1
|
Chen Q, Liu Y, Zhang M, Lin K, Wang Z, Liu L. Seasonal responses of microbial communities to water quality variations and interaction of eutrophication risk in Gehu Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177199. [PMID: 39471940 DOI: 10.1016/j.scitotenv.2024.177199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Gehu Lake, as a key upstream reservoir of Taihu Lake, China, plays a crucial role in improving the water quality, and eutrophication control of the Taihu Lake Basin. Although the microbial communities are significantly important in maintaining the ecological health of lake, the microbial response to water quality, especially for eutrophication has been rarely reported in Gehu Lake. In this study, the water quality parameters and the corresponding effects on the structure and function of microbial communities were determined seasonally. It was found that the poorest water quality in summer (Water Quality Index = 116.52) with severe eutrophication (Trophic Level Index >70), was primarily driven by agricultural non-point sources (33.4%) and seasonal pollution (23.8%). The chemical oxygen demand (COD) was the most important indicator of water quality that affected the concentration of Chlorophyll-a (Chla) according to Pearson correlation analysis (p < 0.001), random forest modeling (p < 0.01), and structural equation modeling (path coefficient = 0.926). Redundancy analysis revealed that total nitrogen, total phosphorus, Chla, and COD significantly influenced the microbial community (p < 0.05). Microbial co-occurrence networks demonstrated significantly seasonal variations, and winter exhibited a more complex structure under lower temperature and limited nutrients compared to the other seasons. In addition, the Chla-sensitive microbial species that involved in nitrogen and phosphorus metabolism were identified as the biological indicators of eutrophication in response to the changes of seasonal water quality. These findings have taken insights into the interactions between water quality and microbial communities, and might provide the basis for improvement of the ecological and environmental management of Gehu Lake, as well as the control of eutrophication in Taihu Lake.
Collapse
Affiliation(s)
- Qiqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxia Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Zhao W, Liu Y, Li H, Ma J, Li X. Seasonal Rise in the Contents of Microcystin-LR and Odorous Substances Due to Cyanobacterial Blooms in a Drinking Water Reservoir Supplying Xinyang City, China. Toxins (Basel) 2024; 16:448. [PMID: 39453224 PMCID: PMC11511344 DOI: 10.3390/toxins16100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cyanobacterial blooms have become a serious water pollution problem in many parts of the world, and the monitoring and study of the impacts of biotoxins on human health are of vital importance. In this study, the contents of microcystin-LR, 2-methylisoborneol, and geosmin were measured in water and sediment samples from Nanwan Reservoir, China, by means of bimonthly sampling between February and December 2023. The physicochemical and hydrochemical factors and phytoplankton dynamics in the reservoir were also investigated. The results showed that the overall mean concentration of microcystin-LR (0.729 μg/L) in summer approached the guiding standard (1 μg/L) set by the WHO for drinking water. Furthermore, the content of 2-methylisoborneol (143.5 ng/L) was 14 times higher than the national standard (10 ng/L). The results of laboratory cultures showed that lower light levels and medium temperatures were suitable for the growth of Microcystis and Planktothricoides but higher temperatures promoted the synthesis and release of microcystin-LR and 2-methylisoborneol. In addition, the results of co-cultures showed that the growth of Planktothricoides was inhibited by Microcystis. Our results suggest that cyanobacterial bloom and the presence of the metabolites 2-methylisoborneol and microcystin-LR can decrease the drinking water quality of Nanwan Reservoir.
Collapse
Affiliation(s)
- Wei Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (W.Z.); (Y.L.)
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (W.Z.); (Y.L.)
| | - Hua Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China;
| | - Xiaoyu Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (W.Z.); (Y.L.)
