1
|
Wang R, Wang Z, Li C, Chen J, Zhu N. Deciphering the mechanism of microbial metabolic function shift and dissolved organic matter variation in acidogenic fermentation of waste activated sludge induced by antiviral drugs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123711. [PMID: 39689537 DOI: 10.1016/j.jenvman.2024.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Antiviral drugs (ATVs), as emerging contaminants enriched in wastewater activated sludge (WAS) in wastewater treatment plants, affect subsequent treatment. ATVs have been shown to have negative influences on anaerobic digestion of WAS, but it is unclear how ATVs affect functional microbial metabolic activity and changes in intermediates. Thus, the effect of the anti-HIV drug ritonavir (RIT) on the period of anaerobic fermentation (AF) and the response of microbial community structure were examined in this study. Results indicated that the production of total volatile fatty acids (VFAs) decreased from 2010.21 mg/L to 372.03 mg/L under 125-1000 μg RIT/kg TSS treatment. Characterization of organic matters revealed that dissolved organic matter in the high-dose RIT groups was less biodegradable, with lower protein content and higher humus content. Mechanistic analyses indicated that RIT exposure reduced the abundance of hydrolyzers and inhibited carbohydrate metabolism, resulting in an increased humification index in the RIT groups. In addition, the expression of genes associated with the synthesis of VFAs was also significantly reduced in the RIT groups, leading to a decrease in both the amount and type of VFAs. This study provides a novel perspective on the effects of emerging contaminants on WAS treatment processes and pollution prevention.
Collapse
Affiliation(s)
- Ruming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuoqin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiamiao Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Mao S, Ma S, Zhao Q, Hu Q, Zhou Y, Zhang M, Zeng Z, Yu C. Carbohydrate based biostimulation regulates the structure, function and remediation of Cr(VI) pollution by SRBs flora. ENVIRONMENTAL RESEARCH 2024; 263:120088. [PMID: 39389197 DOI: 10.1016/j.envres.2024.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Sulfate reducing bacteria (SRBs) have promising applications as important microorganisms in the microbial approach to remediation of soil heavy metal pollution. However, fewer studies have been conducted on the differences in community structure, community function, heavy metal remediation capacity and effects with SRBs cultured from different carbohydrate. In this study, we investigated the structure and function of different SRBs flora, the reduction mechanism of Cr(VI) and remediation effect on Cr(VI) contaminated soil through high throughput sequencing, ICP-OES analysis and a series of soil remediation experiments. The results showed that there were significant differences in the community structure and function of SRBs flora cultured with different carbohydrate, and glycerine cultivated community with high SRBs abundance, diverse community structure, complete community function, which realizing the best SRBs flora performance. This SRBs flora under the optimal carbon/sulfur ratio, Fe(II), and sodium chloride conditions of 2, 50-500 mg/L, and 0-2.5 %, respectively and the highest sulfate and Cr(VI) reduction rates reached 84.2 % and 73.6 %, respectively, which the hydrogen sulfide pathway was the dominant pathway for Cr(VI) reduction. The SRBs flora cultured with glycerine, lactate, and butyrate obtained a good community structure sulfate and Cr(VI) reduction rates in contaminated soils, which the restored seed germination function and significantly blocked the migration of Cr(VI) into plants. The study provides new technical idea to regulate the structure and function of SRBs flora by means of selecting carbohydrate for the efficient remediation of soil Cr(VI) pollution.
Collapse
Affiliation(s)
- Shuaixian Mao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Qiancheng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Qiaoyu Hu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Ying Zhou
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Minghan Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Zhiyong Zeng
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
3
|
Chen L, Zhang P, Li Y, Liang J, Zhang G. Genome-centric metagenomic analysis reveals mechanisms of quorum sensing promoting anaerobic digestion under sulfide stress: Syntrophic metabolism and microbial self-adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176240. [PMID: 39293760 DOI: 10.1016/j.scitotenv.2024.176240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Sulfide stress is a common inhibition factor in anaerobic digestion systems with sulfur-rich feedstocks. Quorum sensing (QS) signaling molecule N-acyl-homoserine lactones (AHLs) possess positive effect on promoting anaerobic digestion. However, the micro-biological mechanisms of AHLs affecting syntrophic metabolism and microbial self-adaptation have not yet been deciphered in anaerobic digestion under sulfide stress. In this study, the CH4 production increased by 21.34 % at 20 μM AHLs addition in anaerobic digestion under sulfide stress. AHLs contributed to establishing potential syntrophic relationship between acidifying bacteria (unclassified_o__Bacteroidales, Lentimicrobium, Acetoanaerobium, Longilinea, and Sphaerochaetaa) and Methanothrix. AHLs promoted syntrophic metabolism by boosting microbial metabolic activity and interspecies electron transfer (IET) process under sulfide stress. For microbial metabolic activity, AHLs promoted the key enzyme synthesis in acidogenesis and methanogenesis. For IET process, AHLs promoted the assembly and synthesis of conductive pili, and synthesis and secretion of riboflavin. Furthermore, AHLs promoted microbial self-adaptation including two component system, lipopolysaccharide biosynthesis, and DNA repair, which were important evidences that microbial resistance to sulfide stress was enhanced by AHLs. Microbial self-adaptation provided favorable foundation and safeguard for syntrophic metabolisms under sulfide stress. These findings deciphered the micro-biological mechanisms of AHLs enhancing anaerobic digestion under sulfide stress.
