1
|
Zhong Y, Zhang K, Wang X, Liang H, Yu Y, Guo M, Cao Y, Lin B. Ratiometric fluorescence analysis of tetracycline by dual-ligand europium-based metal-organic framework. Food Chem 2025; 475:143360. [PMID: 39952183 DOI: 10.1016/j.foodchem.2025.143360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
It is important to develop sensitive and accurate methods for the detection of tetracycline (TC). For this purpose, a dual emission probe Eu-DPA/BDC-(OH)2 was developed based on the green fluorescence of the ligand 2, 5-dihydroxyterephthalic acid (BDC-(OH)2), and the red fluorescence of Eu3+ sensitized by another ligand 2, 6-pyridine dicarboxylic acid (DPA). TC was able to quench the fluorescence of ligand BDC-(OH)2 at 545 nm by the internal filter effect (IFE), and coordinate with Eu3+ to enhance the fluorescence at 625 nm by the antenna effect (AE). I625/I545 showed a linear relationship with TC concentration with an LOD at 55 nM. At the same time, the fluorescence color of Eu-DPA/BDC-(OH)2 changed from green to yellow to red with the increase of TC concentration. On this basis, the RGB method was also developed for the visual detection of TC with an LOD at 0.2 μM. These methods have been successfully applied for the detection of TC in fish feed and pork with recovery rates of 93 % -110 %, indicating excellent applicability in the detection of real samples.
Collapse
Affiliation(s)
- Yating Zhong
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Keying Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xinru Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Haibo Liang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Mao G, Zeng Y, Ding G, Qiu C, Dai J, Wan Y, Ma Y. Dual-emission Si dots-based sensing array for identification of metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125500. [PMID: 39615456 DOI: 10.1016/j.saa.2024.125500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
Achieving rapid recognition and sensitive detection of multiple heavy metal ions simultaneously is of great significance for the monitoring of public health and environment. Herein, a fluorescence sensing array was constructed using Si dots with two emission centers for efficient discrimination of seven metal ions. Each metal ion had different binding capacities with -OH/-NH2 groups present on the surface of Si dots and thereby resulting in different changes in fluorescence intensity of the two emission peaks. The changes in fluorescence signals were transformed into unique "fingerprints" and "Euclidean distances" through linear discriminant analysis and hierarchical cluster analysis. The constructed sensing array provided multi-dimensional information to distinguish seven metal ions through a single material and a signal mode and show good linearity for individual metal ion and good performance in the discrimination of metal mixtures, effectively reducing the cost and response time and simplifying the experimental process. This system achieved accurate discrimination of metal ions in actual water samples and has broad application prospects in environmental monitoring.
Collapse
Affiliation(s)
- Guobin Mao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuan Zeng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Guangmiao Ding
- Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518000, China
| | - Chunmin Qiu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanhui Wan
- Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518000, China.
| | - Yingxin Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Arshad A, Ding L, Akram R, Long L, Wang K. Single-Ligand Modulated Size-Dependent Multi-Color Au/Os Nanoclusters for Multi-Analyte Detection. Anal Chem 2025; 97:5179-5190. [PMID: 39994204 DOI: 10.1021/acs.analchem.4c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The development of nanoclusters (NCs) capable of multicolor emissions for simultaneous detection of multiple analytes has aroused tremendous interest. However, the current methods for synthesizing NCs with multicolor emissions mainly depend on a multiple ligand strategy, which not only compromises the stability of the NCs but also alters their physicochemical properties. Herein, we propose a novel strategy for designing single-ligand capped bimetallic Au/Os NCs with multicolor fluorescence by adjusting the size of the NCs. This size-controlled, single-ligand encapsulation strategy not only enhances their stability and compatibility but also ensures uniformity in their physicochemical properties, thereby overcoming limitations inherent in multiligand systems. By meticulously modulating the reaction parameters, we achieved precise tuning of the NCs size, resulting in the synthesis of multicolor fluorescent NCs displaying blue (465 nm), green (507 nm), and yellow (560 nm) emissions. These multicolor Au/Os NCs were then incorporated into an array system for the differentiation of tetracyclines (TCs) by virtue of their interaction with TCs through the inner filter effect (IFE). Finally, each TC elicited a unique fluorescent response, which was subsequently analyzed by principal component analysis. The sensor array has been successfully employed for detection of TCs in milk, urine, and water, demonstrating its practical application potential. The strategy developed in this work holds great promise for the development of multicolor NCs.
