1
|
Zou XM, Zhang T, Dong YH, Hu C, Yin L, Zheng YL, Li M, Xiao XY, Hui W. Enhanced removal of sulfonamide antibiotics in water using high-performance S-nZVI/BC derived from rice straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123955. [PMID: 39756288 DOI: 10.1016/j.jenvman.2024.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites. The results show high SAs removal efficiency (up to 98.3%) at optimal Fe/C and Fe/S molar ratios of 3:1 and 50:1, respectively, with strong tolerance to coexisting ions. Furthermore, the effectiveness of S-nZVI/BC(Fe3/C1, Fe50/S1) sample was validated using five real wastewaters, and the results showed consistent performance, stability and reusability. Mechanistic studies revealed that S-nZVI/BC synergized with persulfate to enhance the reactivity of sulfate-free radical (SO4-·) and Fe2+. The degradation pathways of SAs, involving electrophilic substitution and nucleophilic attack, were elucidated by density functional theory (DFT) calculations. These insights were instrumental in comprehending the degradation mechanism of SAs. Additionally, the degradation dynamics of ten SAs were further analyzed using quantitative structure-activity relationship (QSAR) models and principal component analysis (PCA). Hence, this work highlights the potential of S-nZVI/BC for industrial wastewater treatment, providing insights into the degradation mechanisms and pathways of SAs.
Collapse
Affiliation(s)
- Xiao-Ming Zou
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Tiao Zhang
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yu-Hua Dong
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Cui Hu
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Li Yin
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yu-Ling Zheng
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Mi Li
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Xiao-Yu Xiao
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| | - Wei Hui
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
2
|
Chen Z, Cai H, Huang F, Wang Z, Chen Y, Liu Z, Xie P. Degradation of β-lactam antibiotics by Fe(III)/HSO 3- system and their quantitative structure-activity relationship. ENVIRONMENTAL RESEARCH 2024; 259:119577. [PMID: 38986801 DOI: 10.1016/j.envres.2024.119577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
β-lactam antibiotics, extensively used worldwide, pose significant risks to human health and ecological safety due to their accumulation in the environment. Recent studies have demonstrated the efficacy of transition metal-activated sulfite systems, like Fe(Ⅲ)/HSO3-, in removing PPCPs from water. However, research on their capability to degrade β-lactam antibiotics remains sparse. This paper evaluates the degradation of 14 types of β-lactam antibiotics in Fe(Ⅲ)/HSO3- system and establishes a QSAR model correlating molecular descriptors with degradation rates using the MLR method. Using cefazolin as a case study, this research predicts degradation pathways through NPA charge and Fukui function analysis, corroborated by UPLC-MS product analysis. The investigation further explores the influence of variables such as HSO3- dosage, substrate concentration, Fe(Ⅲ) dosage, initial pH and the presence of common seen water matrices including humic acid and bicarbonate on the degradation efficiency. Optimal conditions for cefazolin degradation in Fe(Ⅲ)/HSO3- system were determined to be 93.3 μM HSO3-, 8.12 μM Fe(Ⅲ) and an initial pH of 3.61, under which the interaction of Fe(Ⅲ) dosage with initial pH was found to significantly affect the degradation efficiency. This study not only provides a novel degradation approach for β-lactam antibiotics but also expands the theoretical application horizon of the Fe(Ⅲ)/HSO3- system.
