1
|
Wang Y, Huang S, Huo W, Li X, Shi X, Gao K, Zhao Y, Harrison MT, Zhang J, Song X, Zhao Q, Peng T. Comparative analysis of zinc, copper, cadmium, and arsenic accumulation in forage-grain rice: Implications for food safety and health risks. Food Chem 2024; 468:142436. [PMID: 39675271 DOI: 10.1016/j.foodchem.2024.142436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Forage-grain ratoon rice (FG-RR) systems, integrating grain and forage production, promise a sustainable approach to enhance food security and livestock development in marginal regions where ratoon rice (T-RR) is traditionally cultivated. Here, we quantified zinc (Zn), copper (Cu), arsenic (As), and cadmium (Cd) concentrations in ratoon crop grains from 23 rice varieties at four mowing stages (heading, milk-ripening, dry-ripening, and full maturity) of the main crop. Early mowing at the milk-ripening stage significantly reduced As levels (16.59-46.83 %) and increased Zn (0.61-18.21 %) and Cu (6.81-55.44 %) concentrations, improving nutritional quality. However, Cd levels were elevated (2.10-262.66 %) in FG-RR compared with T-RR. Notably, the impact of mowing stages on the metal concentrations was greater than that of rice varieties. These findings suggest that mowing at the milk-ripening stage enhances the safety and sustainability of FG-RR systems, ensuring improved nutrition and reduced As-related heavy health risks.
Collapse
Affiliation(s)
- Yimei Wang
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuai Huang
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Weixu Huo
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinghui Li
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaofei Shi
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Kaige Gao
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Yafan Zhao
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham, Launceston, Tasmania 7248, Australia
| | - Jing Zhang
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xiaoyan Song
- College of Agriculture, Guizhou University, Guizhou 550025, China
| | - Quanzhi Zhao
- College of Agriculture, Guizhou University, Guizhou 550025, China
| | - Ting Peng
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production/ Collaborative Innovation Center of Henan Grain Crops/Henan Center of Crop Genomics and Rice Engineering, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Wang J, Shaheen SM, Swertz AC, Liu C, Anderson CWN, Fendorf S, Wang SL, Feng X, Rinklebe J. First Insight into the Mobilization and Sequestration of Arsenic in a Karstic Soil during Redox Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17850-17861. [PMID: 39319747 DOI: 10.1021/acs.est.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Karst terrains provide drinking water for about 25% of the people on our planet, particularly in the southwest of China. Pollutants such as arsenic (As) in the soil can infiltrate groundwater through sinkholes and bedrock fractures in karst terrains. Despite this, the underlying mechanisms responsible for As release from karst soils under redox changes remain largely unexplored. Here, we used multiple synchrotron-based spectroscopic analyses to explore As mobilization and sequestration in As-polluted karstic soil under biogeochemical conditions that mimic field-validated redox conditions. We observed that As in the soil exists primarily as As(V), which is mainly associated with Fe(oxyhydr)oxides. The concentration of the dissolved As was high (294 μM) and As(III) was dominant (∼95%) at low Eh (≤-100 mV), indicating the high risk of As leaching under reducing conditions. This As mobilization was attributed to the fact that the dissolution of ferrihydrite and calcite promoted the release and reduction of associated As(V). The concentration of the dissolved As was low (17.0 μM) and As(V) was dominant (∼68%) at high Eh (≥+100 mV), which might be due to the oxidation and/or sequestration of As(III) by the recrystallized ferric phase. Our results showed that the combined effects of the reductive release of As(V) from both ferric and nonferric phases, along with the recrystallization of the ferric phase, govern the redox-induced mobilization and potential leaching of As in soils within karst environments.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ann-Christin Swertz
- Faculty of Mechanical Engineering and Safety Engineering, Department of Safety Technology and Environmental Protection, University of Wuppertal, Rainer-Gruenter-Straße, 42119 Wuppertal, Germany
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
| | - Christopher W N Anderson
- Environmental Sciences, School of Agriculture and Environment, Massey University, 4442 Palmerston North, New Zealand
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan ROC
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
3
|