Collapse
Affiliation(s)
- Anila Arshad
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Raheel Akram
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
4
|
Zhao L, Liu X, Zhang X, Liu S, Wu J. The Fluorescent Detection of Alkaline Phosphatase Based on Iron Nanoclusters and a Manganese Dioxide Nanosheet. SENSORS (BASEL, SWITZERLAND) 2025; 25:585. [PMID: 39860954 PMCID: PMC11769338 DOI: 10.3390/s25020585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO2 NS). The fluorescence quenching of Hb-Fe NCs by a MnO2 NS can be significantly reversed by the addition of ascorbic acid. On the basis of fluorescent recovery by ascorbic acid, we proposed a system that consisted of Hb-Fe NCs, a MnO2 NS and ascorbate phosphate, and the proposed system was successfully used for alkaline phosphatase (ALP) detection in the range of 0-20 μg/mL based on the significant fluorescence recovery achieved.
Collapse
Affiliation(s)
- Liang Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (L.Z.); (X.L.)
| | - Xinyue Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (L.Z.); (X.L.)
| | - Xinwen Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110057, China;
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (L.Z.); (X.L.)
| | - Jiazhen Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
5
|
Zhu P, Zhang J, Jin J, Huang X, Zhang X. Valence fixable ferrozine gel rod combined with smartphone for facile determination of redox-active Fe 2+ in environmental water. Talanta 2025; 281:126933. [PMID: 39326112 DOI: 10.1016/j.talanta.2024.126933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Ferrous ion (Fe2+) can indicate the redox situation of water and also plays an important role in maintaining the ecological balance of water bodies. However, due to the redox-active property of Fe2+, it is still a huge challenge to sensitively and accurately determine Fe2+ especially in interstitial water. Herein, we prepared a ferrozine gel rod for valence fixation during sampling and subsequent smartphone-based detection of Fe2+. The electrode potential of the redox pair can be varied through the formation of Fe2+-ligand complexes, and when Ecomplex was higher than [Formula: see text] , the oxidation of Fe2+ by O2 was hindered, thus achieving the valence fixation of Fe2+. Six ligands were screened, and it was found that ferrozine could effectively increase the redox potential after complexing with Fe2+, and also exhibits an obvious color change while fixing the valence of Fe2+. To facilitate Fe2+ detection, a cross-linked porous polymer gel rod prepared by acrylamide and sodium alginate was used to encapsulate the ferrozine molecules. The ferrozine gel rod enabled fixation the valence of Fe2+ longer than 30 days, and the resulted purple-red color was pictured and analyzed by a smartphone. Ultimately, the developed ferrozine gel rod sensing system was able to achieve sensitive and linear detection of Fe2+ in the range of 1-200 μM with the limit of detection as low as 0.33 μM, and it also exhibited excellent selectivity and anti-interference ability. The accuracy and reliability of the method was verified by the determination of Fe2+ in spiked water samples and certified standard reference water samples. Finally, the ferrozine gel rod sensing system was successfully applied to in-situ detection of Fe2+ in interstitial water, overlying water and upper water of lake and river. This facile system that enabled valence fixation and fast detection is promising for detection of Fe2+ in environmental waters.
Collapse
Affiliation(s)
- Peng'an Zhu
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Jiangle Zhang
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Jingjing Jin
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xing Huang
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinfeng Zhang
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
6
|
Liu X, Tian W, Liu H, Ma Y, Huo D, Hou C. A quenched fluorescence sensor array based on bis-lanthanide metal-organic framework for acetaldehyde detection and Baijiu discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124797. [PMID: 38991618 DOI: 10.1016/j.saa.2024.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Discrimination of segmented Baijiu contributes to stabilizing the quality of products, improving revenue-generating effects. A fluorescence sensor array is constructed based on four fluorescence characteristic peaks of terbium@lanthanum metal-organic framework (Tb@La-MOF). Its fluorescence signal is specifically quenched, when Tb@La-MOF encounters acetaldehyde. Acetaldehyde may inhibit the absorption of energy by the organic ligands in MOF, or/and hydrogen bonding with -COOH on the organic ligand, resulting in energy transfer to Tb(Ⅲ). According to this, the quantitative detection of acetaldehyde is completed with a range of 10-300 μM and the detection limit of 5.5 μM. At the same time, it has been successfully applied to the discrimination of segmented Baijiu. Fifteen segmented from three wine cellars are 100 % discriminated with the combined processing of sensor arrays and analytical methods. Accuracy, simplicity, and low-cost are highlights of this fluorescence sensor array, which has considerable potential for application in detection, production, and food field.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Wenxia Tian
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| |
Collapse
|
7
|
Mo Y, Xu J, Zhou H, Zhao Y, Chen K, Zhang J, Deng L, Zhang S. A machine learning-assisted fluorescent sensor array utilizing silver nanoclusters for coffee discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124760. [PMID: 38959644 DOI: 10.1016/j.saa.2024.124760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Coffee is a globally consumed commodity of substantial commercial significance. In this study, we constructed a fluorescent sensor array based on two types of polymer templated silver nanoclusters (AgNCs) for the detection of organic acids and coffees. The nanoclusters exhibited different interactions with organic acids and generated unique fluorescence response patterns. By employing principal component analysis (PCA) and random forest (RF) algorithms, the sensor array exhibited good qualitative and quantitative capabilities for organic acids. Then the sensor array was used to distinguish coffees with different processing methods or roast degrees and the recognition accuracy achieved 100%. It could also successfully identify 40 coffee samples from 12 geographical origins. Moreover, it demonstrated another satisfactory performance for the classification of pure coffee samples with their binary and ternary mixtures or other beverages. In summary, we present a novel method for detecting and identifying multiple coffees, which has considerable potential in applications such as quality control and identification of fake blended coffees.