Collapse
Affiliation(s)
- Zhenbin Chen
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haohan Cai
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng Huang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Zhang P, Sun M, Liang J, Xiong Z, Liu Y, Peng J, Yuan Y, Zhang H, Zhou P, Lai B. pH-modulated oxidation of organic pollutants for water decontamination: A deep insight into reactivity and oxidation pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134393. [PMID: 38669929 DOI: 10.1016/j.jhazmat.2024.134393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Solution pH is one of the primary factors affecting the efficiency of water decontamination. Although the influence of pH on oxidants activation, catalyst activity, and reactive oxygen species have been widely explored, there is still a scarcity of systemic studies on the changes in the oxidation behavior of organic pollutants at different pH levels. Herein, we report the influence laws of pH on the forms, reactivities, active sites, degradation pathways, and products toxicities of organic pollutants. Changes in pH cause the protonation or deprotonation of organic pollutants and further affect their forms and chemistry (e.g., electrostatic force, hydrophobicity, and oxidation potential). The oxidation potential of organic pollutants follows the order: protonated form > pristine form > deprotonated form. Moreover, protonation or deprotonation can modify the active sites and degradation pathways of organic pollutants, wherein deprotonation renders them more susceptible to electrophilic attack, while protonation reduces their activity against electrophilic and nucleophilic attacks. Additionally, pH adjustments can modify the degradation pathway and the toxicity of transformation products. Overall, pH changes can affect the oxidation fate of organic pollutants by altering their structure, which distinguishes it from the effect of pH on oxidants or oxidant activation processes.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Juan Liang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiali Peng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Yuan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Long Z, Yao J, Wu M, Liu SS, Tang L, Lei B, Wang J, Sun H. Acute toxicity of binary mixtures for quorum sensing inhibitors and sulfonamides against Aliivibrio fischeri: QSAR investigations and joint toxic actions. Curr Res Toxicol 2024; 6:100172. [PMID: 38803613 PMCID: PMC11128832 DOI: 10.1016/j.crtox.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Quorum sensing inhibitors (QSIs), as a kind of ideal antibiotic substitutes, have been recommended to be used in combination with traditional antibiotics in medical and aquaculture fields. Due to the co-existence of QSIs and antibiotics in environmental media, it is necessary to evaluate their joint risk. However, there is little information about the acute toxicity of mixtures for QSIs and antibiotics. In this study, 10 QSIs and 3 sulfonamides (SAs, as the representatives for traditional antibiotics) were selected as the test chemicals, and their acute toxic effects were determined using the bioluminescence of Aliivibrio fischeri (A. fischeri) as the endpoint. The results indicated that SAs and QSIs all induced S-shaped dose-responses in A. fischeri bioluminescence. Furthermore, SAs possessed greater acute toxicity than QSIs, and luciferase (Luc) might be the target protein of test chemicals. Based on the median effective concentration (EC50) for each test chemical, QSI-SA mixtures were designed according to equitoxic (EC50(QSI):EC50(SA) = 1:1) and non-equitoxic ratios (EC50(QSI):EC50(SA) = 1:10, 1:5, 1:0.2, and 1:0.1). It could be observed that with the increase of QSI proportion, the acute toxicity of QSI-SA mixtures enhanced while the corresponding TU values decreased. Furthermore, QSIs contributed more to the acute toxicity of test binary mixtures. The joint toxic actions of QSIs and SAs were synergism for 23 mixtures, antagonism for 12 mixtures, and addition for 1 mixture. Quantitative structure-activity relationship (QSAR) models for the acute toxicity QSIs, SAs, and their binary mixtures were then constructed based on the lowest CDOCKER interaction energy (Ebind-Luc) between Luc and each chemical and the component proportion in the mixture. These models exhibited good robustness and predictive ability in evaluating the toxicity data and joint toxic actions of QSIs and SAs. This study provides reference data and applicable QSAR models for the environmental risk assessment of QSIs, and gives a new perspective for exploring the joint effects of QSI-antibiotic mixtures.
Collapse
Affiliation(s)
- Zhenheng Long
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiajun Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Yuan S, Wang Z, Yuan S. Insights into the pH-dependent interactions of sulfadiazine antibiotic with soil particle models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170537. [PMID: 38301792 DOI: 10.1016/j.scitotenv.2024.170537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Sulfonamide antibiotics (SAs) are widely used as a broad-spectrum antibiotic, leading to global concerns due to their potential soil accumulation and subsequent effects on ecosystems. SAs often exhibit remarkable environmental persistence, necessitating further investigation to uncover the ultimate destiny of these molecules. In this work, molecular dynamics simulations combined with complementary quantum chemistry calculations were employed to investigate the influence of pH on the behavior of sulfadiazine (SDZ, a typical SAs) in soil particle models (silica, one of the main components of soil). Meanwhile, the quantification of SDZ molecules aggregation potential onto silica was further extended. SDZ molecules tend to form a monolayer on the soil surface under acidic conditions while forming aggregated adsorption on the surface under neutral conditions. Due to the hydrophilicity of the silica, multiple hydration layers would form on its surface, hindering the further adsorption of SDZ molecules on its surface. The calculated soil-water partition coefficient (Psoil/water) of SDZ+ and SDZ were 9.01 and 7.02, respectively. The adsorption evaluation and mechanisms are useful in controlling the migration and transformation of SAs in the soil environment. These findings provide valuable insights into the interactions between SDZ and soil components, shedding light on its fate and transport in the environment.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China