| |
Collapse
|
3
|
Wu D, Chen M, Shen A, Shi Y. Spatiotemporal dynamics of 2-methylisoborneol produced by filamentous cyanobacteria and associated driving factors in Lake Taihu, China. HARMFUL ALGAE 2024; 138:102703. [PMID: 39244238 DOI: 10.1016/j.hal.2024.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/09/2024]
Abstract
The proliferation of filamentous cyanobacteria in lakes can result in the generation of odor-causing compounds, predominantly 2-methylisoborneol (2-MIB), which pose odor-related challenges. In an effort to elucidate the spatiotemporal dynamics of 2-MIB and related influencing factors in East Lake Taihu, monthly investigations were undertaken from April 2022 to March 2023. In addition to the monthly survey, a whole-lake survey was conducted during the high-temperature period from July to September. The monthly survey revealed a distinct unimodal fluctuation in the concentration of 2-MIB in East Lake Taihu, with an average concentration at 297.0 ng/L during the high-temperature period. During the high-temperature period, the filamentous cyanobacterial communities detected in East Lake Taihu consisted primarily of species belonging to genera Leptolyngbya, Oscillatoria, Planktothricoides, and Pseudanabaena. However, no significant correlations were found between their densities and 2-MIB concentration. In addition, the mic gene was predominantly detected in genera Pseudanabaena and Planktothricoides, with the latter being the primary contributor to 2-MIB production. Furthermore, a succession of cyanobacteria capable of producing 2-MIB was detected, with water temperature and radiation intensity being identified as the primary driving factors. The temporal variation of 2-MIB concentration within East Lake Taihu during the whole year was primarily modulated by factors such as water temperature, water transparency, dissolved oxygen, and chlorophyll-a. During the high-temperature period, the 2-MIB concentration in the alga-dominated zone of East Lake Taihu was approximately 1.7 times greater than that in the macrophyte-dominated zone, with nutrient and transparency being identified as the main influencing factors. Consequently, our findings are of great significance for monitoring the sources and variation of 2-MIB in shallow lakes, providing a scientific foundation and theoretical guidance for odor management.
Collapse
Affiliation(s)
- Donghao Wu
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Taihu Basin Water Resources Research and Management of Ministry of Water Resources, Wuxi 214024, China
| | - Mingxin Chen
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Aichun Shen
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Taihu Basin Water Resources Research and Management of Ministry of Water Resources, Wuxi 214024, China
| | - Yadong Shi
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Taihu Basin Water Resources Research and Management of Ministry of Water Resources, Wuxi 214024, China.
| |
Collapse
|
4
|
Han H, Zhang JM, Ji S, Zeng XB, Jin XC, Shen ZQ, Xie B, Luo XN, Li K, Liu LP. Histology and transcriptomic analysis reveal the inflammation and affected pathways under 2-methylisoborneol (2-MIB) exposure on grass carp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173233. [PMID: 38763196 DOI: 10.1016/j.scitotenv.2024.173233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 μg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 μg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.
Collapse
Affiliation(s)
- Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Ji
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Biao Zeng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xi-Chen Jin
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Zi-Qian Shen
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xie
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xue-Neng Luo
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Yue Z, Chen Y, Wu Z, Cheng X, Bao Z, Deng X, Shen H, Liu J, Xie P, Chen J. Thermal stratification controls taste and odour compounds by regulating the phytoplankton community in a large subtropical water source reservoir (Xin'anjiang Reservoir). JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133539. [PMID: 38271873 DOI: 10.1016/j.jhazmat.2024.133539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
2-Methylisoborneol (2-MIB) and geosmin are compounds released by algae that significantly degrade reservoir water quality, posing a threat to both the safety of drinking water and the quality of aquatic products sourced from these environments. However, few studies have explored how enhanced thermal stratification affects the occurrence and regulation of odorants in large drinking water reservoirs. Through systematic monitoring and investigation of Xin'anjiang Reservoir, we found that enhanced thermal stratification promotes filamentous cyanobacteria, particularly Leptolyngbya sp., as the primary contributor to 2-MIB production within the 1-10 m layer of the water column. The highest 2-MIB concentration, 92.5 ng/L, was recorded in the riverine region, which was 2.54 and 14.52 times higher than that in the transitional and central parts of the reservoir, respectively. Temperature indirectly impacted algal growth and odorant production by modulating TN/TP ratios. Geosmin concentration responded rapidly to relatively low TN/TP ratios (< 25). Our findings suggest that phosphorus control in estuaries should be enhanced during thermal stratification period. In summary, our study provides valuable insights to inform pragmatic water intake strategies and the distribution and release of odorants caused by thermal stratification. This is particularly relevant in the context of future global warming and extremely high temperatures during the warm season.
