myriophyllum aquaticum (MPMaB) was synthesized by KOH-activation and co-precipitation method to treat chromate and rhodamine B (RhB)-bearing wastewater. The KOH activation significantly improved the pore structure of biochar with a high specific surface area of 937.1 m2 g-1. The sorption performance of MPMaB for Cr(VI) and RhB in single and co-solutes conditions was evaluated. In single system, a pH-dependent sorption pattern for Cr(VI) by MPMaB was revealed and the estimated sorption capability reached 175.4 mg g-1, whereas the Langmuir-based sorption capacity of RhB was 175.4 mg g-1 pH-independently. MPMaB partially transformed Cr(VI) to less toxic Cr(III) (approximately 59.3%). Synergistic sorption of Cr(VI) with the coexistence of RhB was observed, where synergistic effect ranged from 119% to 527% depending on pH. For example, the sorption capacity of Cr(VI) on MPMaB, at pH 2, augmented from 175.4 mg g-1 (single system) to 208.3 mg g-1 (binary system). Preferential sorption of Cr(VI) was found and was further confirmed by the post-sorption of Cr(VI) (or RhB) by MPMaB pre-sorbed with RhB (or chromate). Chromate sorption mechanisms mainly include electrostatic interactions and complexation, while the sorption of RhB is ascribed to π-π interactions, pore filling and hydrogen bonding. Additionally, MPMaB showed excellent reusability and maintained high removal efficiency after 5 cycles. In short, MPMaB can efficiently treat chromium and dyes-containing wastewater as sustainable and environmentally friendly adsorbent.
Collapse
Affiliation(s)
- Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Danli Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.
| | - Ming Zhang
- Department of Environmental Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Ting Lü
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Hongting Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jie Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
21
|
Sujeeun L, Thomas SC. Biochar mitigates allelopathic effects in temperate trees. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2832. [PMID: 36864680 DOI: 10.1002/eap.2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 06/02/2023]
Abstract
Many invasive and some native tree species in North America exhibit strong allelopathic effects that may contribute to their local dominance. Pyrogenic carbon (PyC; including soot, charcoal, and black carbon) is produced by the incomplete combustion of organic matter and is widespread in forest soils. Many forms of PyC have sorptive properties that can reduce the bioavailability of allelochemicals. We investigated the potential for PyC produced by controlled pyrolysis of biomass ("biochar" [BC]) to reduce the allelopathic effects of black walnut (Juglans nigra) and Norway maple (Acer platanoides), a common native tree species and a widespread invasive species in North America, respectively. Seedling growth of two native tree species (Acer saccharinum [silver maple] and Betula papyrifera [paper birch]) in response to leaf-litter-incubated soils was examined; litter incubation treatments included leaves of black walnut, Norway maple, and a nonallelopathic species (Tilia americana [American basswood]) in a factorial design with varying dosages; responses to the known primary allelochemical of black walnut (juglone) were also examined. Juglone and leaf litter of both allelopathic species strongly suppressed seedling growth. BC treatments substantially mitigated these effects, consistent with the sorption of allelochemicals; in contrast no positive effects of BC were observed in leaf litter treatments involving controls or additions of nonallelopathic leaf litter. Treatments of leaf litter and juglone with BC increased the total biomass of silver maple by ~35% and in some cases more than doubled the biomass of paper birch. We conclude that BCs have the capacity to largely counteract allelopathic effects in temperate forest systems, suggesting the effects of natural PyC in determining forest community structure, and also the applied use of BC as a soil amendment to mitigate allelopathic effects of invasive tree species.