Zhang T, Sun Y, Parikh SJ, Colinet G, Garland G, Huo L, Zhang N, Shan H, Zeng X, Su S. Water-fertilizer regulation drives microorganisms to promote iron, nitrogen and manganese cycling: A solution for arsenic and cadmium pollution in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135244. [PMID: 39032176 DOI: 10.1016/j.jhazmat.2024.135244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
The co-contamination of arsenic (As) and cadmium (Cd) in rice fields presents a global imperative for resolution. However, understanding the complex microbially driven geochemical processes and network connectivity crucial for As and Cd bioavailability under the frequent redox transitions in rice fields remains limited. Here, we conducted a series of microcosm experiments, using flooding and drainage, alongside fertilization treatments to emulate different redox environment in paddy soils. Soil As significantly reduced in drained conditions following applications of biochar or calcium-magnesium-phosphate (CMP) fertilizers by 26.3 % and 31.2 %, respectively, with concurrent decreases in Cd levels. Utilizing geochemical models, we identified the primary redox cycles dynamically altering during flooding (Fe and S cycles) and drainage (Fe, Mn, and N cycles). PLS-SEM elucidated 76 % and 61 % of the variation in Cd and As through Mn and N cycles. Functional genes implicated in multi-element cycles were analyzed, revealing a significantly higher abundance of assimilatory N reduction genes (nasA, nirA/B, narB) in drained soil, whereas an increase in ammonia-oxidizing genes (amoA/B) and a decrease in nitrate reduction to ammonium genes were observed after CMP fertilizer application. Biochar application led to significant enrichment of the substrate-binding protein of the Mn transport gene (mntC). Moreover, Fe transport genes were enriched after biochar or CMP application compared to drained soils. Among 40 high-quality metagenome-assembled genomes (MAGs), microbial predictors associated with low Cd and As contents across different treatments were examined. Bradyrhizobacea harbored abundant Mn and FeIII transport genes, while Nitrososphaeraceae carried nitrification-related genes. Two MAGs affiliated with Caulobacteraceae, carrying diverse Fe transport genes, were enriched in biochar-applied soils. Therefore, applying CMP fertilizer or biochar in aerobic rice fields can synergistically reduce the bioavailability of Cd and As by specifically enhancing the circulation of essential elements.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Yifei Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA
| | - Gilles Colinet
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Gina Garland
- Department of Environmental System Science, ETH Zurich, Zurich 8046, Switzerland
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Waliu Road No 66, Taiyuan 030024, China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
4
|
Miao F, Zhang X, Fu Q, Hu H, Islam MS, Fang L, Zhu J. Sulfur enhances iron plaque formation and stress resistance to reduce the transfer of Cd and As in the soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171689. [PMID: 38492599 DOI: 10.1016/j.scitotenv.2024.171689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Sulfur plays an essential role in agricultural production, but few studies have been reported on how sulfur simultaneously impacts the transformation of cadmium (Cd) and arsenic (As) in the soil-rice system. This research selected two soils co-contaminated with both Cd and As, varying in acidity and alkalinity levels, to study the impacts of elemental sulfur (S) and calcium sulfate (CaSO4) on the migration and accumulation of Cd and As by rice. Results indicated that two types of sulfur had a substantial (P < 0.05) impact on decreasing the contents of Cd (28.3-50.4 %) and As (20.1-38.6 %) in brown rice in acidic and alkaline soils. They also increased rice biomass (29.3-112.8 %) and reduced Cd transport coefficient (27.2-45.6 %) significantly (P < 0.05). Notably, sulfur augmented the generation of iron plaque on rice root surfaces, which increased the fixation of Cd (17.6-61.0 %) and As (14.0-45.9 %). SEM-EDS results also indicated that the rice root surface exhibited significant enrichment of Fe, Cd, and As. The mechanism of simultaneous Cd and As immobilization by sulfur application was mainly ascribed to the contribution of iron plaque. Additionally, sulfur reduced the contents of Cd and As in soil porewater and promoted the transformation of As(III) to As(V) to reduce the toxicity of As. The K-edge XAFS of As in iron plaque also confirmed that sulfur application significantly promoted As(III) oxidation. Sulfur also promoted the activities of antioxidant enzymes and the contents of NPT, GSH, and PCs in rice plants. In general, this study establishes a foundation for sulfur to lower As and Cd bioavailability in paddy soils, enhance iron plaque and rice resistance, and reduce heavy metal accumulation.