Collapse
Affiliation(s)
- Zhiying Yue
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yuru Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhixu Wu
- Hangzhou Bureau of Ecology and Environment Chun'An Branch, Hangzhou 311700, China
| | - Xinliang Cheng
- Hangzhou Bureau of Ecology and Environment Chun'An Branch, Hangzhou 311700, China
| | - Zhen Bao
- Hangzhou Ecological Environment Monitoring Center of Zhejiang, Hangzhou 311700, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Hong Shen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiarui Liu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
6
|
Ozgur C. The analytic hierarchy process method to design applicable decision making for the effective removal of 2-MIB and geosmin in water sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12431-12445. [PMID: 38231335 PMCID: PMC10869403 DOI: 10.1007/s11356-024-31848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Numerous utilities encounter issues with taste and odor that alter the public's impression of the safety of drinking water. The creation of certain components in water naturally due to global climate change is another source of taste and odor components, in addition to industrial emissions. Geosmin and 2-methylisoborneol (2-MIB), both of which are generated by blue-green algae and actinomycetes, are two substances that contribute to the musty and earthy smells in drinking water sources. Unfortunately, current conventional treatment plants only partially remove 2-MIB and geosmin. Therefore, to protect the environment and public health, more up-to-date or optimized treatment methods should be applied to outdated treatment facilities. Best treatment practices, evaluation standards, and decision-making approaches, however, are still shrouded in mystery. The goal of this study was to identify the most effective treatment options for 2-MIB and geosmin. By using the analytical hierarchy process (AHP), a total of 22 assessment criteria were found and prioritized. A thorough literature search led to the identification of potential treatment options, and their effectiveness was evaluated. These options and priority rankings were decided upon using AHP in the decision-making process. Advanced oxidation techniques came out on top in the final priority ranking, followed by membrane filtering, adsorption, oxidation, hybrid processes, and traditional treatment methods. The applied analytical decision techniques may also be used to choose the optimal treatment options, even though the results are particular to 2-MIB and geosmin.
Collapse
Affiliation(s)
- Cihan Ozgur
- Isparta University of Applied Sciences, Sutculer Prof. Dr. Hasan Gurbuz Vocational School, Isparta, Turkey.
| |
Collapse
|
7
|
Lu Y, Tuo Y, Zhang L, Hu X, Huang B, Chen M, Li Z. Vertical distribution rules and factors influencing phytoplankton in front of a drinking water reservoir outlet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166512. [PMID: 37619726 DOI: 10.1016/j.scitotenv.2023.166512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The phenomenon of algal blooms caused by the excessive proliferation of phytoplankton in drinking water reservoirs is becoming increasingly frequent, seriously endangering water quality, ecosystems, water safety, and people's health. Thus, there is urgent need to conduct research on the distribution rules and factors influencing phytoplankton in drinking water reservoirs. Given that the outflows from reservoirs usually come from the middle and lower layers of the water column and the current studies on phytoplankton in drinking water reservoirs are usually carried out on the surface, an 8-month monitoring of vertical phytoplankton and the corresponding influencing factors in front of the outlet in a drinking water reservoir was conducted. Based on the monitoring results, the distribution rules of phytoplankton and the associated factors were analyzed. The results showed that phytoplankton biomass significantly decreased with increasing water depth, but the biomass near the outlet (40 m depth) still reached the WHO level 2 warning threshold for algal blooms multiple times. During the monitoring period, Cyanophyta, Chlorophyta and Bacillariophyta dominated. The selected multisource environmental factors explained 60.5 % of the spatiotemporal changes in phytoplankton, with thermal intensity (water temperature and thermal stratification intensity) being the driving factor. Meanwhile, excessive TN and TP provided necessary conditions for the growth of phytoplankton. Based on influencing factors, reducing upstream nutrient inflows and thermal stratification intensity are recommended as measures to prevent and control algal blooms. This study provides insights into the vertical distribution rules and factors influencing phytoplankton in a drinking water reservoir, which can provide a reference for the management of drinking water reservoirs and the prevention and control of algal blooms.