Collapse
Affiliation(s)
- Leeladarshini Sujeeun
- Institute of Forestry and Conservation, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, ON, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Carlini C, Chaudhuri S, Mann O, Tomsik D, Hüffer T, Greggio N, Marazza D, Hofmann T, Sigmund G. Benchmarking biochar with activated carbon for immobilizing leachable PAH and heterocyclic PAH in contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121417. [PMID: 36921655 DOI: 10.1016/j.envpol.2023.121417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Remediation of residually contaminated soils remains a widespread problem. Biochar can immobilize polycyclic aromatic hydrocarbons (PAH). However, studies on its ability to immobilize PAH and N, S, and O substituted PAH (hetero-PAH) in real soils, and benchmarking with commercial activated carbon are missing. Here, we compared the ability of pristine biochar (BC), steam-activated biochar (SABC), and commercial activated carbon (AC) to immobilize PAH and hetero-PAH. The three carbons were tested on soils from four different contaminated sites in Austria. Different amendment rates (w/w) of the carbons were investigated (BC: 1.0, 2.5, and 5%; SABC: 0.5, 1.0, and 2.0%; AC: 1%) in batch experiments to cover meaningful ranges in relation to their performance. SABC performed better than AC, removing at least 80% PAH with the lowest application rate of 0.5%, and achieving a complete removal at an application rate of 1.0%. BC performed slightly worse but still acceptable in residually contaminated soils (40 and 100% removal at 1 and 5% amendment, respectively). The ability of BC and SABC to immobilize PAH decreased as the PAH-molar volume increased. PAH with three or more rings were preferentially removed by AC compared to SABC or BC. This can be explained by the difference in pore size distribution of the carbons which could limit the accessibility of PAH and hetero-PAH to reach sorption sites for π- π electron donor-acceptor interactions, which drive PAH and hetero-PAH sorption to carbons. Column percolation tests confirmed the results obtained in batch tests, indicating, that decisions for soil remediation can be derived from simpler batch experiments. In soil samples with 1% BC, a reduction of over 90% in the total concentration of PAH in the leached water was observed. Overall, BC and SABC were demonstrated to be valid substitutes for AC for stabilizing residually contaminated soils.
Collapse
Affiliation(s)
- Carlotta Carlini
- Department of Physics and Astronomy, University of Bologna, 40126, Bologna, Italy; Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090, Vienna, Austria
| | - Sampriti Chaudhuri
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090, Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, Josef-Holaubeck-Platz 2, Vienna, 1090, Austria
| | - Oliver Mann
- ESW Consulting Wruss, Rosasgasse 25-27, 1120, Vienna, Austria
| | - Daniel Tomsik
- ESW Consulting Wruss, Rosasgasse 25-27, 1120, Vienna, Austria
| | - Thorsten Hüffer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090, Vienna, Austria
| | - Nicolas Greggio
- Department of Biological, Geological and Environmental Sciences, BIGeA, Università di Bologna, 40126, Bologna, Italy
| | - Diego Marazza
- Department of Physics and Astronomy, University of Bologna, 40126, Bologna, Italy
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090, Vienna, Austria
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Yan C, Wang X, Xia S, Zhao J. Mechanistic insights into the removal of As(III) and As(V) by iron modified carbon based materials with the aid of machine learning. CHEMOSPHERE 2023; 321:138125. [PMID: 36781000 DOI: 10.1016/j.chemosphere.2023.138125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The machine learning (ML) technique was used to examine the effects of different microscopic material features on the ability of iron modified carbon-based materials (Fe-CBMs) to remove As(V) and As(III). The findings showed that specific CBMs and Fe-CBMs features (such as surface functionality) from sophisticated microscopic and spectroscopic techniques led to models that were more accurate than those constructed using more basic information, such as bulk elemental composition and surface area (the root-mean-square error fell by 44.7% for As(V) and 56.9% for As(III), respectively). The high non-polar carbon (NPC) content of CBMs and Fe-CBMs had a detrimental influence on As(V) and As(III) removal capability, whereas surface oxygen-containing functional groups (SOFGs) contents on CBMs and Fe-CBMs played an essential role in arsenic removal based on ML approaches. The relative importance of CO was greater by 77.8% and 40.6% than that of C-O on the elimination of As(V) and As(III), respectively. The accurate ML models are helpful for the future design of Fe-CBMs and the relative importance and partial dependence plot analysis can direct the use of Fe-CBMs for arsenic removal in a sensible manner under different application situations.