Collapse
Affiliation(s)
- Fei Miao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Md Shoffikul Islam
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; Department of Soil Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Li J, Yin Z, Xu K, Yan L, Ye L, Du J, Jing C, Shi J. Arsenite S-Adenosylmethionine Methyltransferase Is Responsible for Antimony Biomethylation in Nostoc sp. PCC7120. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1934-1943. [PMID: 38180751 DOI: 10.1021/acs.est.3c07367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Antimony (Sb) biomethylation is an important but uninformed process in Sb biogeochemical cycling. Methylated Sb species have been widely detected in the environment, but the gene and enzyme for Sb methylation remain unknown. Here, we found that arsenite S-adenosylmethionine methyltransferase (ArsM) is able to catalyze Sb(III) methylation. The stepwise methylation by ArsM forms mono-, di-, and trimethylated Sb species. Sb(III) is readily coordinated with glutathione, forming the preferred ArsM substrate which is anchored on three conserved cysteines. Overexpressing arsM in Escherichia coli AW3110 conferred resistance to Sb(III) by converting intracellular Sb(III) into gaseous methylated species, serving as a detoxification process. Methylated Sb species were detected in paddy soil cultures, and phylogenetic analysis of ArsM showed its great diversity in ecosystems, suggesting a high metabolic potential for Sb(III) methylation in the environment. This study shows an undiscovered microbial process methylating aqueous Sb(III) into the gaseous phase, mobilizing Sb on a regional and even global scale as a re-emerging contaminant.
Collapse
Affiliation(s)
- Jianwei Li
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kun Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Ye
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Yan M, Zhu C, Yang Z, Li H. Pig manure-derived fulvic acid more strongly drives the fate of arsenic and antibiotic resistance genes in paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118683. [PMID: 37531670 DOI: 10.1016/j.jenvman.2023.118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Antibiotic resistance genes (ARGs) can threaten the clean production of rice owing to continuous selective pressure in heavy metal-antibiotic co-contaminated paddy soils. As an important soil carbon reservoir, the role of humic substances from different types of manure in the regulation of soil ARGs remains unclear. In this study, fulvic acid (FA) and humic acid (HA) were extracted from pig manure (PM), cow dung (CD), and chicken manure (CM). The influence of their characteristics and doses on the fate of ARGs was investigated in arsenic (As)-antibiotic co-contaminated paddy soils. The release of As and degradation of antibiotics were promoted in 1% PM-FA treatment, with increases of 4.8%-5.6% and 8.3%-8.8% compared with CM-FA and CD-FA treatments, respectively. The coexistence of FA/HA, Fe, As, and antibiotics in soil pore water affected the environmental behavior of ARGs, with FA showing a more positive effect. Species including Bacillus, Geobacter, Desulfitobacterium, and Christensenellaceae_R-7_group were considered potential hosts of ARGs, and their resistance to co-contamination increased after the addition of FA. Membrane transport is a potential strategy for host bacteria of ARGs to cope with As-antibiotic complex pressure. These results demonstrate the coupling mechanisms of As, antibiotics, and ARGs regulated by different humic substances in co-contaminated paddy soils, which could support the clean production of rice in agricultural practice.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; National Navel Orange Engineering Research Center/School of Life Sciences, Gannan Normal University, Ganzhou, 341000, PR China.
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Zhonglan Yang
- National Navel Orange Engineering Research Center/School of Life Sciences, Gannan Normal University, Ganzhou, 341000, PR China.
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
7
|
Chen JY, Liu S, Deng WK, Niu SH, Liao XD, Xiang L, Xing SC. The effect of manure-borne doxycycline combined with different types of oversized microplastic contamination layers on carbon and nitrogen metabolism in sandy loam. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131612. [PMID: 37245359 DOI: 10.1016/j.jhazmat.2023.131612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The different forms and properties of microplastics (MPs) have different effects on the elemental cycles in soil ecosystems, and this is further complicated when the soil contains antibiotics; meanwhile, oversized microplastic (OMP) in soil is always ignored in studies of environmental behavior. In the context of antibiotic action, the effects of OMP on soil carbon (C) and nitrogen (N) cycling have rarely been explored. In this study, we created four types of oversized microplastic (thick fibers, thin fibers, large debris, and small debris) composite doxycycline (DOX) contamination layers (5-10 cm) in sandy loam, hoping to reveal the effects on soil C and N cycling and potential microbial mechanisms when exposed to the combination of manure-borne DOX and different types of OMP from the perspective of metagenomics in the longitudinal soil layer (0-30 cm). The results showed that all different forms of OMP, when combined with DOX, reduced the soil C content in each layer, but only reduced the soil N content in the upper layer of the OMP contamination layer. The microbial structure of the surface soil (0-10 cm) was more noteworthy than that of the deeper soil (10-30 cm). The genera Chryseolinea and Ohtaekwangia were key microbes involved in C and N cycling in the surface layer and regulated carbon fixation in photosynthetic organisms (K00134), carbon fixation pathways in prokaryotes (K00031), methane metabolism (K11212 and K14941), assimilatory nitrate reduction (K00367), and denitrification (K00376 and K04561). The present study is the first to reveal the potential microbial mechanism of C and N cycling under OMP combined with DOX in different layers, mainly the OMP contamination layer and its upper layer, and the OMP shape plays an important role in this process.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Lei Xiang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