Collapse
Affiliation(s)
- Yongao Lu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Youcai Tuo
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Linglei Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiangying Hu
- Chongqing Liyutang Reservoir Development Corporation Limited, Chongqing 405400, China
| | - Bin Huang
- School of Environmental Science&Engineering, Tianjin University, Tianjin 300072, China; PowerChina Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 310005, China
| | - Min Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhenghe Li
- Chongqing Liyutang Reservoir Development Corporation Limited, Chongqing 405400, China
| |
Collapse
|
8
|
Yang S, Huang T, Zhang H, Guo H, Xu J, Cheng Y. Pollutants reduction via artificial mixing in a drinking water reservoir: Insights into bacterial metabolic activity, biodiversity, interactions and co-existence of core genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165473. [PMID: 37454840 DOI: 10.1016/j.scitotenv.2023.165473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
Izquierdo JEE, Cavallari MR, García DC, Oliveira JDDS, Nogueira VAM, Braga GDS, Ando Junior OH, Quivy AA, Kymissis I, Fonseca FJ. Detection of Water Contaminants by Organic Transistors as Gas Sensors in a Bottom-Gate/Bottom-Contact Cross-Linked Structure. SENSORS (BASEL, SWITZERLAND) 2023; 23:7981. [PMID: 37766036 PMCID: PMC10534344 DOI: 10.3390/s23187981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Detecting volatile organic compounds is a fundamental step in water quality analysis. Methylisoborneol (MIB) provides a lousy odor to water, whereas geosmin (GEO) is responsible for its sour taste. A widely-used technique for their detection is gas-phase chromatography. On the other hand, an electronic nose from organic thin-film transistors is a cheaper and faster alternative. Poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) features semiconducting properties suitable for organic electronics. However, in order to expose the active layer in a bottom-gate transistor structure with photolithographically patterned electrodes, a cross-linked dielectric such as poly(4-vinyl phenol) (PVP) is necessary. In this work, the cross-linking was demonstrated using FTIR and Raman spectroscopies, as well as high-k capacitors with a dielectric constant of 5.3. The presence of enhanced crystallinity with terrace formation in the semiconducting film was confirmed with UV-visible spectrophotometry, atomic force microscopy, and X-ray diffraction. Finally, for the first time, a PBTTT-C14 transistor on cross-linked PVP was shown to respond to isoborneol with a sensitivity of up to 6% change in mobility per ppm. Due to its similarity to MIB, a system comprising these sensors must be investigated in the future as a tool for sanitation companies in real-time water quality monitoring.
Collapse
Grants
- CAPES, scholarship number 88882.333362/2019-01, Programa de Excelência Acadêmica/PROEX Coordenação de Aperfeicoamento de Pessoal de Nível Superior
- FAPESP, process numbers 13/50440-7, 580 13/19420-0, and 15/08566-9 São Paulo Research Foundation
- Unicamp, Auxílio Início de Carreira (Docente), FAEPEX, process number 2095/23 State University of Campinas
- FACEPE, process numbers APQ-0616-9.25/21 and APQ-0642-9.25/22 Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco
- CNPq, process numbers 311687/2017-2, 608 407531/2018-1, 303293/2020-9, 309837/2021-9, 405385/2022-6, 405350/2022-8, and 40666/2022-3 National Council for Scientific and Technological Development
Collapse
Affiliation(s)
- José Enrique Eirez Izquierdo
- Departamento de Engenharia de Sistemas Eletrônicos (PSI), Escola Politécnica da Universidade de São Paulo (EPUSP), São Paulo 05508-010, SP, Brazil; (J.E.E.I.); (D.C.G.); (J.D.d.S.O.); (V.A.M.N.); (G.d.S.B.)
| | - Marco Roberto Cavallari
- Departamento de Engenharia de Sistemas Eletrônicos (PSI), Escola Politécnica da Universidade de São Paulo (EPUSP), São Paulo 05508-010, SP, Brazil; (J.E.E.I.); (D.C.G.); (J.D.d.S.O.); (V.A.M.N.); (G.d.S.B.)