| |
Collapse
|
6
|
Liu R, Chen X, Li J, Liu X, Shu M. Discovery of novel bromodomain-containing protein 4 (BRD4-BD1) inhibitors combined with 3d-QSAR, molecular docking and molecular dynamics in silico. J Biomol Struct Dyn 2024:1-18. [PMID: 38425011 DOI: 10.1080/07391102.2024.2321249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Bromine-containing domain protein 4 (BRD4) plays a crucial role in regulating transcription and genome stability. Selective inhibitors of BRD4-BD1 can specifically target specific bromine domains to affect cell proliferation, apoptosis, and differentiation. In this work, 43 selective benzoazepinone BRD4-BD1 inhibitors were studied using molecular simulations and three-dimensional quantitative conformation relationships (3D-QSAR). A reliable 3D-QSAR model was established based on COMFA (Q2 = 0.532, R2 = 0.981) and COMSIA (S + E + H (Q2 = 0.536, R2 = 0.979) two different analysis methods. Through 3D-QSAR model prediction and quantum chemical analysis, 15 small molecules with stronger inhibitory activity than the template compounds were constructed, and 5 new compounds with higher predictive activity and binding affinity were screened by molecular docking and ADMET methods. According to the molecular dynamics simulation, the key residues that can interact with BRD4-BD1 protein and molecular docking results are consistent, including ASN140, MET132, GLN85, MET105, ASN135 and TYR97. From the MD trajectory, we calculated and analyzed RMSD, RMSF, free binding energy, FECM, DCCM and PCA, the loop region formed by amino acids VAL45∼PRO62 showed α-helix, β-folding and clustering towards the active center with the extension of simulation time. Further optimization of the structure of active candidate compounds A6, A11, A14, and A15 will provide the necessary theoretical basis for the synthesis and activity evaluation of novel BRD4-BD1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rong Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaodie Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jiali Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xingyun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
7
|
Liu Y, Han J, Wang Y, Li A, Zhao J, Su Y, Shen L, Xing B. Suspected sources of microplastics and nanoplastics: Contamination from experimental reagents and solvents. WATER RESEARCH 2024; 249:120925. [PMID: 38039819 DOI: 10.1016/j.watres.2023.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
There is an increasing concern about the potential effects of microplastics (MPs) and nanoplastics on human health and other organisms. For the separation and detection of MPs, there are various approaches, and the distinct procedures led to different results. However, the presence of MPs in the reagents was not addressed, which could cause false and/or inaccurate results during MPs detection. In this study, the chemical reagents commonly used for the separation and detection of MPs were selected to ascertain whether these reagents introduce MPs. It was shown that a large number of MPs were detected in the reagent and solvent samples. The largest number of MPs (>1 μm) was detected in the KOH reagent, with the abundance of 3070 items/g. The order of MPs abundance in the selected reagents was: KOH > NaCl > CaCl2 > SDS > NaI > H2O2. The types of MPs were the same as the body and stopper of the reagent packaging bottles. MPs size detected in reagent bottles was primarily smaller than 10 μm. The abundance of MPs in the reagents were independent of their purity, however, there was a certain difference in MPs abundance in reagents from different manufacturers. Furthermore, the presence of nanoplastics (< 1 μm) was verified in the reagents through Py-GCMS, with the abundance (39.47-43.01 mg/kg) higher than that of MPs. The obtained results in this study raised specific requirements and cautions for MPs and nanoplastics related research in terms of quality control. Also, this work can facilitate a more accurate assessment of MPs concentrations in the environment.
Collapse
Affiliation(s)
- Yingnan Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Aoze Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing 210023, China
| | - Lezu Shen
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
8
|
Yang J, Wang W, Yang X, Long S, Tian X, Chen L, Liu X, Yang Q, Zhou T, Wang D. Enhancing acidogenic fermentation of waste activated sludge via urea hydrogen peroxide pretreatment: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129483. [PMID: 37454957 DOI: 10.1016/j.biortech.2023.129483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Improving the anaerobic treatment performance of waste activated sludge (WAS) to achieve resource recovery is an indispensable requirement to reduce carbon emissions, minimize and stabilize biosolids. In this study, a novel strategy by using urea hydrogen peroxide (UHP) to enhance SCFAs production through accelerating WAS disintegration, degrading recalcitrant substances and alleviating competitive suppression of methanogens. The SCFAs production and acetate proportion rose from 436.9 mg COD/L and 31.3% to 3102.6 mg COD/L and 54.1%, respectively, when UHP grew from 0 to 80 mg/g TSS. Mechanism investigation revealed that OH, O2 and urea were the major contributors to accelerate WAS disintegration with the sequence of OH> O2 > urea. Function microbes related to acidification and genes associated with acetate production ([EC:2.3.1.8] and [EC:2.7.2.1]) were upregulated while genes encoding propionic acid production ([EC:6.4.1.3] and [EC:6.2.1.1]) were downregulated. These results raised the application prospects of UHP in WAS resource utilization.