Collapse
Affiliation(s)
- Yidan Mo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Kai Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lunhua Deng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai 200062, China.
| |
Collapse
|
8
|
Li N, Long QH, Li XY, Dong C, Zhao TS, Mai X, Zhao YS, Gao ZF, Wei Q, Xia F. Concurrent manipulation of competitive mechanisms to construct glutathione-stabilized gold nanocluster-based dual-channel molecular classifier for metal ions detection and information steganography. Talanta 2024; 278:126526. [PMID: 38996564 DOI: 10.1016/j.talanta.2024.126526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Understanding charge transport in metal ion-mediated glutathione-stabilized gold nanoclusters (GSH-Au NCs) has proved difficult due to the presence of various competitive mechanisms, such as electron transfer (ET) and aggregation induction effect (AIE). In this paper, we present a dual-channel fluorescence (FL) and second-order Rayleigh scattering (SRS) sensing method for high-throughput classification of metal ions, relying on the competition between ET and AIE using GSH-Au NCs. The SRS signals show significant enhancement when Pb2+, Ag+, Al3+, Cu2+, Fe3+, and Hg2+ are present, as a result of the aggregation of GSH-Au NCs. Notably, the fluorescence signal exhibits the opposite trend. The FL intensities of GSH-Au NCs are enhanced by Pb2+, Ag+, and Al3+ through the AIE mechanism, while they are quenched by Cu2+, Fe3+, and Hg2+, which is dominated by the ET mechanism. By employing principal component analysis and hierarchical cluster analysis, these signals are transformed into unique fingerprints and Euclidean distances, respectively, enabling successful distinction of six metal ions and their mixtures with a low detection limit of 30 nM. This new strategy has successfully addressed interference from impurities in the testing of real water samples, demonstrating its strong ability to detect multiple metal ions. Impressively, we have achieved molecular cryptosteganography, which involves encoding, storing, and concealing information by transforming the selective response of GSH-Au NCs to binary strings. This research is anticipated to advance utilization of nanomaterials in logic sensing and information safety, bridging the gap between molecular sensors and information systems.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Qing-Hong Long
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Xin-Yuan Li
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Can Dong
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Tian-Sheng Zhao
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Xi Mai
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Yong-Sen Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Zhong-Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
9
|
Dong X, Tian Y, Ai F, Wei D, Yin H, Zhu N, Zhang Z, Zhao H. Gold Nanocluster-Based Self-Assembly Fluorescence Microbeads for Sensor Array Discrimination of Multicomponent Metal Ions. Inorg Chem 2024; 63:16264-16273. [PMID: 39158204 DOI: 10.1021/acs.inorgchem.4c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Benefiting from easy visualization and simultaneous detection of multiple targets, fluorescence microbeads are commonly used as fluorescence-sensing elements to detect pollutants in the environment. However, the application of fluorescence microbead-based sensor arrays is still limited because fluorescence dyes always suffer from self-quenching, photobleaching, and spectral overlap. Herein, three kinds of gold nanoclusters (Au NCs) were assembled with polystyrene microspheres (PS NPs) by electrostatic interaction to prepare fluorescence microbeads (PS-Au NCs), developing a sensor array for the simultaneous analysis of multiple metal ions. In this work, different PS-Au NCs showed an enhancing or quenching fluorescence response to various metal ions, owing to distinct binding capacities. Combined with the recognition algorithm from linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA), this sensor assay could realize single-component and multicomponent qualitative detection for 8 kinds of heavy metal ions (HMIs) including Cu2+, Co2+, Pb2+, Hg2+, and Ce3+. Particularly, the large surface area of PS NPs could provide a direct reaction microenvironment to improve the efficiency of the detection process. Meanwhile, the fluorescence property of Au NCs could also be enhanced by a partially effective aggregation-induced emission (AIE) effect to give better fluorescence signal output. Under optimal conditions, 8 kinds of heavy metals and their multicomponent mixtures could be identified at concentrations as low as 0.62 μM. Meanwhile, the analytical performance of this sensor assay in water samples was also verified, meeting the requirement of actual analysis. This study provides a great potential and practical example of single-batch, multicomponent identification for HMIs.