8
|
Zhang T, Jiku MAS, Li L, Ren Y, Li L, Zeng X, Colinet G, Sun Y, Huo L, Su S. Soil ridging combined with biochar or calcium-magnesium-phosphorus fertilizer application: Enhanced interaction with Ca, Fe and Mn in new soil habitat reduces uptake of as and Cd in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121968. [PMID: 37290633 DOI: 10.1016/j.envpol.2023.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Reducing the bioavailability of both cadmium (Cd) and arsenic (As) in paddy fields is a worldwide challenge. The authors investigated whether ridge cultivation combined with biochar or calcium-magnesium-phosphorus (CMP) fertilizer effectively reduces the accumulation of Cd and As in rice grains. Field trial showed that applying biochar or CMP on the ridges was similar to the continuous flooding, which maintained grain Cd at a low level, but grain As was reduced by 55.6%, 46.8% (IIyou28) and 61.9%, 59.3% (Ruiyou 399). Compared with ridging alone, the application of biochar or CMP decreased grain Cd by 38.7%, 37.8% (IIyou28) and 67.58%, 60.98% (Ruiyou399), and reduced grain As by 38.9%, 26.9% (IIyou28) and 39.7%, 35.5% (Ruiyou 399). Microcosm experiment showed that applying biochar and CMP on the ridges decreased As in soil solution by 75.6% and 82.5%, respectively, and kept Cd at a comparably low level at 0.13-0.15 μg L-1. Aggregated boosted tree (ABT) analysis revealed that ridge cultivation combined with soil amendments altered soil pH, redox state (Eh) and enhanced the interaction of Ca, Fe, Mn with As and Cd, which promoted the concerted reduction of As and Cd bioavailability. Application of biochar on the ridges enhanced the effects of Ca and Mn to maintain a low level of Cd, and enhanced the effects of pH to reduce As in soil solution. Similar to ridging alone, applying CMP on the ridges enhanced the effects of Mn to reduce As in soil solution, and enhanced the effects of pH and Mn to maintain Cd at a low level. Ridging also promoted the association of As with poorly/well-crystalline Fe/Al and the association of Cd on Mn-oxides. This study provides an effective and environmentally friendly method to decrease Cd and As bioavailability in paddy fields and mitigate Cd and As accumulation in rice grain.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China; Gembloux Agro-Bio Tech, University of Liege, 5030, Gembloux, Belgium
| | - Md Abu Sayem Jiku
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Lingyi Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Yanxin Ren
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Gilles Colinet
- Gembloux Agro-Bio Tech, University of Liege, 5030, Gembloux, Belgium
| | - Yuanyuan Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550025, China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Waliu Road No 66, Taiyuan, 030024, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
9
|
Tian X, Chai G, Lu M, Xiao R, Xie Q, Luo L. A new insight into the role of iron plaque in arsenic and cadmium accumulation in rice (Oryza sativa L.) roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114714. [PMID: 36889214 DOI: 10.1016/j.ecoenv.2023.114714] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Iron plaque, naturally iron-manganese (hydr)oxides adhered to the surface of rice roots, controls the sequestration and accumulation of arsenic (As) and cadmium (Cd) in the paddy soil-rice system. However, the effects of the paddy rice growth on the iron plaque formation and As and Cd accumulation of rice roots are often neglected. This study explores the distribution characteristics of iron plaques on rice roots and their effects on As and Cd sequestration and uptake via cutting the rice roots into 5 cm segments. Results indicated that the percentages of rice root biomass of 0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, and 20-25 cm are 57.5 %, 25.2 %, 9.3 %, 4.9 %, and 3.1 %, respectively. Iron (Fe) and manganese (Mn) concentrations in iron plaques on rice roots of various segments are 41.19-81.11 g kg-1 and 0.94-3.20 g kg-1, respectively. Increased tendency of Fe and Mn concentrations from the proximal rice roots to the distal rice roots show that iron plaque is more likely to deposit on the distal rice roots than proximal rice roots. The DCB-extractable As and Cd concentrations of rice roots with various segments are 694.63-1517.23 mg kg-1 and 9.00-37.58 mg kg-1, displaying a similar trend to the distribution characteristics of Fe and Mn. Furthermore, the average transfer factor (TF) of As (0.68 ± 0.26) from iron plaque to rice roots was significantly lower than that of Cd (1.57 ± 0.19) (P < 0.05). There was a significant positive correlation between the Cd sequestration in iron plaque and the Cd accumulation in rice roots (R = 0.97, P < 0.01). Still, a similar correlation wasn't observed between As sequestration in iron plaque and As accumulation in rice roots (R = -0.04, and P > 0.05). These results indicated that the formed iron plaque might act as a barrier to As uptake by rice roots and a facilitator to Cd uptake. This study provides insight into the role of iron plaque in the sequestration and uptake of As and Cd in paddy soil-rice systems.