Collapse
Affiliation(s)
- Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
24
|
Rodrigues PR, Nascimento LES, Godoy HT, Vieira RP. Improving chitosan performance in the simultaneous adsorption of multiple polycyclic aromatic hydrocarbons by oligo(β-pinene) incorporation. Carbohydr Polym 2023; 302:120379. [PMID: 36604057 DOI: 10.1016/j.carbpol.2022.120379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The occurrence of persistent organic pollutants in aquatic bodies, namely polycyclic aromatic hydrocarbons (PAHs), has been increasingly detected. The presence of such contaminants represents a serious threat to human health due to their toxicity. Therefore, aiming to provide a novel and efficient alternative for PAHs' removal from water, the present study assesses the effect of oligo(β-pinene) blended with chitosan for the adsorption of these pollutants. Oligo(β-pinene) with phenyl end-groups was synthesized by organocatalyzed atom transfer radical polymerization (O-ATRP) and incorporated in different concentrations (6, 12, and 18 %) to chitosan films. The oligo(β-pinene) loading in the chitosan matrix impressively improved this polysaccharide adsorption capacity. The formulation containing 12 % of oligomer demonstrated a contaminant removal performance three times higher (298.82 %) than pure chitosan during only 1 h of the decontamination process. Adsorption isotherms showed an improved uptake of PAHs with the increase of the contaminants' concentration in the aqueous media due to the formation of a higher concentration gradient. Additionally, a comprehensive characterization of oligo(β-pinene)/chitosan formulation was performed to provide a better understanding of the interactions between the components of the blends. Overall, it was concluded that oligo(β-pinene)/chitosan blends can be used as a high-performance and sustainable alternative for PAHs removal.
Collapse
Affiliation(s)
- Plínio Ribeiro Rodrigues
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, 13083-852 Albert Einstein St. N. 500, Campinas, São Paulo, Brazil.
| | - Luis Eduardo Silva Nascimento
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Monteiro Lobato St. n. 80, Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Monteiro Lobato St. n. 80, Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, 13083-852 Albert Einstein St. N. 500, Campinas, São Paulo, Brazil.
| |
Collapse
|
25
|
Li X, Xu J, Yang Z. Insight on efficiently oriented oxidation of petroleum hydrocarbons by redistribution of oxidant through inactivation of soil organic matter coupled with passivation of manganese minerals. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130192. [PMID: 36270191 DOI: 10.1016/j.jhazmat.2022.130192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
While extensive works focused on the enhancement of the activity of heterogeneous Fenton catalysts, little was paid attention to the inhibition of soil organic matter (SOM) and Mn minerals in soil remediation. Here, the oxidation of petroleum hydrocarbons in soils (S1: 4.28 % SOM, S2: 6.04 % SOM, S3: 10.33 % SOM) with inactivated SOM and passivated Mn oxides regulating by calcium superphosphate (Ca(H2PO4)2) was carried out. Oily sludge pyrolysis residue was used as precursors to prepare an oleophilic iron-supported solid catalyst (Fe-N @ PR). For regulated systems, under the optimal conditions of 1.8 mmol/g H2O2 and 0.05 g/g Fe-N @ PR, 72 ∼ 91 % of total petroleum hydrocarbons (TPHs: 15,616.58 mg/kg) were oxidized, which was 38 ∼ 45 % higher than that of control systems. The mechanism of efficient oxidation was proposed that the passivated Mn minerals stabilized H2O2 redistributing more H2O2 to sustainably produce •OH, and the inactivated SOM improved the relative reactivity of •OH to TPHs. Additionally, the passivation of Mn oxides was mainly related to the binding of H2PO4-, and the inactivation of SOM was realized by Ca2+ combing with -OH and C-O-C to form stable complexes. This study brought us a new perspective on soil remediation through passivating Mn minerals and inactivating SOM.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Zhilin Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
26
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
27
|
Fu T, Zhang B, Gao X, Cui S, Guan CY, Zhang Y, Zhang B, Peng Y. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158810. [PMID: 36162572 DOI: 10.1016/j.scitotenv.2022.158810] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China; Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
28
|
Le QTN, Lee HH, Hwang I. Evaluation of the use of biochar to stabilize polycyclic aromatic hydrocarbons and phthalates in sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120644. [PMID: 36375578 DOI: 10.1016/j.envpol.2022.120644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Three types of biochar (BC) (mulberry biochar (MB), wheat straw biochar, and pine tree sawdust biochar) were prepared and used to stabilize hydrophobic organic compounds (HOCs) in contaminated sediment. The kinetics of HOC adsorption to the BCs had two distinct stages. The second stage adsorption process was longer for MB than the other BCs, presumably because MB contained large pores, mesopores, and micropores. The adsorption isotherms for the three BCs were described well by the Freundlich model. The adsorption capacities of MB, WS and PT for HOCs ranged between 106.7 and 1202 μg/g, 135.1 and 1002 μg/g, and 255.6 and 909 μg/g, respectively. The apparent HOC adsorption coefficients (KBC-w) for the three BCs were determined from the isotherm data and were similar. The HOC logKOW values correlated well with the logKBC-w values. In sediment slurry experiments, HOCs were much more effectively stabilized by MB than wheat straw and pine tree sawdust biochar. This was probably because of the MB pore characteristics that favored adsorption of HOCs of various molecular sizes. The Fourier-transform infrared and Raman spectra indicated that the main binding mechanisms were hydrogen boding, hydrophobic interactions, and π-π interactions. MB was found to be a possible agent for stabilizing HOCs in contaminated sediment. HOCs in sediment slurry continued to become adsorbed to MB for a long time, indicating that relatively long reaction times should be allowed for in situ remediation using MB.