Collapse
Affiliation(s)
- Xing Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yixing Tian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dali Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyi Yin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Zhao
- Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| |
Collapse
|
10
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Dong W, Fan Z, Shang X, Han M, Sun B, Shen C, Liu M, Lin F, Sun X, Xiong Y, Deng B. Nanotechnology-based optical sensors for Baijiu quality and safety control. Food Chem 2024; 447:138995. [PMID: 38513496 DOI: 10.1016/j.foodchem.2024.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Baijiu quality and safety have received considerable attention owing to the gradual increase in its consumption. However, owing to the unique and complex process of Baijiu production, issues leading to quality and safety concerns may occur during the manufacturing process. Therefore, establishing appropriate analytical methods is necessary for Baijiu quality assurance and process control. Nanomaterial (NM)-based optical sensing techniques have garnered widespread interest because of their unique advantages. However, comprehensive studies on nano-optical sensing technology for quality and safety control of Baijiu are lacking. In this review, we systematically summarize NM-based optical sensor applications for the accurate detection and quantification of analytes closely related to Baijiu quality and safety. Furthermore, we evaluate the sensing mechanisms for each application. Finally, we discuss the challenges nanotechnology poses for Baijiu analysis and future trends. Overall, nanotechnological approaches provide a potentially useful alternative for simplifying Baijiu analysis and improving final product quality and safety.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhen Fan
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolong Shang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Mengjun Han
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | | | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| |
Collapse
|
12
|
Chen H, Peng B, Zhang P, Yang Y, Hu X. "Turn-on" fluorescence sensing for sensitively detecting Cr(VI) via a guest exchange process in Cu NCs@MIL-101 composites. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4835-4842. [PMID: 38967373 DOI: 10.1039/d4ay00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Copper nanoclusters (Cu NCs) are a new fluorescent material that is often used for determining metal ions, but most sensing systems are based on the "turn-off" model. Here, a "turn-on" model of fluorescence sensing for the detection of Cr(VI) was developed based on Cu NCs@MIL-101 composites. The Cu NCs@MIL-101 composites were synthesized from a simple mixture of Cu NCs and MIL-101(Cr), in which the Cu NCs were uniformly distributed in MIL-101(Cr). Notably, the fluorescence intensity of Cu NCs@MIL-101 was significantly weakened due to the internal filtration effect (IFE) of MIL-101. When Cr(VI) was introduced, the fluorescence of Cu NCs@MIL-101 was recovered by the guest exchange process between Cr(VI) and the Cu NCs, which overcame the IFE of Cu NCs@MIL-101. Based on this, a "turn-on" fluorescence probe was successfully constructed for the quantitative detection of Cr(VI) with two linear ranges of 0.05-1 μM and 1-20 μM, and a low detection limit of 0.05 μM. The proposed fluorescence probe possessed excellent selectivity and anti-interference ability, and was successfully applied for the detection of Cr(VI) in real water samples with satisfactory results. This study provides a new approach for the analytical application of Cu NCs.
Collapse
Affiliation(s)
- Huijing Chen
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Bo Peng
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Ping Zhang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Ying Yang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xue Hu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
13
|
Wang X, Liu W. A novel 2D Eu-MOF as a dual-functional fluorescence sensor for detection of benzaldehyde and Fe 3. Dalton Trans 2024; 53:11850-11857. [PMID: 38949446 DOI: 10.1039/d4dt01512f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Lanthanide metal-organic frameworks (Ln-MOFs) have unique advantages in sensing due to their excellent optical properties. In this study, we synthesized a dicarboxylic acid ligand with amide groups and successfully synthesized a novel two-dimensional (2D) MOF with the molecular formula C42H31EuN4O10 (Eu-MOF) by a solvothermal method. Single-crystal X-ray diffraction showed that amide groups are exposed on the outside of the two-dimensional coordination layer, with the possibility of recognizing specific molecules through hydrogen bonding interactions. The ligand's "antenna effect" enables Eu-MOF to emit a strong luminescence characterized by the "f-f" transition. Further studies have revealed that Eu-MOF could be used as a bifunctional fluorescent probe for the selective detection of benzaldehyde and Fe3+. The sensing mechanism has been analyzed in detail through powder X-ray diffraction (PXRD) analysis, UV-vis spectroscopy, fluorescence lifetime measurement, and density functional (DFT) theory calculation. This design and research can provide a reference for subsequent related work.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Weisheng Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
15
|
Kamaci M. A Polycaprolactone-Capped ZnO Quantum Dots-Based Fluorometric Sensor for the Detection of Fe 3+ Ions in Seawater. J Fluoresc 2024; 34:1643-1654. [PMID: 37589936 DOI: 10.1007/s10895-023-03394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Fe3+ ion plays a very active role in life, agriculture, and industry. Human health and the environment are seriously affected by the abnormal presence or excess of this cation. Therefore, the development of a fast, reliable, sensitive, and simple fluorescent probe to detect this cation is crucial. In the present paper, polycaprolactone-capped zinc oxide quantum dots were prepared for the determination of Fe3+ ions. The proposed fluorescent chemosensor exhibited a fluorometric and strong quenching effect toward Fe3+ ions at two wavelengths (303 and 602 nm). The limit of detection (LOD) was calculated as 0.410, and 0.333µM at the mentioned wavelengths. Also, the binding stoichiometric ratio was calculated as 1:1 by Job's plot. The findings indicated that the PCL@ZnO colorimetric chemosensor could be successfully applied with reliable, and good accuracy for the detection of Fe3+ ions in real seawater samples.