- School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil
- Electrical Engineering Department, Columbia University, New York, NY 10027, USA;
| | - Dennis Cabrera García
- Departamento de Engenharia de Sistemas Eletrônicos (PSI), Escola Politécnica da Universidade de São Paulo (EPUSP), São Paulo 05508-010, SP, Brazil; (J.E.E.I.); (D.C.G.); (J.D.d.S.O.); (V.A.M.N.); (G.d.S.B.)
| | - José Diogo da Silva Oliveira
- Departamento de Engenharia de Sistemas Eletrônicos (PSI), Escola Politécnica da Universidade de São Paulo (EPUSP), São Paulo 05508-010, SP, Brazil; (J.E.E.I.); (D.C.G.); (J.D.d.S.O.); (V.A.M.N.); (G.d.S.B.)
| | - Vinicius Augusto Machado Nogueira
- Departamento de Engenharia de Sistemas Eletrônicos (PSI), Escola Politécnica da Universidade de São Paulo (EPUSP), São Paulo 05508-010, SP, Brazil; (J.E.E.I.); (D.C.G.); (J.D.d.S.O.); (V.A.M.N.); (G.d.S.B.)
| | - Guilherme de Souza Braga
- Departamento de Engenharia de Sistemas Eletrônicos (PSI), Escola Politécnica da Universidade de São Paulo (EPUSP), São Paulo 05508-010, SP, Brazil; (J.E.E.I.); (D.C.G.); (J.D.d.S.O.); (V.A.M.N.); (G.d.S.B.)
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal
| | - Oswaldo Hideo Ando Junior
- Research Group on Energy & Energy Sustainability (GPEnSE), Academic Unit of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil;
| | - Alain A. Quivy
- Institute of Physics, University of São Paulo, São Paulo 05508-090, SP, Brazil;
| | - Ioannis Kymissis
- Electrical Engineering Department, Columbia University, New York, NY 10027, USA;
| | - Fernando Josepetti Fonseca
- Departamento de Engenharia de Sistemas Eletrônicos (PSI), Escola Politécnica da Universidade de São Paulo (EPUSP), São Paulo 05508-010, SP, Brazil; (J.E.E.I.); (D.C.G.); (J.D.d.S.O.); (V.A.M.N.); (G.d.S.B.)
| |
Collapse
|
10
|
Yang C, Shen X, Shi X, Cui Z, Nan J, Lu H, Li J, Huang Q. Impact of submerged macrophytes on growth and 2-MIB release risk of Pseudanabaena sp.: From field monitoringa to cultural experiments. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130052. [PMID: 36182878 DOI: 10.1016/j.jhazmat.2022.130052] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The off-flavor compound 2-methylisoborneol (2-MIB) is generally associated with the proliferation and metabolism of filamentous cyanobacteria in shallow freshwater ecosystems. Here field monitoring in East Taihu Lake from July to October 2021, along with cultural experiments, was conducted to determine the impact of submerged macrophytes on the growth and 2-MIB production of filamentous cyanobacteria. Pseudanabaena sp. was identified as the 2-MIB producer with the highest detection rate (100%) and correlation coefficient (R=0.68, p < 0.001). The 2-MIB concentration and algal growth in the macrophyte-dominated zones were markedly decreased compared with those in the phytoplankton-dominated zone. Five submerged macrophytes classified into flat-leaf type (Vallisneria natans and Potamogeton crispus) and thin-leaf type (Hydrilla verticillata, Ceratophyllum demersum, and Myriophyllum spicatum) exhibited strong inhibition effects against Pseudanabaena sp.: Overall inhibition efficiencies (IEs) of 92.7% ± 6.8% and 92.7% ± 8.4% for cell growth and 2-MIB production were achieved, respectively. Moreover, the thin-leaf macrophytes exhibited significant higher IEs for cell growth (94.0% vs. 84.7%) and 2-MIB production (99.4% vs. 82.6%) than the flat-leaf macrophytes and can be selected as pioneer species in controlling odor problems. Nutrient uptake, increasing water clarity, shading effects, and allelopathic effects of the submerged macrophytes were found to be the dominant inhibition mechanisms.
Collapse
Affiliation(s)
- Changtao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Xiaobing Shen
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China; Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Xinyi Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Zhijie Cui
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Nan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haiming Lu
- Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education of China, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Franklin HM, Podduturi R, Jørgensen NO, Roberts DT, Schlüter L, Burford MA. Potential sources and producers of 2-methylisoborneol and geosmin in a river supplying a drinking water treatment plant. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|