Collapse
Affiliation(s)
- Quynh Thi Ngoc Le
- Department of Civil and Environmental Engineering, Pusan National University. 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyeon Ho Lee
- Department of Civil and Environmental Engineering, Pusan National University. 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Inseong Hwang
- Department of Civil and Environmental Engineering, Pusan National University. 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
29
|
Venegas-García DJ, Wilson LD. Kinetics and Thermodynamics of Adsorption for Aromatic Hydrocarbon Model Systems via a Coagulation Process with a Ferric Sulfate-Lime Softening System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:655. [PMID: 36676392 PMCID: PMC9867294 DOI: 10.3390/ma16020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The adsorption mechanisms for model hydrocarbons, 4-nitrophenol (PNP), and naphthalene were studied in a coagulation-based process using a ferric sulfate-lime softening system. Kinetic and thermodynamic adsorption parameters for this system were obtained under variable ionic strength and temperature. An in situ method was used to investigate kinetic adsorption profiles for PNP and naphthalene, where a pseudo-first order kinetic model adequately described the process. Thermodynamic parameters for the coagulation of PNP and naphthalene reveal an endothermic and spontaneous process. River water was compared against lab water samples at optimized conditions, where the results reveal that ions in the river water decrease the removal efficiency (RE; %) for PNP (RE = 28 to 20.3%) and naphthalene (RE = 89.0 to 80.2%). An aluminum sulfate (alum) coagulant was compared against the ferric system. The removal of PNP with alum decreased from RE = 20.5% in lab water and to RE = 16.8% in river water. Naphthalene removal decreased from RE = 89.0% with ferric sulfate to RE = 83.2% with alum in lab water and from RE = 80.2% for the ferric system to RE = 75.1% for alum in river water. Optical microscopy and dynamic light scattering of isolated flocs corroborated the role of ions in river water, according to variable RE and floc size distribution.
Collapse
Affiliation(s)
| | - Lee D. Wilson
- Correspondence: ; Tel.: +1-306-966-2961; Fax: +1-306-966-4730
| |
Collapse
|
30
|
Yu C, Zhang J, Luo X, Zhang J. Metal organic framework/covalent organic framework composite for solid-phase microextraction of polycyclic aromatic hydrocarbons in milk samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Shi G, Li Y, Liu Y, Wu L. Predicting the speciation of ionizable antibiotic ciprofloxacin by biochars with varying carbonization degrees †. RSC Adv 2023; 13:9892-9902. [PMID: 37006351 PMCID: PMC10052695 DOI: 10.1039/d3ra00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Sorption mechanisms of ionizable organic pollutants by biochars and approaches for the prediction of sorption are still unclear. In this study, batch experiments were conducted to explore the sorption mechanisms of woodchip-derived biochars prepared at 200–700 °C (referred as WC200–WC700) for cationic, zwitterionic and anionic species of ciprofloxacin (referred as CIP+, CIP± and CIP−, respectively). The results revealed that the sorption affinity of WC200 for different CIP species was in the order of CIP± > CIP+ > CIP−, while that of WC300–WC700 remained the order of CIP+ > CIP± > CIP−. WC200 exhibited a strong sorption ability, which could be attributed to hydrogen bonding and electrostatic attraction with CIP+, electrostatic attraction with CIP±, and charge-assisted hydrogen bonding with CIP−. Pore filling and π–π interactions contributed to the sorption of WC300–WC700 for CIP+, CIP± and CIP−. Rising temperature facilitated CIP sorption to WC400 as verified by site energy distribution analysis. Proposed models including the proportion of the three CIP species and sorbent aromaticity index (H/C) can quantitatively predict CIP sorption to biochars with varying carbonization degrees. These findings are vital to elucidating the sorption behaviors of ionizable antibiotics to biochars and exploring potential sorbents for environmental remediation. This study revealed the evolution of sorption mechanisms with pyrolysis temperature of biochar and CIP speciation, and provided a novel approach for the sorption prediction of ionizable antibiotics.![]()