Collapse
Affiliation(s)
- Jingnan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Xianli Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiaohang Tian
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lizhen Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qiliang Yang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Tao Zhou
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
Li Y, Yang H, He W, Li Y. Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis. Int J Mol Sci 2023; 24:13548. [PMID: 37686353 PMCID: PMC10488033 DOI: 10.3390/ijms241713548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Phthalate esters (PAEs) are widely exposed in the environment as plasticizers in plastics, and they have been found to cause significant environmental and health hazards, especially in terms of endocrine disruption in humans. In order to investigate the processes underlying the endocrine disruption effects of PAEs, three machine learning techniques were used in this study to build an adverse outcome pathway (AOP) for those effects on people. According to the results of the three machine learning techniques, the random forest and XGBoost models performed well in terms of prediction. Subsequently, sensitivity analysis was conducted to identify the initial events, key events, and key features influencing the endocrine disruption effects of PAEs on humans. Key features, such as Mol.Wt, Q+, QH+, ELUMO, minHCsats, MEDC-33, and EG, were found to be closely related to the molecular structure. Therefore, a 3D-QSAR model for PAEs was constructed, and, based on the three-dimensional potential energy surface information, it was discovered that the hydrophobic, steric, and electrostatic fields of PAEs significantly influence their endocrine disruption effects on humans. Lastly, an analysis of the contributions of amino acid residues and binding energy (BE) was performed, identifying and confirming that hydrogen bonding, hydrophobic interactions, and van der Waals forces are important factors affecting the AOP of PAEs' molecular endocrine disruption effects. This study defined and constructed a comprehensive AOP for the endocrine disruption effects of PAEs on humans and developed a method based on theoretical simulation to characterize the AOP, providing theoretical guidance for studying the mechanisms of toxicity caused by other pollutants.
Collapse
Affiliation(s)
| | | | | | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; (Y.L.); (H.Y.); (W.H.)
| |
Collapse
|
10
|
Wang D, Pan C, Chen L, He D, Yuan L, Li Y, Wu Y. Positive feedback on dewaterability of waste-activated sludge by the conditioning process of Fe(II) catalyzing urea hydrogen peroxide. WATER RESEARCH 2022; 225:119195. [PMID: 36215838 DOI: 10.1016/j.watres.2022.119195] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The treatment and disposal of sludge is a complex environmental problem because of the high moisture content. Herein, We reported the process of Fe(II) activating Urea hydrogen peroxide (UHP) to improve waste activated sludge (WAS) dewaterability for the first time. Fe(II)/UHP was proven to significantly improve WAS dewaterability. Specifically, under the optimal conditions with 60/35-Fe(II)/UHP mg/g TSS, the CST, SRF, and WCSC of WAS reduced from 215.3 ± 7.5s, 9.2 ± 0.32 (× 1012 m/kg), and 92.2 ± 0.7% (control) to 62.3 ± 4.3s, 2.8 ± 0.09 (× 1012m/kg), and 70.4 ± 0.4%, respectively. Further analysis revealed that •OH was generated in the Fe(II)/UHP system and played the dominant role in enhancing WAS dewaterability. •OH was found to attack extracellular polymeric substances (EPSs) and cells, causing EPSs fragmentation and decomposition part of EPSs into micro-molecule organics or even inorganics, and leading to cell destruction, thus liberating the EPSs-bound and cells-bound water. •OH also degraded the protein in centrifugal liquor (CL) into micro-molecule organics such as amino acids, which could reduce the viscosity and electronegativity of CL. The above facts ultimately reduced solid-liquid interface interaction but increased hydrophobicity, flocculation, and flowability of WAS. Meanwhile, the broken WAS flocs were then re-flocculated via adsorption bridging and charge neutralization induced by Fe(II) and Fe(III). Moreover, Fe(II)/UHP treatment achieved the reduction and stabilization of heavy metals of dewatered sludge, which further enabled its land application. Finally, the Fe(II)/UHP process was found to be more attractive than the Fe(II)/persulfate, classical Fenton processes, and cPAM in terms of cost savings and practical implementation.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chuli Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lisha Chen
- School of Resources &Environment, Nanchang University, Nanchang 330031, PR China.
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Longhu Yuan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|