Collapse
Affiliation(s)
- Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
4
|
Xie J, Lin R, Min B, Zhu J, Wang W, Liu M, Xie L. Deciphering Fe@C amendment on long-term anaerobic digestion of sulfate and propionate rich wastewater: Driving microbial community succession and propionate metabolism. BIORESOURCE TECHNOLOGY 2024; 406:130968. [PMID: 38876277 DOI: 10.1016/j.biortech.2024.130968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study evaluated the reflection of long-term anaerobic system exposed to sulfate and propionate. Fe@C was found to efficiently mitigate anaerobic sulfate inhibition and enhance propionate degradation. With influent propionate of 12000mgCOD/L and COD/SO42- ratio of 3.0, methane productivity and sulfate removal were only 0.06 ± 0.02L/gCOD and 63 %, respectively. Fe@C helped recover methane productivity to 0.23 ± 0.03L/gCOD, and remove sulfate completely. After alleviating sulfate stress, less organic substrate was utilized to form extracellular polymeric substances for self-protection, which enhanced mass transfer in anaerobic sludge. Microbial community succession, especially for alteration of key sulfate-reducing bacteria and propionate-oxidizing bacteria, was driven by Fe@C, thus enhancing sulfate reduction and propionate degradation. Acetotrophic Methanothrix and hydrogenotrophic unclassified_f_Methanoregulaceae were enriched to promote methanogenesis. Regarding propionate metabolism, inhibited methylmalonyl-CoA degradation was a limiting step under sulfate stress, and was mitigated by Fe@C. Overall, this study provides perspective on Fe@C's future application on sulfate and propionate rich wastewater treatment.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - RuJing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bolin Min
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jiaxin Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenbiao Wang
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
5
|
de Oliveira JF, Fia R, de Melo AFSR, Fia FRL, Rodrigues FN, Siniscalchi LAB, de Matos MP. Organic stabilization and methane production under different organic loading rates in UASB treating swine wastewater. Biodegradation 2024; 35:389-405. [PMID: 37966620 DOI: 10.1007/s10532-023-10060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
This study proposes the was to evaluate the stability and methane production with organic load differents in an upflow anaerobic sludge blanket reactor (UASB) treating swine wastewater by methods of multivariate analysis. Four organic loads were used with average hydraulic holding times of one day. The methods of data analysis of linear regression, Pearson correlation, principal component analysis and hierarchical clustering analysis were used for understanding stability and methane production in the reactor. The highest concentrations of bicarbonate alkalinity of 683 mg L-1 CaCO3 and total volatile acids of 1418 mg L-1 HAc with maximum organic loading applied were obtained. The optimal stability conditions occurred at an intermediate and partial alkalinity ratio between 0.24 and 0.25 observed in initial phases with a chemical oxygen demand (COD) removal of 47-57%. Maximum methane production was 9.0 L CH4 d-1 observed with linear regression positive and occurred at the highest applied organic load, corresponding to the highest COD removal efficiency and increased microbial biomass. Positive and negative correlation between functional stability in anaerobic digestion showed regular activity between acids, alkalinity and organic matter removal. This fact was also proven by the analysis of principal components that showed three components responsible for explaining 83.2% of the data variability, and the alkalinity, organic matter influent and organic acids had the greatest effects on the stability of the UASB reactor. Hierarchical clusters detected the formation of five groupings with a similarity of 50.1%, indicating that temperature and pH were variables with unitary influences on data dimensionality.