Collapse
Affiliation(s)
- Musa Kamaci
- Piri Reis University, Tuzla, 34940, Istanbul, Turkey.
| |
Collapse
|
16
|
Yu Z, Zhao Y, Xie Y. Ensuring food safety by artificial intelligence-enhanced nanosensor arrays. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:139-178. [PMID: 39103212 DOI: 10.1016/bs.afnr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Current analytical methods utilized for food safety inspection requires improvement in terms of their cost-efficiency, speed of detection, and ease of use. Sensor array technology has emerged as a food safety assessment method that applies multiple cross-reactive sensors to identify specific targets via pattern recognition. When the sensor arrays are fabricated with nanomaterials, the binding affinity of analytes to the sensors and the response of sensor arrays can be remarkably enhanced, thereby making the detection process more rapid, sensitive, and accurate. Data analysis is vital in converting the signals from sensor arrays into meaningful information regarding the analytes. As the sensor arrays can generate complex, high-dimensional data in response to analytes, they require the use of machine learning algorithms to reduce the dimensionality of the data to gain more reliable outcomes. Moreover, the advances in handheld smart devices have made it easier to read and analyze the sensor array signals, with the advantages of convenience, portability, and efficiency. While facing some challenges, the integration of artificial intelligence with nanosensor arrays holds promise for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P.R. China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China.
| | - Yali Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P.R. China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P.R. China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
17
|
Mousavizadegan M, Hosseini M, Sheikholeslami MN, Ganjali MR. A fluorescent sensor array based on antibiotic-stabilized metal nanoclusters for the multiplex detection of bacteria. Mikrochim Acta 2024; 191:293. [PMID: 38691169 DOI: 10.1007/s00604-024-06374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
To address the need for facile, rapid detection of pathogens in water supplies, a fluorescent sensing array platform based on antibiotic-stabilized metal nanoclusters was developed for the multiplex detection of pathogens. Using five common antibiotics, eight different nanoclusters (NCs) were synthesized including ampicillin stabilized copper NCs, cefepime stabilized gold and copper NCs, kanamycin stabilized gold and copper NCs, lysozyme stabilized gold NCs, and vancomycin stabilized gold/silver and copper NCs. Based on the different interaction of each NC with the bacteria strains, unique patterns were generated. Various machine learning algorithms were employed for pattern discernment, among which the artificial neural networks proved to have the highest performance, with an accuracy of 100%. The developed prediction model performed well on an independent test dataset and on real samples gathered from drinking water, tap water and the Anzali Lagoon water, with prediction accuracy of 96.88% and 95.14%, respectively. This work demonstrates how generic antibiotics can be implemented for NC synthesis and used as recognition elements for pathogen detection. Furthermore, it displays how merging machine learning techniques can elevate sensitivity of analytical devices.
Collapse
Affiliation(s)
- Maryam Mousavizadegan
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 1439817435, Iran.
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran
| |
Collapse
|
18
|
Meng Z, Sun S, Pu X, Wang J, Liao X, Huang Z, Deng Y, Yin G. Ratiometric fluorescence detection of dopamine based on copper nanoclusters and carbon dots. NANOTECHNOLOGY 2024; 35:235502. [PMID: 38417161 DOI: 10.1088/1361-6528/ad2e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Nanoclusters for fluorescence detection are generally comprised of rare and expensive noble metals, and the nanoclusters based on more affordable transition metal have attracted increasing attention. This study designed a ratiometric fluorescent probe to detect dopamine (DA), an important neurotransmitter. With carbon dots encapsulated within silica (CDs@SiO2) as the reference, the emitted reference signal was almost unchanged due to the protection of inert silicon shell. Meanwhile, copper nanoclusters modified with 3-aminophenyl boronic acid (APBA-GSH-CuNCs) provided the sensing signal, in which the phenylboric acid could specifically recognize the cis-diol structure of DA, and caused the fluorescence quenching by photoinduced electron transfer. This dual emission ratiometric fluorescent probe exhibited high sensitivity and anti-interference, and was able to selectively responded to DA with a linear range of 0-1.4 mM, the detection limit of 5.6 nM, and the sensitivity of 815 mM-1. Furthermore, the probe successfully detected DA in human serum samples, yielding recoveries ranging from 92.5% to 102.7%. Overall, this study highlights the promising potential of this ratiometric probe for detecting DA.