Collapse
Affiliation(s)
- Xiaosong Tian
- Chongqing Vocational Institute of Engineering, Chongqing 402260, China.
| | - Guanqun Chai
- Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Ming Lu
- Chongqing Agro-Tech Extension Station, Chongqing 401121, China
| | - Rui Xiao
- Chongqing Vocational Institute of Engineering, Chongqing 402260, China
| | - Qing Xie
- Chongqing Vocational Institute of Engineering, Chongqing 402260, China.
| | - Longzao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
10
|
Yan M, Zhu C, Li B, Su S, Li H. Manure application facilitated electrokinetic remediation of antibiotic-arsenic co-contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129897. [PMID: 36084469 DOI: 10.1016/j.jhazmat.2022.129897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The co-existence of antibiotics and heavy metals in soil with manure application poses high risk to both environment and human health, and thus effective remediation methods are in urgent need. This study investigated the synergistic effects of electrokinetic remediation (EKR) on antibiotic resistance and arsenic (As) in co-contaminated paddy soils. EKR treatments in soil amended with pig manure (EKR-PD) showed better remediation efficiency compared with that without pig manure. In detail, the content of available As and the abundance of antibiotic-resistant bacteria (ARB) decreased by 25.2 %-41.4 % and 9.5 %-21.1 % after 7-d remediation, respectively, due to a relatively higher current density for EKR-PD. The role of the electric field contributed to 33.9 % of antibiotic degradation. Antibiotic resistance genes (ARGs) with ribosomal-protection and enzymatic-deactivation types were easier to remove, with the removal ratio of 37.8 %-41.6 % in EKR-PD. Brevundimonas was the most significantly different species during remediation. Bacillus and Clostridium_ sensu_stricto_1 were potential host bacteria of ARGs in the electric field. Membrane transport might be an effective strategy for microorganisms to respond to the stress of both electric field and co-contaminated environments. This study supports the potential role of EKR in the co-contamination of heavy metals and antibiotic resistance under manure application.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Binxu Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
11
|
Lan X, Lin W, Ning Z, Su X, Chen Y, Jia Y, Xiao E. Arsenic shapes the microbial community structures in tungsten mine waste rocks. ENVIRONMENTAL RESEARCH 2023; 216:114573. [PMID: 36243050 DOI: 10.1016/j.envres.2022.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Tungsten (W) is a critical material that is widely used in military applications, electronics, lighting technology, power engineering and the automotive and aerospace industries. In recent decades, overexploitation of W has generated large amounts of mine waste rocks, which generate elevated content of toxic elements and cause serious adverse effects on ecosystems and public health. Microorganisms are considered important players in toxic element migrations from waste rocks. However, the understanding of how the microbial community structure varies in W mine waste rocks and its key driving factors is still unknown. In this study, high-throughput sequencing methods were used to determine the microbial community profiles along a W content gradient in W mine waste rocks. We found that the microbial community structures showed clear differences across the different W levels in waste rocks. Notably, arsenic (As), instead of W and nutrients, was identified as the most important predictor influencing microbial diversity. Furthermore, our results also showed that As is the most important environmental factor that regulates the distribution patterns of ecological clusters and keystone ASVs. Importantly, we found that the dominant genera have been regulated by As and were widely involved in As biogeochemical cycling in waste rocks. Taken together, our results have provided useful information about the response of microbial communities to W mine waste rocks.
Collapse
Affiliation(s)
- Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China.
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinyu Su
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Yushuang Chen
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|