Collapse
Affiliation(s)
- Guowei Shi
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological ProcessesXiamen 361021China+86-311-67598661+86-311-67598598
- China Geological Survey, Hebei Province Key Laboratory of Groundwater Contamination and Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological SciencesShijiazhuang 050061China
- China University of Geosciences (Beijing)Beijing 100083China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological ProcessesXiamen 361021China+86-311-67598661+86-311-67598598
- China Geological Survey, Hebei Province Key Laboratory of Groundwater Contamination and Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological SciencesShijiazhuang 050061China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological ProcessesXiamen 361021China+86-311-67598661+86-311-67598598
- China Geological Survey, Hebei Province Key Laboratory of Groundwater Contamination and Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological SciencesShijiazhuang 050061China
| | - Lin Wu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological ProcessesXiamen 361021China+86-311-67598661+86-311-67598598
- China Geological Survey, Hebei Province Key Laboratory of Groundwater Contamination and Remediation, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological SciencesShijiazhuang 050061China
- North China University of Water Resources and Electric PowerZhengzhou 450046China
| |
Collapse
|
32
|
Lin M, Li F, Wang W, Rong X. Interfacial chemical behaviors and petroleum hydrocarbon removal performances of the biochar-mineral composites prepared by one-step pyrolysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Hao J, Wu L, Lu X, Zeng Y, Jia B, Luo T, He S, Liang L. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water: adsorption behavior and mechanisms. RSC Adv 2022; 12:31650-31662. [PMID: 36380923 PMCID: PMC9634719 DOI: 10.1039/d2ra05334a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2023] Open
Abstract
In this study, Fe-Co-modified biochar (FMBC) loaded with iron (Fe) and cobalt (Co) bimetals after NaOH activation was prepared by pyrolysis using forestry waste cedar bark as a raw material to study its properties and the adsorption of ofloxacin (OFX). The surface structure and chemical properties were analyzed by BET, SEM-EDS, XRD, XPS, and FTIR characterization, and the results showed that the FMBC possessed a larger specific surface area and abundant surface functional groups. FMBC conformed to pseudo-second-order kinetic and Langmuir isotherm models, indicating that the OFX adsorption process on FMBC was a monolayer adsorption process and controlled by chemisorption. The saturation adsorption capacity of FMBC was 10 times higher than that of cedar bark biochar (BC). In addition, the effects of initial pH and coexisting ions on the adsorption process were investigated, and FMBC showed good adsorption, with the best adsorption capacity at pH = 7. Multiple adsorption mechanisms, including physical and chemical interactions, were involved in the adsorption of OFX by FMBC. TG, metal leaching, different water sources, and VSM tests showed that FMBC had good stability and was easily separated from water. Finally, the reusability performance of FMBC was investigated by various methods, and after five cycles it could still reach 75.78-89.31% of the adsorption capacity before recycling. Therefore, the FMBC synthesized in this study is a promising new adsorbent.