Collapse
Affiliation(s)
- Zhihan Meng
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Shupei Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu 610225, Sichuan, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Juang Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yi Deng
- College of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Wang J, Chen W, Cao L, Zhou M, Geng Y, Liu Y, Ding S, Fu DY. Glutathione S-transferase templated copper nanoclusters as a fluorescent probe for turn-on sensing of chlorotetracycline. NANOSCALE ADVANCES 2024; 6:722-731. [PMID: 38235074 PMCID: PMC10791131 DOI: 10.1039/d3na00577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Hereby, facile-green copper nanoclusters templated by glutathione S-transferase (GST-CuNCs) have been innovatively synthesized via a simple one-pot stirring method at room temperature. The as-prepared nanoclusters exhibited uniform size with satisfactory fluorescence intensity, good stability and low cytotoxicity. Significantly, the fluorescence of the obtained GST-CuNCs could be considerably enhanced by the addition of chlorotetracycline (CTC) rather than other analogues of CTC, which was ascribed to the aggregation-induced enhancement caused by the interaction between CTC and GST. The enhanced fluorescence intensity demonstrated a good linear correlation with the CTC concentration in the range of 30-120 μM (R2 = 0.99517), and the low detection limit was 69.7 nM. Furthermore, the proposed approach showed favorable selectivity and anti-interference toward CTC among prevalent ions and amino acids. Additionally, this nanoprobe was also applied to the quantitative detection of CTC in serum samples with satisfactory outcomes, which demonstrated excellent prospects for practical applications.
Collapse
Affiliation(s)
- Jiaxi Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University No. 19 Qixiu Road Nantong 226001 China
| | - Wenting Chen
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University No. 19 Qixiu Road Nantong 226001 China
- Rudong Country People's Hospital No. 2 Jianghai West Road, Chengzhong Street, Rudong County Nantong 226400 China
| | - Lei Cao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University No. 19 Qixiu Road Nantong 226001 China
| | - Mengyan Zhou
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University No. 19 Qixiu Road Nantong 226001 China
| | - Yongkang Geng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University No. 19 Qixiu Road Nantong 226001 China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University Nantong 226001 China
| | - Shushu Ding
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University No. 19 Qixiu Road Nantong 226001 China
| | - Ding-Yi Fu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University No. 19 Qixiu Road Nantong 226001 China
| |
Collapse
|
20
|
Xu J, Chen X, Zhou H, Zhao Y, Cheng Y, Wu Y, Zhang J, Chen J, Zhang S. Machine learning-assisted photoluminescent sensor array based on gold nanoclusters for the discrimination of antibiotics with test paper. Talanta 2024; 266:125122. [PMID: 37651910 DOI: 10.1016/j.talanta.2023.125122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic residues accumulation in the environment endangers ecosystems and human health. There is an urgent need for a facile and efficient strategy to detect antibiotics. Here, we report a photoluminescent sensor array based on protein-stabilized gold nanoclusters (AuNCs) for the detection of two families of antibiotics, tetracyclines and quinolones. The nanoclusters were synthesized with bovine serum albumin (BSA) and ovalbumin (OVA), respectively. They had different interactions with seven kinds of antibiotics and exhibited diverse photoluminescence (PL) responses, which were analyzed by linear discriminant analysis and ExtraTrees algorithms. The sensor array performed well in both classification and quantification of seven antibiotics. And the quantitative results of all antibiotics obtained R2 of no less than 0.99 at 0-100 μM when using suitable regression models. Additionally, the sensor array was able to distinguish antibiotic mixtures and multiple interfering substances, and it also kept 100% classification accuracy in river water samples. Moreover, test paper assisted by a smartphone was applied for quick detection of antibiotics, with good performance in both HEPES buffer and river water. These studies reveal great potential for the point-of-use analysis of antibiotics in environmental monitoring.
Collapse
Affiliation(s)
- Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Yuchi Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China.