Collapse
Affiliation(s)
- Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte, 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Ana Flavia Santos Rabelo de Melo
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Fátima Resende Luiz Fia
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | | | - Luciene Alves Batista Siniscalchi
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Mateus Pimentel de Matos
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
6
|
Ye Y, Yan X, Luo H, Kang J, Liu D, Ren Y, Ngo HH, Guo W, Cheng D, Jiang W. Comparative study of the removal of sulfate by UASB in light and dark environment. Bioprocess Biosyst Eng 2024; 47:943-955. [PMID: 38703203 DOI: 10.1007/s00449-024-03024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
At present, the application of sewage treatment technologies is restricted by high sulfate concentrations. In the present work, the sulfate removal was biologically treated using an upflow anaerobic sludge blanket (UASB) in the absence/presence of light. First, the start-up of UASB for the sulfate removal was studied in terms of COD degradation, sulfate removal, and effluent pH. Second, the impacts of different operation parameters (i.e., COD/SO42- ratio, temperature and illumination time) on the UASB performance were explored. Third, the properties of sludge derived from the UASB at different time were analyzed. Results show that after 28 days of start-up, the COD removal efficiencies in both the photoreactor and non-photoreactor could reach a range of 85-90% while such reactors could achieve > 90% of sulfate being removed. Besides, higher illumination time could facilitate the removal of pollutants in the photoreactor. To sum up, the present study can provide technical support for the clean removal of sulfate from wastewater using photoreactors.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Xueyi Yan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Hui Luo
- Chengdu Garbage Sorting Management & Service Center, Chengdu, 610095, China
| | - Jianxiong Kang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Yongzheng Ren
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Xing BS, Tang XF, Li LH, Fu YL, Liu JY, Wang YG, Sun XX, Li YY, Chen R, Jin RC. A new substrate equalization method for optimizing the influent conditions and fluid flow patterns of a multifed upflow anaerobic sludge blanket reactor with mature anammox granules. BIORESOURCE TECHNOLOGY 2024; 400:130700. [PMID: 38615969 DOI: 10.1016/j.biortech.2024.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
To improve nitrogen removal efficiency (NRE) and achieve homogenous distribution of anammox sludge and substrate, a new substrate equalization theory and a cumulative overload index was proposed for multifed upflow anaerobic sludge bed (MUASB) reactors with mature anammox granules. The performance and flow patterns of MUASB reactors were investigated under various influent conditions. The results showed that the nitrogen removal performance and stability of MUASB reactors could be optimized by minimizing the cumulative load. The NRE gradually increased from 83.3 ± 2.2 %, 86.8 ± 4.2 % to 89.3 ± 4.1 % and 89.7 ± 1.6 % in feeding flow tests and feeding port tests, respectively. Furthermore, the flow patterns were compared based on residence time distribution and computational fluid dynamics, indicating that a better equilibrium distribution of microorganisms and substrates could be achieved in the MUASB reactors under the lowest cumulative load. Therefore, substrate equalization theory can be used to optimize the nitrogen removal performance of MUASB reactors with low-carbon footprints.
Collapse
Affiliation(s)
- Bao-Shan Xing
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 9808579, Japan; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| | - Xi-Fang Tang
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Ling-Hu Li
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yu-Lin Fu
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Jia-Yi Liu
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Ya-Ge Wang
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Xin-Xin Sun
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 9808579, Japan
| | - Rong Chen
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
8
|
Wang W, Dong L, Zhai T, Wang W, Wu H, Kong F, Cui Y, Wang S. Bio-clogging mitigation in constructed wetland using microbial fuel cells with novel hybrid air-photocathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163423. [PMID: 37062319 DOI: 10.1016/j.scitotenv.2023.163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Excessive accumulation of extracellular polymeric substances (EPS) in constructed wetland (CW) substrate can lead to bio-clogging and affect the long-term stable operation of CW. In this study, a microbial fuel cell (MFC) was coupled with air-photocathode to mitigate CW bio-clogging by enhancing the micro-electric field environment. Because TiO2/biochar could catalyze and accelerate oxygen reduction reaction, further promoting the gain of electric energy, the electricity generation of the tandem CW-photocatalytic fuel cell (CW-PFC) reached 90.78 mW m-3. After bio-clogging was mitigated in situ in tandem CW-PFC, the porosity of CW could be restored to about 62.5 % of the initial porosity, and the zeta potential of EPS showed an obvious increase (-14.98 mV). The removal efficiencies of NH4+-N and chemical oxygen demand (COD) in tandem CW-PFC were respectively 31.8 ± 7.2 % and 86.1 ± 6.8 %, higher than those in control system (21.1 ± 11.0 % and 73.3 ± 5.6 %). Tandem CW-PFC could accelerate the degradation of EPS into small molecules (such as aromatic protein) by enhancing the electron transfer. Furthermore, microbiome structure analysis indicated that the enrichment of characteristic microorganisms (Anaerovorax) for degradation of protein-related pollutants, and electroactive bacteria (Geobacter and Trichococcus) promoted EPS degradation and electron transfer. The degradation of EPS might be attributed to the up-regulation of the abundances of carbohydrate and amino acid metabolism. This study provided a promising new strategy for synergic mitigation and prevention of bio-clogging in CW by coupling with MFC and photocatalysis.