Collapse
Affiliation(s)
- Jiajie Hao
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Lieshan Wu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Xiaowei Lu
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Yalin Zeng
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Bing Jia
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Tingting Luo
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Shixing He
- Guangxi University, School of Resources Environment and Materials Nanning 530004 China
| | - Liuling Liang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre Nanning 530028 China
| |
Collapse
|
34
|
Mun H, Ri C, Liu Q, Tang J. Characteristics of ball-milled PET plastic char for the adsorption of different types of aromatic organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77685-77697. [PMID: 35680752 DOI: 10.1007/s11356-022-21143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ball-milled plastic char (BMPC) was manufactured by ball-milling of native plastic char (PC) that was synthesized via slow pyrolysis of polyethylene terephthalate (PET) water bottle waste, and its adsorption characteristics of aqueous phenanthrene (PHE), phenol, and 2,4,6-trichlorophenol (2,4,6-TCP) and its possible mechanisms were investigated. With the increase of PC pyrolysis temperature, the specific surface area of BMPC increased obviously, forming larger functional groups compared to PC. Boehm titration showed that total acidic groups of BMPC decreased significantly with the increase of pyrolysis temperature. The sorption kinetics of three adsorbates was adequately simulated by pseudo-second-order model (R2 > 0.99). Langmuir model fitted well the adsorption isotherms of PHE and phenol, while Freundlich model simulated the adsorption isotherm of 2,4,6-TCP better. The adsorption amount of PHE, phenol, and 2,4,6-TCP increased significantly as the pyrolysis temperature increased. The maximum BMPC adsorption capacity reached 21.9 mg·g-1 (for PHE), 106 mg·g-1 (for phenol), and 303 mg·g-1 (for 2,4,6-TCP) at 25 °C in aqueous solution. FTIR analysis suggested that surface sorption-based π-π interaction was a dominant mechanism of PHE adsorption; meanwhile, H-bonding between O-containing groups on BMPC and hydroxyl groups of adsorbates was responsible for phenol and 2,4,6-TCP removal. This paper shows that BMPC can be used as adsorbent for treating aromatic compounds in aqueous environment and has an economic worth of application.
Collapse
Affiliation(s)
- Hyokchol Mun
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- Institute of Natural Energy, State Academy of Sciences, Pyongyang, North Korea
| | - Cholnam Ri
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- Institute of Microbiology, State Academy of Sciences, Pyongyang, North Korea
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- Key Laboratory of Pollution Process and Environmental Criteria (Ministry of Education), Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
- Key Laboratory of Pollution Process and Environmental Criteria (Ministry of Education), Tianjin, 300350, China.
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| |
Collapse
|
35
|
Valizadeh S, Lee SS, Choi YJ, Baek K, Jeon BH, Andrew Lin KY, Park YK. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. ENVIRONMENTAL RESEARCH 2022; 213:113599. [PMID: 35679906 DOI: 10.1016/j.envres.2022.113599] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
36
|
Liu Z, Zhen F, Zhang Q, Qian X, Li W, Sun Y, Zhang L, Qu B. Nanoporous biochar with high specific surface area based on rice straw digestion residue for efficient adsorption of mercury ion from water. BIORESOURCE TECHNOLOGY 2022; 359:127471. [PMID: 35710052 DOI: 10.1016/j.biortech.2022.127471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The unreasonable disposal of residue after anaerobic digestion seriously affects the stability of the ecosystem, and the preparation of adsorbent is an effective way to value-added utilization of the residue. In this study, a high adsorption capacity (209.65 mg/g) biochar-based adsorbent was prepared by hydrothermal carbonization and alkali modification using rice straw biogas residue. The lignocellulosic structure was destroyed after anaerobic digestion, forming porous biochar with larger specific surface area (2372.51 m2/g) and richer pore structure. Besides, the mercury ion complexed on the adsorbent surface in monovalent and divalent forms and possessed favorable selectivity in the presence of other examples of interference. The adsorption process is consistent with pseudo second-order kinetics and the Langmuir isotherm, indicating a predominance of chemisorption. This study provides a methodology for use of rice straw biogas residue and treatment of mercury containing wastewater, which offers a fresh direction for resource utilization of biogas residue.