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai, 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai, 200062, China.
| |
Collapse
|
21
|
Li L, Cao X, Wu P, Bu C, Ren Y, Li K. Spatio-temporal characterization of dissolved organic matter in karst rivers disturbed by acid mine drainage and its correlation with metal ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165434. [PMID: 37433340 DOI: 10.1016/j.scitotenv.2023.165434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
Dissolved organic matter (DOM) is widely present in surface water environments and plays a critical role in the biogeochemical cycling of metal ions. Metal ions in acid mine drainage (AMD) have seriously polluted karst surface water environments, but few studies have explored interactions between DOM and metal ions in AMD-disturbed karst rivers. Here, the composition and sources of DOM in AMD-disturbed karst rivers were investigated by fluorescence excitation-emission spectroscopy combined with parallel factor analysis. In addition, correlations between metal ions and other factors (DOM components, total dissolved carbon (TDC) and pH) were determined using structural equation modeling (SEM). Results showed that there were evident differences in the seasonal distribution of TDC and metal ion concentrations in AMD-disturbed karst rivers. The concentrations of DOC, dissolved inorganic carbon (DIC), and metal ions were generally higher in the dry season than in the wet season, with Fe and Mn pollution being the most pronounced. The DOM in AMD contained two types of protein-like substances that were mainly from autochthonous inputs, while DOM in AMD-disturbed karst rivers contained two additional types of humic-like substances from both autochthonous and allochthonous inputs. The SEM results showed that the influence of DOM components on the distribution of metal ions was greater than that of TDC and pH. Among the DOM components, the influence of humic-like substances was greater than that of protein-like substances. Additionally, DOM and TDC had direct positive effects on metal ions, while pH had a direct negative effect on these. These results further elucidated the geochemical interactions between DOM and metal ions in AMD-disturbed karst rivers, which will assist in the pollution prevention of metal ions in AMD.
Collapse
Affiliation(s)
- Linwei Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xingxing Cao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Chujie Bu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yeye Ren
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kai Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Chen H, Zhu L, Jiang W, Ji H, Zhou X, Qin Y, Wu L. Multiple fluorescence polymer dots-based differential array sensors for highly efficient heavy metal ions detection. ENVIRONMENTAL RESEARCH 2023:116278. [PMID: 37321342 DOI: 10.1016/j.envres.2023.116278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Water pollution caused by harmful heavy metal ions (HMIs) can significantly impact aquatic ecosystems and pose a high risk to human health. In this work, equipped with ultra-high fluorescence brightness, efficient energy transfer, and environmentally friendly performance, polymer dots (Pdots) were employed to construct a pattern recognition fluorescent HMIs detection platform. A single-channel unary Pdots differential sensing array was first developed to identify multiple HMIs with 100% classification accuracy. Then an "all-in-one" multiple Förster resonance energy transfer (FRET) Pdots differential sensing platform was constructed to discriminate HMIs in the artificial polluted water samples and actual water samples, exhibiting high classification accuracy in distinguishing HMIs. The proposed strategy leverages the compounded cumulative differential variation of diverse sensing channels for analytes, which is anticipated to find extensive applications in other fields for detection purposes.
Collapse
Affiliation(s)
- Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
23
|
Meng H, Wang Y, Wu R, Li Y, Wei D, Li M, Zhu N, Zhu F, Zhang Z, Zhao H. Identification of multi-component metal ion mixtures in complex systems using fluorescence sensor arrays. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131546. [PMID: 37163891 DOI: 10.1016/j.jhazmat.2023.131546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
The growing co-contamination of multiple metal ions seriously influences human health due to their synergistic and additive toxicological effects, whereas the rapid discrimination of multiple heavy metal ions in complex aquatic systems remains a major challenge. Herein, a high- throughput fluorescence sensor array was fabricated based on three gold nanoclusters (GSH-Au NCs, OVA-Au NCs, and BSA-Au NCs) for the direct identification and quantification of seven heavy metal ions (Pb2+, Fe3+, Cu2+, Co2+, Ag+, Hg2+ and As3+) from environmental waters without sample pretreatment other than filtration. At the detection system, three gold nanoclusters with various ligands possessed distinct binding capacities against metal ions and induced aggregation-induced fluorescence enhancement and quenching, resulting in a unique pattern of fluorescence variations. Meanwhile, integrated the collected fluorescence fingerprints with linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA), a discrete database was obtained for the accurate recognition and sensitive detection of metal ions. Under the optimized conditions, the limit of detection (LOD) of the proposed fluorescence sensor array for metal ions detection at nM concentration level along with a satisfactory accuracy. Importantly, our study indicated that the fluorescence sensor array could be widely used as a general platform in environmental monitoring against multiple targets at low concentrations.