Collapse
Affiliation(s)
- Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Liu Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Tianyu Zhai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Huazhen Wu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
9
|
Zhang TT, Zhao QB, Wu XQ, Xu C, Zheng YM, Yu SS. Enhancing sulfate reduction and hydrogen sulfide removal through gas stripping in the acidogenesis phase of a two-phase anaerobic process. BIORESOURCE TECHNOLOGY 2023:129381. [PMID: 37352992 DOI: 10.1016/j.biortech.2023.129381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
This study aims at evaluating two-phase and single-phase reactors for treating sulfate wastewater with low COD/SO42- ratios. Additionally, a new process of gas stripping in an acidogenesis phase is proposed to reduce hydrogen sulfide (H2S) inhibition and enhance biomethanation. The two-phase performed better than the single-phase in terms of COD removal, CH4 production and H2S resistance. After 30 days of stripping, the COD and sulfate degradation rates increased from 85.16% to 91.09% and from 49.39% to 63.07% in the two-phase, respectively. In contrast, without stripping, they were from 79.21% to 64.37% and from 50.26% to 53.15% in the single-phase, respectively. The microbial biodiversity was augmented via stripping, including norank_f__Spirochaetaceae, Petrimonas, Desulfurella and Blvii28_wastewater-sludge_group. Stripping operation enhanced the dissimilatory sulfate reduction, amino acid metabolism and possibly sulfate-dependent anaerobic ammonia oxidation (S-ANAMMOX). This study provides a promising strategy to improve sulfate reduction and reduce H2S inhibition under a low COD/SO42- ratio.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao-Qiong Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Luiz FN, Passarini MRZ, Magrini FE, Gaio J, Somer JG, Meyer RF, Paesi S. Metataxonomic characterization of the microbial community involved in the production of biogas with microcrystalline cellulose in pilot and laboratory scale. World J Microbiol Biotechnol 2023; 39:184. [PMID: 37147463 DOI: 10.1007/s11274-023-03573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 05/07/2023]
Abstract
Biogas, produced in anaerobic digestion, is a sustainable alternative for generating energy from agro-industrial and municipal waste. Information from the microbiota active in the process expands the possibilities for technological innovation. In this study, taxonomic annotations, and functional prediction of the microbial community of the inoculum of two processes were carried out: an industrial unit (pilot-scale urban solid waste plant-IU) and a laboratory-scale reactor fed with swine and cattle waste (LS). The biochemical potential of biogas was obtained using tested inoculum with microcrystalline cellulose, obtaining 682 LN/kgVS (LSC-laboratory scale inoculum and microcrystalline cellulose), and 583 LN/kgVS (IUC-industrial unit inoculum and microcrystalline cellulose), which is equivalent to a recovery of 91.5% of total biogas to LSC. The phyla Synergistota and Firmicutes were more abundant in LS/LSC. In the IU/IUC (treatment of restaurant waste and customs seizures), there was a greater microbiological variety and a predominance of the Bacteroidota, Cloacimonadota, Firmicutes and Caldatribacteriota. The genus Methanosaeta predominated in the process, and it was possible to infer the genes (K01895, K00193 and K00625) related to acetoclastic pathway, as well as endoglucanases that are involved in the metabolism of cellulose (LSC). Terpenoids, polyketides, cofactors, and vitamin metabolism were higher in reactors that received different substrates (IU; IUC). The taxonomic and functional differences revealed the importance of determining the microbiota in the analysis of the potential of an inoculum, combined with the use of microcrystalline cellulose, which can provide optimization information in the production of clean energy.