Collapse
Affiliation(s)
- Zhiyuan Liu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Quanguo Zhang
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Qian
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wenzhe Li
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Lingling Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Qu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
37
|
Ahmad M, Ren J, Xiu T, Naik M, Zhang Q, Zhang B. A Novel Preparation and Vapour Phase Modification of
2D
‐open Channel Bio‐adsorbent for Uranium Separation. AIChE J 2022. [DOI: 10.1002/aic.17884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mudasir Ahmad
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xian China
- Xian Key laboratory of Functional Organic porous materials Northwestern Polytechnical University China
| | - Jianquan Ren
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xian China
| | - Tao Xiu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xian China
| | - Mehraj‐ud‐din Naik
- Department of Chemical Engineering, College of Engineering Jazan University Jazan Kingdom of Saudi Arabia
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xian China
- Xian Key laboratory of Functional Organic porous materials Northwestern Polytechnical University China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xian China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation Sunresins New Materials Co. Ltd. Xi'an China
| |
Collapse
|
38
|
Feng S, Li Y, Zhang R, Zhang Q, Wang W. Origin of metabolites diversity and selectivity of P450 catalyzed benzo[a]pyrene metabolic activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129008. [PMID: 35490637 DOI: 10.1016/j.jhazmat.2022.129008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic Aromatic Hydrocarbon (PAHs) presents one of the most abundant class of environmental pollutants. Recent study shows a lab-synthesized PAHs derivative, helicenium, can selectively kill cancer cells rather than normal cells, calling for the in-depth understanding of the metabolic process. However, the origin of metabolites diversity and selectivity of P450 catalyzed PAHs metabolic activation is still unclear to a great extent. Here we systematically investigated P450 enzymes catalyzed activation mechanism of a representative PAHs, benzo[a]pyrene (BaP), and found the corresponding activation process mainly involves two elementary steps: electrophilic addition and epoxidation. Electrophilic addition step is evidenced to be rate determining step. Two representative binding modes of BaP with P450 were found, which enables the electrophilic addition of Heme (FeO) to almost all the carbons of BaP. This electrophilic addition was proposed to be accelerated by the P450 enzyme environment when compared with the gas phase and water solvent. To dig deeper on the origin of metabolites diversity, we built several linear regression models to explore the structural-energy relationships. The selectivity was eventually attributed to the integrated effects of structural (e.g. O-C distance and O-C-Fe angle) and electrostatic parameters (e.g. charge of C and O) from both BaP and P450.
Collapse
Affiliation(s)
- Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Ruiming Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
39
|
Liu B, Cao J, Jiang Y, Yan S, He H, Shi Y, Xu S, Liang J, Ren X. Adsorption of polycyclic aromatic hydrocarbons over CuZnFeAl–LDH modified by sodium dodecyl sulfate. RSC Adv 2022; 12:25623-25632. [PMID: 36199342 PMCID: PMC9460979 DOI: 10.1039/d2ra03968k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have received extensive attention due to being highly toxic, mutagenic, and carcinogenic organic pollutants. As a result, a series of adsorbents have been designed and developed to solve the problem. In this paper, CuZnFeAl–S has been explored as a highly efficient adsorbent for PAHs. First, CuZnFeAl–LDH was prepared using a coprecipitation method and then calcined at 500 °C to obtain CuZnFeAlO. Finally, CuZnFeAl–S was prepared by modifying CuZnFeAlO with sodium dodecyl sulfate (SDS). The physical and chemical properties of the adsorbents were characterized by XRD, N2 adsorption–desorption, SEM, ICP, FT-IR, TG-DSC, and IGC; subsequently their adsorption performance was investigated. The results show that the surface properties of CuZnFeAl–S changed from hydrophilic to hydrophobic after SDS modification, which enhanced the adsorption of PAHs obviously. The removal of naphthalene and phenanthrene on CuZnFeAl–S reached 97.3% and 90.3%, respectively. And the adsorption process of naphthalene and phenanthrene conforms to Langmuir adsorption and Freundlich adsorption, respectively. Besides, the adsorption thermodynamics indicate that the adsorption of PAHs was a spontaneous exothermic reaction. The highly efficient PAH adsorption performance of CuZnFeAl–S is the synergistic result of various molecule interactions, such as hydrogen bonding, π–π interactions, and electrostatic attraction. CuZnFeAl–S improves the adsorption of polycyclic aromatic hydrocarbons, which has a profound impact on environmental treatment.![]()
Collapse
Affiliation(s)
- Boqing Liu
- School of Chemical Engineering, Nanjing University of Technology, China
| | - Jingjing Cao
- School of Environmental Science, Nanjing Xiaozhuang University, China
| | - Yong Jiang
- School of Chemical Engineering, Nanjing University of Technology, China
| | - Shichang Yan
- School of Chemical Engineering, Nanjing University of Technology, China
| | - Haiming He
- School of Chemical Engineering, Nanjing University of Technology, China
| | - Yu Shi
- School of Chemical Engineering, Nanjing University of Technology, China
| | - Songsong Xu
- School of Chemical Engineering, Nanjing University of Technology, China
| | - Jinhua Liang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211800, Jiangsu Province, China
| | - Xiaoqian Ren
- School of Chemical Engineering, Nanjing University of Technology, China
| |
Collapse
|