Collapse
Affiliation(s)
- Hui Meng
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Wang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruoxi Wu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yumo Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dali Wei
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingwei Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hongjun Zhao
- Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| |
Collapse
|
24
|
Chen X, Xu J, Zhou H, Zhao Y, Wu Y, Zhang J, Zhang S. Tree-based machine learning models assisted fluorescent sensor array for detection of metal ions based on silver nanocluster probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122738. [PMID: 37080051 DOI: 10.1016/j.saa.2023.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The growing concern over heavy metal pollution and its impact on the environment and human health has led to a proliferation of research on the detection and differentiation of heavy metal ions. A novel fluorescent sensor array utilizing only one single Ag-nanoclusters (Ag NCs) was developed for the efficient detection of six metal ions. The Ag NCs probe was prepared by using poly(methyl vinyl ether-alt-maleic acid) (PMVEM) as the ligand and has different fluorescence properties in water and dimethyl sulfoxide (DMSO). The interaction between metal ions and Ag NCs resulted in a characteristic fluorescence variation pattern which was subsequently analyzed using various tree-based machine learning models. We have compared different combinations of classification models and pre-processing methods of which the K-Nearest Neighbors Classifier with the first five linear discriminants has the highest accuracy. Through the integration of concentration models within a tree-based pipeline optimization framework, six unique concentration regression models were selected for each metal ion. In addition, the developed sensor array could identify metal ions in binary mixtures. And it still kept high accuracy for the classification of six target metal ions in river water. In conclusion, the proposed framework was found to be effective in the detection of heavy metal ions in environmental samples, thus providing a promising approach for addressing heavy metal pollution.
Collapse
Affiliation(s)
- Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China.
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No.500, Dongchuan Rd., Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China; NYU-ECNU Institute of Physics at NYU Shanghai, No.3663, North Zhongshan Rd., Shanghai 200062, China.
| |
Collapse
|
25
|
Mu J, Xu W, Huang Z, Jia Q. Encapsulating copper nanoclusters in 3D metal-organic frameworks to boost fluorescence for bio-enzyme sensing, inhibitor screening, and light-emitting diode fabrication. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
26
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
27
|
Wu H, Wang G, Cai Z, Li D, Xiao F, Lei D, Dai Z, Dou X. Polyethyleneimine-capped copper nanoclusters for detection and discrimination of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4485-4494. [PMID: 36317750 DOI: 10.1039/d2ay01311h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detection and discrimination of 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP) from analogues are of great importance to global security and are full of challenges in the field of trace sensing. Here, benefitting from the strong electrophilicity of TNT, a sensing strategy is established by synthesizing polyethyleneimine capped copper nanoclusters (PEI-Cu NCs) with abundant -NH2 groups. By carefully controlling the size and structure of PEI-Cu NCs, Förster resonance energy transfer (FRET) from PEI-Cu NCs to the Meisenheimer complex occurs resulting from their spectral overlap when detecting TNT, while, due to the energy level match of TNP with PEI-Cu NCs, as well as the strong affinity between its -OH and -NH2 in PEI-Cu NCs, photo-induced electron transfer (PET) is feasibly expected. As a result, TNT and TNP could be detected from 26 types of analogues and cations with a limit of detection (LOD) of 26.57 and 12.82 nM, respectively. Besides, owing to the brown color of the Meisenheimer complex, the discrimination of TNT and TNP could be additionally realized by colorimetric detection. We expect that the proposed methodology would not only shine light on the detection and discrimination of TNT and TNP that mitigate against public security concerns, but also pave a way for the deep understanding of FRET and PET related fluorescence quenching mechanisms from the aspect of controllable sensing material design and synthesis.
Collapse
Affiliation(s)
- Haotian Wu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Dezhong Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Fangfang Xiao
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhuohua Dai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Novel NBN-Embedded Polymers and Their Application as Fluorescent Probes in Fe 3+ and Cr 3+ Detection. Polymers (Basel) 2022; 14:polym14102025. [PMID: 35631907 PMCID: PMC9145644 DOI: 10.3390/polym14102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The isosteric replacement of C═C by B–N units in conjugated organic systems has recently attracted tremendous interest due to its desirable optical, electronic and sensory properties. Compared with BN-, NBN- and BNB-doped polycyclic aromatic hydrocarbons, NBN-embedded polymers are poised to expand the diversity and functionality of olefin polymers, but this new class of materials remain underexplored. Herein, a series of polymers with BNB-doped π-system as a pendant group were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from NBN-containing vinyl monomers, which was prepared via intermolecular dehydration reaction between boronic acid and diamine moieties in one pot. Poly{2-(4-Vinylphenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine} (P1), poly{N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)phenyl)acrylamide} (P2) and poly{N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide} (P3) were successfully synthesized. Their structure, photophysical properties and application in metal ion detection were investigated. Three polymers exhibit obvious solvatochromic fluorescence. As fluorescent sensors for the detection of Fe3+ and Cr3+, P1 and P2 show excellent selectivity and sensitivity. The limit of detection (LOD) achieved by Fe3+ is 7.30 nM, and the LOD achieved by Cr3+ is 14.69 nM, which indicates the great potential of these NBN-embedded polymers as metal fluorescence sensors.
Collapse
|