Collapse
Affiliation(s)
- Franciele Natividade Luiz
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | | | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliana Gaio Somer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Rafaela Faust Meyer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil.
| |
Collapse
|
11
|
Nnorom MA, Saroj D, Avery L, Hough R, Guo B. A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130628. [PMID: 36586329 DOI: 10.1016/j.jhazmat.2022.130628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.
Collapse
Affiliation(s)
- Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisa Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
12
|
H2S Emission and Microbial Community of Chicken Manure and Vegetable Waste in Anaerobic Digestion: A Comparative Study. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In order to solve the problem of H2S corrosion in biogas utilization, it is necessary to understand the characteristics and mechanisms of H2S production in chicken manure anaerobic digestion (CMAD) and vegetable waste anaerobic digestion (VWAD). In this study, lab-scale batch tests of CMAD and VWAD were conducted for 67 days at 35 °C. The results showed that sulfide was found to be the major form of sulfur in CMAD (accounting for 90%) and VWAD (70%). The average concentration of H2S was 198 ± 79 ppm in CMAD and 738 ± 210 ppm in VWAD. Moreover, 81% of total H2S was produced at 20 days of methane production in CMAD, but 80% of total H2S was produced in the first day in VWAD because of the rapid production of biogas and fermentation acidification. The sulfide ion equilibrium model could universally and feasibly predict the H2S production in CMAD and VWAD. The abundance of Firmicutes, Bacteroidetes, Proteobacteria and Euryarchaeota accounted for about 95% of the total microbes in both CMAD and VWAD; the influence of the fermentation stage on the microbial community was greater than that of the difference between CM and VW; the abundance of SRB was 0.01~0.07%, while that concerning organosulfur compounds fermentation was 22.8~30.5%. This study indicated that the H2S concentration of CMAD biogas was more than five times that of VWAD because CM is alkalescent but VW is acidic.
Collapse
|
13
|
Wang K, Zhu G, Feng Q, Li X, Lv Y, Zhao Y, Pan H. Influence of applied voltage on bioelectrochemical enhancement of biomethanation for low-rank coal and microbial community distribution. BIORESOURCE TECHNOLOGY 2023; 369:128466. [PMID: 36503085 DOI: 10.1016/j.biortech.2022.128466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The performance of peat biomethanation was investigated in bioelectrochemical anaerobic digestion at different applied voltages, and compared to conventional anaerobic digestion. The methane yield was stabilized at 16 mL/g peat in the conventional anaerobic digestion. However, in the bioelectrochemical anaerobic digestion, the methane yield was significantly increased to 264 mL/g peat at the applied voltage of 4 V, followed by 1 V, 2 V, 0.5 V and 0 V. The bioelectrochemical system could enrich more electroactive microorganisms on the electrode, as well as in the bulk solution, and further improve the direct interspecies electron transfer for methane production. The 16S rRNA analysis showed a significant increase in the abundance of specific microorganisms in the bulk solution, including Firmicutes phylum and Proteobacteria phylum, in addition to a gradual increase in acetoclastic methanogenesis with an increase in applied voltage. These results provide a solution to turn low-rank coal into a new alternative energy.
Collapse
Affiliation(s)
- Keqiang Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guanyu Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qing Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoxiang Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaowei Lv
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong Zhao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongda Pan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
14
|
Fu X, Yu Z, Kong F, Duan P, Li F, Zhang L, Liu Z, Cui Y. Application of an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands: Mechanisms of pollutants removal and greenhouse gases reduction. BIORESOURCE TECHNOLOGY 2023; 368:128337. [PMID: 36403915 DOI: 10.1016/j.biortech.2022.128337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study established an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands (VFCWs) to enhance pollutants removal efficiencies and reduce greenhouse gas emissions simultaneously. The results of the VFCWs experiment indicated that the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen in loach systems were significantly higher than those of non-loach systems, achieving 59.16%, 35.98%, and 40.96%, respectively. The CH4 and N2O emission fluxes were also significantly reduced in the integrated system, resulting in lower global warming potential (GWP) and GWP per unit of pollutants removal. Loaches promoted the transportation of oxygen, facilitated the re-contact and utilization of sediments, reduced CH4 emission, and enhanced nitrogen conversion and phosphorus accumulation. Increased bioavailable carbon and nitrate-nitrogen in the integrated system improved the abundance of denitrifying bacteria, which supported complete denitrification, reducing N2O emissions with high pollutant removal.
Collapse
Affiliation(s)
- Xiuzheng Fu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Pingping Duan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanyi Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lingzhu Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhongying Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
15
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|